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Learning in continuous action space for developing
high dimensional potential energy models
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Reinforcement learning (RL) approaches that combine a tree search with deep learning have
found remarkable success in searching exorbitantly large, albeit discrete action spaces, as in
chess, Shogi and Go. Many real-world materials discovery and design applications, however,
involve multi-dimensional search problems and learning domains that have continuous action
spaces. Exploring high-dimensional potential energy models of materials is an example.
Traditionally, these searches are time consuming (often several years for a single bulk sys-
tem) and driven by human intuition and/or expertise and more recently by global/local
optimization searches that have issues with convergence and/or do not scale well with the
search dimensionality. Here, in a departure from discrete action and other gradient-based
approaches, we introduce a RL strategy based on decision trees that incorporates modified
rewards for improved exploration, efficient sampling during playouts and a “window scaling
scheme" for enhanced exploitation, to enable efficient and scalable search for continuous
action space problems. Using high-dimensional artificial landscapes and control RL problems,
we successfully benchmark our approach against popular global optimization schemes and
state of the art policy gradient methods, respectively. We demonstrate its efficacy to para-
meterize potential models (physics based and high-dimensional neural networks) for 54
different elemental systems across the periodic table as well as alloys. We analyze error
trends across different elements in the latent space and trace their origin to elemental
structural diversity and the smoothness of the element energy surface. Broadly, our RL
strategy will be applicable to many other physical science problems involving search over
continuous action spaces.
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einforcement learning (RL) and decision tree (e.g., Monte

Carlo tree search) based RL algorithms are emerging as

powerful machine learning approaches, allowing a model to
directly interact with and learn from the environment!. RL has
achieved impressive capabilities with tremendous success in sol-
ving problems with intractable search space, for example in game
playing (such as chess, Shogi, and Go)?3, chemical synthesis
planning®® or drug discovery®. However, these methods have
been limited to discrete action space—e.g., “move pawn to e4”,
“add acetone reagent” or “remove chemical group -COOH.
Many real-world problems including several grand challenges in
materials discovery and design involve decision making and
search via continuous action space®. These include, for instance,
the problem of searching optimal model parameters/weights,
exploring low-energy material phases or inverse design, opti-
mizing experimental parameters, or synthesizing material
properties™. While it is highly desirable to translate the merits of
RL methods to solve search problems in materials design, a
challenge lies in its continuous, complex and multidimensional
nature and is further complicated by an exorbitantly large
number of degenerate and/or suboptimal solutions.

One of the more successful versions of RL involves the use of
Monte Carlo tree search (MCTS)!%11, which utilizes playouts to
select the best possible action (with maximum reward) from the
current state (Fig. 1). Here, playouts refer to random actions from
the model that allow it to learn by interacting with the environ-
ment. The larger the number of playouts, the better the model
estimate of reward and the more promising is the model action
selection. Notably, the MCTS performs this search in a tree
structure, continuously growing either those leaves of the tree that
result in a maximum reward (exploitation) or those which have
not been adequately sampled (exploration)!2. It is important to
understand that when the action space is discrete, a parent leaf
will exhibit limited possible child leaves, all (or some) of which
can be assessed for their prominence. When the action space is
continuous, the number of possible child leaves are infinite,
irrespective of the depth of the parent leaf, making the use of
MCTS seemingly impossible in continuous action space.

Recently, attempts to develop MCTS for continuous action
space problems is gaining momentum!!13. A detailed discussion
of the continuous action MCTS methods developed in this work
is presented in the Supplementary Methods (Section 3.3). In a
significant departure from traditional discrete MCTS!“ and recent
continuous action space MCTS approaches!!>13, we introduce
three concepts to tackle continuous action space problems: (1) a
uniqueness function to avoid degeneracy, (2) correlating tree-
depth to action space, and (3) implementing an adaptive sam-
pling of playouts. The first ensures that only unique leaves are
being explored during MCTS. This avoids the common issue of
convergence of two initially separate MCTS branches to the same
region of the continuous search space. More importantly, this
resolves the problem of multiple representations of the same
(degenerate) solution as often encountered in several physical
problems (for example, a phase structure can be represented
using varying unit cell definitions). The second concept provides
a meaningful structure to the algorithm, with the child leaf
searching within a narrower region of that of the parent node.
Lastly, to improve the quality of the playouts, especially in the
case of high-dimensional search space, the random simulations
were biased to sample those regions that were closer to the
parent leaf.

We deploy our approach to a representative high-dimensional
and continuous parameter search for physics-based and neural
network models that involves navigating through high-
dimensional potential energy surfaces (PES)!° of elemental
nanoclusters and bulk systems. Historically, this has represented a

major challenge for molecular modeling and has been accom-
plished using human intuition and expertise, requiring years of
painstaking effort. Recently, a variety of global/local optimization
methods have emerged for this task!®, but they either have con-
vergence issues, do not scale well with the search dimensionality,
or cannot incorporate important gradient-free knowledge (e.g.,
dynamic stability). Over several decades, these approaches have
been used to develop a large number of multi-parameter physics-
based models, mainly for bulk systems and their static/dynamical
properties. The configurational diversity and the complex PES for
nanoscale clusters, especially those far-from-equilibrium, pose a
significant challenge. The extrapolation to capture nanoscale
properties and dynamics, therefore, shows strong deviation from
the ground truth (estimated using high-fidelity first-principles
models, such as density functional theory). Here, we demonstrate
the efficacy of our continuous action MCTS (c-MCTS) by
developing a hybrid bond-order potential (an 18-dimensional
parameter space) for 54 elements chosen across the periodic table,
capturing a variety of bonding environments and demonstrating
the generality, efficiency, and robustness of our approach. For
each element, we train by fitting energies of thousands of carefully
sampled (see Methods) nanoclusters of varying sizes, which are
particularly known for their complex chemistry!7-18 and are dif-
ficult to train using traditional optimization strategies. Our ML-
trained bond-order potentials show significant performance
improvement over current physics-based potential models in
terms of energies, atomic forces, and dynamic stability, and
generalize well for dynamical properties that were not included
during model training.

Results

Learning in continuous action space. MCTS is a powerful
algorithm for planning, optimization, and learning tasks owing to
its generality, simplicity, low computational requirements, and a
theoretical bound on exploration vs exploitation trade-offl0:14:19,
As illustrated in Fig. 1b, it utilizes a tree structure for the para-
meter search consisting of four key stages: (1) selection: based on
a tree policy select the leaf node that has the highest current score;
(2) expansion: add a child node to the selected leaf after taking a
possible (unexplored) action; (3) simulation: from the selected
node, perform Monte Carlo trials of possible actions using a
playout policy to estimate the associated expected reward; (4)
back-propagation: pass the rewards generated by the simulated
episodes to update the scores of all the parent leaves encountered
while moving up the tree. A popular tree policy to use is the
upper confidence bound for parameters (UCP)!420:

InN;

n;

UCP(0)) = —min(r, 1, ...,r, ) + ¢ f(6)) - (1)

where 0; represents the node j in the MCTS structure, r denotes
the reward for a given playout, ¢(>0) is the exploration constant,
n; is the number of playout samples taken by node 6; and all of its
child nodes, and N; is the same value as n; except for the parent
node of 6. (f(8)) is the uniqueness function specifically introduced
in this work and is equal to 1 in traditional MCTS settings.) This
policy tries to balance the search between those nodes which have
either returned the maximum reward (left term) or have not been
explored enough (right term). In contrast, the playout policy
selects random actions (from a node) until the simulated episode
is over.

Several issues deter the use of the traditional discrete as well as
recently developed MCTS formulations for continuous action
space. First, from any parent node, the number of possible child
nodes is infinite as the action space is continuous. Further, for
problems involving parameter search or optimization, the same
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Fig. 1 Schematic of the continuous action MCTS algorithm applied for exploration of high-dimensional potential parameter surfaces. a Top: Simplistic
representation of an objective landscape for a two-parameter search problem. In-plane axes correspond to (two) independent model parameters. The out-
of-plane axis corresponds to objective values, which is defined as the weighted sum of the error in model predicted energies of clusters with respect to
target energies. This objective is minimized by our c-MCTS algorithm. The spheres represent candidates of different model parameters within an MCTS
run, where differences in their vertical positions indicate differences in their objective values. Bottom: Slightly tilted view of the above with the surface
represented as a contour map below the spheres. The numbering on the spheres corresponds to their node positions in the MCTS tree shown in b. These
numbers roughly correspond to the order that the candidates are explored. b Schematic showing the root, parent, child nodes, and their relationship within
an MCTS tree structure. A typical MCTS search involves node selection, expansion, simulation (playout), and back-propagation. Different coloring of the
nodes indicates different depths in the MCTS tree. The algorithm balances between exploration (lateral expansion of nodes) and exploitation (depth
expansion of nodes). As shown in a, the objective value of an MCTS run is expected to decrease quickly along with the depth of the tree. ¢ Search space of
a traditional MCTS algorithm, e.g., game board, is discrete. In the context of parameter optimization, for two discrete parameters each of 19 possible values,
the search space consists of a finite 361 search positions. d The problem of parameter search, such as the objective surface illustrated in a, generally
involves parameters that are continuous, which corresponds to infinite possible search positions. We handle this challenge by applying a range-funneling
technique to the MCTS algorithm where the search neighborhood at each tree-depth becomes smaller and smaller such that the algorithm can converge to

the optimal solutions.

set of actions are possible irrespective of the current depth of the
tree, thus, rendering the tree structure meaningless. Second, the
search space of several physical problems displays inherent
symmetries, which are not properly accounted for in the
traditional MCTS. This leads to poor search efficiency, especially
in high-dimensional problems, or sometimes unwanted conver-
gence of different MCTS branches to the same solution. Lastly,
performing random actions during the playout policy may be
useful to learn expected returns for game playing, but do not
translate well in high-dimensional continuous action space due to
the well-known “curse of dimensionality”?! (see Supplementary
Methods).

We introduce three concepts to enable MCTS operations for
continuous actions space, namely, the uniqueness function, a
tree-depth-based adaptive action space, and a dimensionality-
dependent playout policy. First, the uniqueness function f(8;) for
a node 0, returns a value between 0 and 1, with a higher value

indicating the uniqueness of this node with respect to all the other
nodes in the tree. This not only helps avoid degenerate actions
but also promotes explorations of those actions that are dissimilar
to the previous ones, thereby efficiently sampling a larger search
region. This is among the most essential feature of c-MCTS that
enables high search efficiency. The definition of f(6;) used in this
work (see Supplementary Methods) and its performance for high-
dimensional continuous space is demonstrated in Supplementary
Fig. 1 and Supplementary Table 1.

Second, an adaptive action space that depends on the tree-
depth was included to provide better child-parent correlation
within the MCTS tree structure. As illustrated in Fig. 1d, in this
new scheme the range of possible actions from a node continually
decreases as we go down the tree-depth. This ensures that the
child node is based on actions that are within the search scope of
its parent node. Further, this allows the MCTS algorithm to
incrementally refine its search space; larger scans are made in the
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initial phase of the search, followed by a more focused search in
the identified interesting regions. This also restores a meaningful
correlation between the parent and the child node and allows the
algorithm to converge to a reasonable optimal solution as one
moves down the tree. More details on the appropriate choice of
the window scaling parameter with tree-depth is provided
in the Supplementary Methods.

Third, we introduce an efficient MCTS playout policy for high-
dimensional continuous action space. Traditional MCTS relies on
a playout policy with random moves, but when the search space is
intractable such a policy can make the learning process extremely
difficult and inefficient?223, For example, even with the tree-
depth based scaling of action space, a random playout (assuming
uniform probability distribution) will have a high chance of
action selection which is far from the parent node; see Supple-
mentary Methods (Section 3.2) for a discussion on how uniform
or multivariate Gaussian probability distribution based playout
policies systematically select actions that have large displacements
from the parent node. To avoid this issue, we used a biased
playout policy that selects action based on the probability
distribution r~(@~1) where r is the distance from the parent
node, and d is the dimensionality of the search space. Based on
our experiments, we found this playout policy to provide
significant improvement in the performance owing to better
action selections.

We first demonstrate the efficacy of our approach by
comparing its performance with other state-of-the-art evolu-
tionary and other popular gradient-based approaches?* on 25
well-known trial functions or artificial landscapes, containing
deceitful local minima and a high-dimensional search space, (see
Supplementary Fig. 1, Supplementary Table 1, and Supplemen-
tary Discussion (Section 4.1). Our ¢-MCTS algorithm outper-
forms other popular approaches used for materials applications
both in terms of the solution quality (maximum reward) and
search efficiency (low computational cost). Supplementary
Discussion Section 4.2 highlights some of the known limitations
of such methods, especially w.r.t scalability, problem dimension-
ality, and convergence. Especially for trial functions with higher
dimensionality (e.g., >50), we note that the performance of
c-MCTS is clearly superior to other representative and popular
optimizers, illustrating the appeal of ¢-MCTS for multidimen-
sional materials design and discovery problems. We also applied
¢-MCTS to classic reinforcement problems with a continuous
action space (Supplementary Movies 1, 2, and 3) and demon-
strate several other examples (please see Supplementary Discus-
sion Section 4.3 Examples 1-4), where high-dimensional neural
networks (NN) with up to a billion weights were trained
successfully using c-MCTS.

High-throughput navigation of high-dimensional PES. As a
representative impactful materials application, we next demon-
strate the ability of our c-MCTS approach to successfully navigate
through an 18-dimensional potential energy landscape (see
Methods section and Supplementary Note 3—Section 7.1 for a
description of the hybrid bond-order formalism) for 54 different
elements that include alkali element, alkaline-earth elements,
transition element, rare-earth, metalloids, and nonmetals. We
assess the performance of the optimized hybrid bond-order
potentials (HyBOP) (as tabulated in Supplementary Data 1) with
respect to the ground truth, i.e., density functional theory (DFT)
computed energies and forces of ~165,000 total configurations
(including both low-energy near equilibrium (0.5-1.5eV/atom
range) and high-energy nonequilibrium  configurations
(1.0-12.0 eV/atom range) in our training (~95,000) and test
(~70,000) datasets. As shown in Fig. 2a, b, ML optimized HyBOP

displays remarkable performance for all the elements across the
periodic table. Mean Absolute Error (MAE) in cluster energies of
Group IV-IB transition metals is ~90 meV/atom and ~88 meV/
atom for the training and test set, respectively. Corresponding
values for the post-transition metals from Group IIB (e.g., Zn,
Cd) are slightly smaller at ~60 meV/atom and ~90 meV/atom,
while elements in Group IVA (e.g., Pb) and Group VA (e.g., Bi)
display MAE of ~65meV/atom for both the training and
test datasets. Nonmetals that include C, P, S, and Se show rela-
tively higher average MAE of ~138 meV/atom on the training and
test datasets, while metalloids such as B, Si, Ge, As, Sb, and Te,
have an average MAE of ~100 meV/atom. Group IA alkali ele-
ments, including Li, Na, K, Rb, and Cs, have an average MAE of
~77 meV/atom on both the training and test datasets. Similarly,
Group ITA elements from Be to Ba show an average MAE of
~51 meV/atom. Note that the MAE, as expected, are slightly
higher for highly nonequilibrium clusters compared to the near-
equilibrium configurations. Given that the DFT training data has
a typical accuracy of 20 meV, our newly trained HyBOP models
display remarkable performance in capturing vast regions of the
energy landscape, with energies sampled from near-equilibrium
to highly nonequilibrium cluster configurations and with sizes
from dimers to bulk-like cluster configurations (>50 atoms).

We next assess the performance of our ¢-MCTS trained
HyBOP models by comparing the forces experienced by atoms
for the various sampled configurations with those computed
from DFT. Note that forces were not included in the training. The
high quality of our ¢-MCTS trained HyBOP models is evident
from the strong correlation across a large number of none-
quilibrium nanoclusters (total ~145,000 that have a wide range
~100eV/A for forces) in our test dataset (see Supplementary
Note 5 (Section 9.2-9.55)). As seen in Fig. 2b, the trend in MAE
prediction errors on forces is similar to that seen in energies. The
Group IA alkali and Group IIA alkali earth metals such as Li, Na,
K, Rb, Cs, Mg, Ca, Sr, and Ba have force MAE of ~187 meV/A.
Transition metals such as Cu, Ag, Au, Pd have marginally higher
MAE ~300 meV/A compared to the alkali and alkali earth
elements. Magnetic elements such as Fe, Co, Mn, and Ni from
transition block elements have an MAE ~450 meV/A in force
prediction. Metalloids (B, Si, Ge, As, Sb, and Te) from Group IIIA
and Group VIA, respectively have an MAE ~800 meV/A in force
prediction (and MAE ~99 meV/atom in energy prediction). The
block of transition metal elements containing 25 different
elements with d electrons have an average MAE ~720 meV/atom
in force predictions (MAE ~90 meV/atom in energies). Non-
metals such as C, B, P, S from Group IVA and Group VA display
a strong correlation with DFT forces over a wide range (~200 eV/
A) but have a relatively higher MAE prediction error of
1300 meV/A compared to the rest.

Notably, we find both the energy and force predictions of
c-MCTS optimized HyBOP models to be significantly better than
many other commonly available potential models for several of
these elements. While not exhaustive, we compare the model
performance for 38 different elements covering a range of existing
potential types?, such as EAM, MEAM, Tersoff, AIREBO, ADP,
AGNI, and SW in Supplementary Fig. 2 and Supplementary
Note 2 (Section 6.1-6.38). In comparison to the heat map shown
in Fig. 2, Supplementary Fig. 2 depicts the corresponding MAE
generated from some of these best-performing force fields
available in the literature. We note that the errors in energies
and forces predicted by the best existing potential are >>220
meV/atom and > >2252 meV/A, respectively for the different
elements shown in Supplementary Fig. 2. We also compare the
errors obtained from existing high-quality state-of-the-art ML
models (see Supplementary Figs. 3 and 4; details are provided in
Supplementary Software 1). We find that even arguably the best
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Fig. 2 HyBOP model performance after high-throughput exploration of the potential energy surface of nanoclusters using continuous action MCTS.
A bond-order model with Tersoff-type formalism for 54 different elements across the periodic table is parameterized using an extensive training dataset
generated from density functional theory (DFT) computations. The training set includes nanoclusters of varying sizes and shapes (~1500 configurations
and their energies) for each of the different elements. Mean absolute error (MAE) in a energy and b force predictions of the bond-order force fields relative
to the reference DFT model on a test set of ~70,000 configurations is shown using the color bar in meV/atom and meV/A units, respectively.

available ML potential models such as GAP and SNAP have large
errors (>1eV/atom for energies and >1000eV/Angstrom for
forces) when representing the energies and forces of clusters far-
from-equilibrium in our training and test set (please see
Supplementary Figs. 3, 4 and Supplementary Note 1). This is
much higher than those for our ML-trained models (see Fig. 2).
This dramatic improvement in the performance can be attributed
to two factors, first, the complex chemistry of the nanoclusters
that is distinct from bulk-like behavior to which the existing
potentials are primarily fit to, and second, the ability of the
¢-MCTS to find accurate fitting parameters as compared to
human intuition. Further details on the MAE obtained for
different systems using existing potentials are provided in
Supplementary Note 2 (Section 6.1-6.38). In addition to the
energies and forces, we also evaluate bulk properties (lattice
constants20, cohesive energies2®27, and elastic constants28-30)
predicted by our HyBOP model for ~200 different polymorphs of
these 54 elements. We note that the inclusion of larger bulk-like
cluster configurations (>50 atom clusters) in the training set and
longer-range interactions in HyBOP ensured that bulk properties
are reasonably captured by our models (please see Supplementary
Figs. 5, 6 and Supplementary Note 6).

The methodology above can be easily extended to develop BOP
models for alloy systems. As examples, we demonstrate the
application to two binary alloys (i) one with solid solution (Ag-
Au), another one that forms (ii) ordered structures (Al-Cu) over a
wide composition range. These constitute a 54-dimensional
parameter space. As seen from Supplementary Fig. 7, the
performance of c-MCTS trained BOP models is quite exceptional
across a broad composition range. To further test the scalability of
c-MCTS, we have also trained the weights of high-dimensional
neural networks with Behler-Parrinello symmetry functions for
several different elements (Al, Mo, and C—please see Supplemen-
tary Note 8). We find that, even for high-dimensional NN with

1000’s of weights, the performance of c-MCTS is comparable to
state-of-the-art gradient-based high-quality optimizers such as
ADAM3L Tt is however worth noting that the c-MCTS is a global
gradient-free optimizer and is expected to work better for problems
with ill-defined gradients compared to gradient-based approaches.

Trends in elemental errors and their origins

We next aim to understand the relationship between the chem-
istry and the HyBOP model performance for any underlying
element. We project the complete cluster test dataset in a 2D
principal component (PC) space as shown in Fig. 3a. A popular
fingerprinting scheme, SOAP or smooth overlap of atomic
positions??, that transforms the structural arrangement of a
cluster to a unique vector representation was utilized (see
Methods). A larger span in the PC space by an element is char-
acteristic of its higher structural diversity; for example, some of
the well-known elements with the most diverse chemical bonding,
such as B, C, and S, can be seen to have a much larger PC span.
We find a strong correlation of this PC area with the element
position in the periodic table; moving down the columns of alkali,
alkaline-earth, Group IIIA, Group IVA, Group VA, and Group
VIA elements, we note that the configurational diversity sys-
tematically decreases. Similarly, moving across the 3d, 4d, and 5d
transition rows, the spanned PC area first increases and then
decreases in accordance with the number of valence d-electrons.
A good match between the expected chemical diversity and the
spanned PC area of an element is indicative of a well-sampled and
comprehensive (training and test) cluster dataset. Another nota-
ble aspect from Fig. 3a is that many of the clusters with high
prediction errors lie at the boundary of the PC space which are
expected to belong to under-represented regions of the potential
energy surface. An improvement in the model performance is
thus expected if more clusters from such regions are included in
the training dataset. When grouped according to the position in
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Fig. 3 Trends in model prediction errors with structural diversity of the element. a SOAP fingerprint representation of clusters across different elements
as projected along with the first two principal components (PCs). The area covered by an element in the PC space is proportional to its structural diversity,
and thus, the difficulty to train an accurate potential model. Also, the structural diversity of an element is closely related to its position in the periodic table.
Regions of higher errors mostly occur at the boundary of the PC space which are expected to belong to under-represented configurations. b Trend in the
prediction errors for different elements when grouped across different columns or rows of the periodic table. A similar trend can be seen for the elemental
PC area, suggesting that elemental structural diversity correlates well with the model errors. The dotted lines capture the approximate trend within a group
of elements and guide the eye. ¢ Correlation between the prediction error and the inverse of the smoothness of the element energy surface. d Elements
with high prediction errors display either high structural diversity or exhibit highly corrugated energy surfaces. Elements with mean absolute error (MAE)

>100 meV/atom have been marked in ¢ and d.

the periodic table, the errors in the model energy prediction
roughly evolve as per the element chemistry (see Fig. 3b). Moving
down the columns of alkali, alkaline-earth, Group IIIA, Group
IVA, Group VA, and Group VIA elements the model prediction
errors systematically decrease (within certain approximation),
while moving across the 3d, 4d, and 5d transition rows, such
errors first increase and then decrease. These trends are consistent
with the above discussion on configurational diversity, as cap-
tured by the spanned PC area. To further quantify this correla-
tion, the area in the 2D PC space was computed using a convex
hull construction and can be seen to match well with the errors in
model predictions (Fig. 3b)—with the notable exception of Mo,
which had a relatively high model error than expected from the
respective configurational diversity value. We argue that devel-
oping potentials for elements that show large configurational
diversity, or large PC area, should be more difficult. This is
because finding a unique set of the HyBOP parameters that
capture all such high-energy regions of the energy surface is
nontrivial.

Another aspect that can make potential learning more difficult
is the smoothness of the energy surface. This implies that small
perturbations in an element’s configuration leads to energy
changes with high variance. Developing potential for such a
system would be difficult as the underlying energy surface would
be highly corrugated with strong variations in energy depending

6

on the direction of the perturbation, or could contain multiple
local minima. Based on the principle of a variogram33, the var-
iance in energy changes for an element was computed by mea-
suring the corresponding SOAP fingerprint distances between
different, but similar, configurations. As shown in Fig. 3c, ele-
ments with large prediction errors also displayed high variance in
the energy changes and vice versa. Combining both the above
aspects in Fig. 3d, it can be seen that models with high prediction
errors belong to cases with either high structural diversity or
highly corrugated energy surface; almost all elements with MAE
>100 meV/atom lie in the upper right corner of Fig. 3d. There-
fore, this analysis not only explains the observed trends in the
model prediction errors across the periodic table but also pro-
vides confidence that the developed c-MCTS search successfully
found highly optimal HyBOP parameters in all cases.

Dynamic stability of clusters to bulk, relative isomer stabilities,
normal mode analysis. We perform a rigorous test of our c-
MCTS-optimized HyBOP potentials by evaluating the dynamic
stability of the 54 elemental nanoclusters with different topologies
and over a broad size range (5 to 50 atoms) at different tem-
peratures (see Supplementary Table 9). We perform MD simu-
lations and analyze the dynamical stability for most clusters using
the mean square deviation (MSD) of the atoms during a 1ns
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Fig. 4 Dynamic stability of the clusters of various representative elemental systems. Snapshots sampled from 1 nanosecond MD simulation trajectories
illustrate the dynamic stability of the clusters of representative topologies and sizes for the different elements. To rigorously test the dynamic stability, MD
simulations were performed for >40,000 nanoclusters for the 54 different elements in different size ranges. More detailed MD trajectories for each
element and the simulated temperatures are included in the Supplementary Note 7 Section 11.3.

trajectory. A cluster is considered to be dynamically unstable if
the MSD is greater than 2 A; for a few special configurations, such
as rings, visual inspection of energy or configuration trajectory
was used to evaluate dynamical stability as system rotations lead
to artificially higher values of MSD. We find that the c-MCTS
optimized models capture the dynamical stability across >40,000
clusters tested, with a few representative trajectories shown in
Fig. 4. Detailed trajectories for each element are included in
Supplementary Note 7 (Section 11.3). This rigorous validation
provides confidence for the future use of the developed potential
models as well as the c-MCTS framework for exploring various
structural and dynamical properties of nanoscale systems. We
further perform relative stability analysis for representative iso-
mers of elemental clusters from each group and compare their
relative energy ordering from the HyBOP model with that from
DFT (see Methods and Supplementary Note 7 for details). As
seen from Supplementary Fig. 9 and Supplementary Note 7

(Section 11.4), the agreement is quite remarkable given the subtle
differences that exist in many of these isomers. Finally, we also
perform normal mode analysis for several clusters of repre-
sentative elements. We observe that the computed normal modes
from HyBOP match very well with the DFT computed normal
modes (see Supplementary Fig. 8 and Supplementary Note 7
(Section 11.1-11.2)) over a broad frequency range, highlighting
the high quality of our HyBOP models.

In summary, we build on the powerful ideas of reinforcement
learning and decision trees to develop an effective search
algorithm in high-dimensional continuous action space (c-
MCTS). Our algorithm extends Monte Carlo tree search to
continuous action spaces with three novel concepts (uniqueness
criteria, window scaling, and adaptive sampling) to accelerate the
search. ¢-MCTS broadly outperforms state-of-the-art meta-
heuristic and other optimization methods. We applied this
method to develop accurate bond-order potentials (with 18-
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dimensional search space) for 54 elements across the periodic
table, a rather nontrivial feat which would have taken years of
effort with the traditional approach. On the one hand, the
developed potentials will be of use to the materials simulation
community owing to their accuracy in capturing the energy and
atomic forces across large configuration space, making them
attractive in the field of catalysis, especially for problems
involving single-atom-catalysts*3> that form localized active
sites. On the other hand, the developed c-MCTS will be beneficial
in solving grand challenges in materials discovery that often
involve search in a continuous space.

Methods

Generation of diverse cluster configurations. The accuracy and transferability of
a potential model or force field depends on the quality of training and test datasets.
In this study, our training and test dataset consists of ~95,000 and ~70,000 clusters
configurations and their energies for 54 different elements across the periodic table,
respectively. The sampled configurations contain (a) the ground state atomic
structures (b) atomic structures near equilibrium, and (c) structures far-from-
equilibrium. A total of ~19,000 ground state cluster configurations were evenly
included amongst the training and test dataset. As a result, the DFT computed
energies of sampled configuration generates a broad spectrum of energy window
(ranging from ~1 eV/atom, for alkali and alkali earth metals to ~14 eV/atom, for
nonmetals) in the training and test dataset. A continuous energy window from low
to high for the sampled configurations ensures that the energetics and dynamics of
clusters configurations starting from equilibrium to far-from-equilibrium are
adequately represented. Ground state clusters configurations are mined from dif-
ferent literature3® as well as from our own calculations using a standard atomic
structure prediction method (such as genetic algorithm37-38). We used Boltzmann-
based Metropolis sampling and a nested ensemble-based3°-4! approach to generate
the cluster configurations that have energies near equilibrium and far-from-
equilibrium. The combination of these two techniques generates cluster config-
urations of a continuous range of energies from high to low. From the size per-
spective, the cluster configurations sampled consist of dimers to bulk-like
configurations i.e., clusters containing atoms more than 50 atoms. Details on the
various sampling approaches to generate cluster configurations are provided in
Section 4.4 of Supplementary Discussion.

Reference energy and force computations for cluster configurations. The
energies of all the cluster configurations were computed using density functional
theory (DFT) as implemented in the Vienna Ab initio Simulation Package
(VASP)42, The low-energy cluster configurations are further relaxed using con-
jugate gradient approach®? whereas in the case of nonequilibrium clusters we
perform static DFT calculation to compute their energies and forces. To avoid
interactions between two periodic images we assign the box length such that the
distance between two periodic images is at least 15 A or larger. The DFT calcu-
lations were performed using the generalized gradient approximation (GGA) with
the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, and the
projected-augmented wave (PAW) pseudo-potentials*. The details of pseudo-
potentials used in our calculations are provided in Supplementary Table 2 in
Supplementary Discussion Section 4.5. Spin-polarized calculations with the Bril-
louin zone sampled only at the I-point were performed. To handle errors that may
arise during the structural relaxation or static DFT calculations, our high-
throughput workflow used an in-house python wrapper®® around VASP along with
a robust set of error handling tools.

Learning of trial functions. We performed a rigorous test using a series of trial
functions to demonstrate the suitability of our c-MCTS approach. We used several
popular test functions#® which were designed to represent a wide variety of dif-
ferent continuous action surfaces. These surfaces include many local minima
(Ackley, Buckley, Ragstrigin, etc.), misleading or nonexistent gradients (Hyper
Plane, Dejong Step Function), or other functions that are designed to mimic
common optimization traps that one may encounter. An advantage of these
functions is that they are computationally quick to evaluate and have known
solutions. In addition, several of them can be scaled up to an arbitrary number of
dimensions. As such, these trial functions provide a series of comprehensive first-
order tests to evaluate a search algorithm. These functions have implementations in
a wide variety of programming languages such as MATLAB, Python, R to name a
few. We compare the performance of c-MCTS with several other global/local
optimizers including evolutionary algorithms such as particle swarm, Bayesian
optimization, and random sampling. For the particle swarm, the PySwarm opti-
mization package?” was used with 50 particles per-trial and the hyperparameters
(c1, 2, w) were adjusted on a per-trial basis starting from the default of (0.5, 0.3,
0.9). For the Bayesian-based optimization the HyperOpt Python package*3 with the
TPE. Suggest option was used as the trial selection method. The performance of the
various optimizers on several different trial functions is listed in Supplementary

Table 1 and the convergence to solution for representative cases is shown in
Supplementary Fig. 1.

Model selection—Hybrid bond-order potential. We navigate an 18-dimensional
potential energy surface represented by a hybrid bond-order potential (HyBOP)
expressed as

V=Vg+ Vg (2

which utilizes a Tersoff formalism*® for describing short-range directional inter-
action (Vsg) and a scaled Lennard-Jones (LJ) function for long-range interaction
(Vir). The short-range pair potential function V. is described by

Viw = 3T cltlfalry) + bif () @

where fc(r;j), fa(rij), and fa(r;;) are the cutoff, repulsive, and attractive pair inter-
actions, respectively, between atoms i and j separated by a distance r;;, and b;; is a
bond-order parameter which modifies the pair interaction strength between atom i
and j depending on their local chemical environment. The long-range interactions
Vir uses a scaled Lennard-Jones (LJ) function which is given by,

Vig =S 4e AN 4
1 = XX deyf (M) C)
i j>i rij rij

where, ¢;; and g;; are L] parameters for a pair of atoms i and j that are a distance r;;
apart. fy(M;) is a scaling function that describes the dependence of LR contribution
from a given atomic pair i — j on the number of atoms within a prescribed radial
distance RL® from the atom i. Details of the potential model are provided in
Supplementary Note 3 (Section 7.1). Owing to its flexibility in describing various
bonding characteristics as well as to facilitate comparisons, we retain the HyBOP
formalism across all the elements in the periodic table.

Learning of high-dimensional potential energy surface (PES). To navigate the
high-dimensional continuous parameter space, we developed a workflow that
interfaces the MCTS algorithm with a molecular simulator, a large-scale atomic/
molecular massively parallel simulator (LAMMPS)>0. While MCTS is used to
navigate the high-dimensional HyBOP parameters space, LAMMPS is used to
evaluate the performance of a given input set of HyBOP parameters by computing
the mean absolute error (MAE) of energies for the clusters in the training dataset.
Each node of the MCTS search represents a particular set of HyBOP parameters,
with the reward r in Eq. (1) evaluated as the weighted sum of MAE error in the
cluster energies as discussed in Supplementary Note 4 (Section 8.1-8.2). MCTS is a
decision tree-based approach (comprising of selection, expansion, simulation, and
back-propagation) that builds a shallow tree of nodes where each node represents a
point in the search space and downstream pathways are generated by a playout
procedure. The algorithm simultaneously explores potentially better pathways to
reach the optimal point in a search space and exploits a subset of pathways that have
the greatest estimate values of the search function. This combination of exploration
vs exploitation and an appropriate trade-off mechanism between them are found to
be the most efficient strategy of identifying optimal points for a given function. This
strategy is also extended to optimize weights of high-dimensional neural net-
works. The details of the c-MCTS approach to learn high-dimensional PES are
provided in the Supplementary Methods.

Fingerprinting and principal component analysis. To analyze the structural
diversity of the cluster dataset across the different elements, we utilized the smooth
overlap of atomic positions (SOAP) fingerprinting method32 as implemented in the
DScribe python library>!. SOAP encodes the atomic neighborhood around a spatial
point (or an atom) using the local expansion of a Gaussian smeared atomic density
with orthonormal basis functions composed of spherical harmonics and radial
basis functions. The advantage of using the SOAP fingerprint is that it is invariant
to translation, rotation, and permutations of alike atoms of a configuration, and
forms the basis for the development of several successful ML-based inter-atomic
potentials. The following parameter settings were used for the SOAP fingerprinting:
rcut = 6 A, nmax = 6, and Imax = 4, where rcut is the cut-off radius for the atomic
neighborhood around the concerned atom, namx is the number of radial basis
functions (spherical Gaussian type orbitals) and Imax is the maximum degree of
spherical harmonics. This resulted in a SOAP fingerprint vector for each atom,
which was averaged using the “inner” averaging scheme (average over atomic sites
before summing up the magnetic quantum numbers) to obtain a 105-dimensional
configuration fingerprint for each cluster. Principal component analysis (PCA) was
performed using the (standard) normalized SOAP fingerprint representation of the
entire cluster dataset. The variance in energy changes as a function of SOAP
fingerprint distances (cosine) was computed using the open-source Scikit-GStat
Python library33.

Data availability
The data that support the findings of this study are available from the authors upon
reasonable request.
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Code availability

The ¢-MCTS algorithm is implemented in the BLAST framework developed by the
authors. The codes, scripts, and framework are available from the authors upon
reasonable request.
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