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Abstract

Malaria has persisted as an endemic near the Demilitarized Zone in the Republic of Korea

since the re-emergence of Plasmodium vivax malaria in 1993. The number of patients affected

by malaria has increased recently despite many controls tools, one of the reasons behind

which is the relapse of malaria via liver hypnozoites. Tafenoquine, a new drug approved by

the United States Food and Drug Administration in 2018, is expected to reduce the rate of

relapse of malaria hypnozoites and thereby decrease the prevalence of malaria among the

population. In this work, we have developed a new transmission model for Plasmodium vivax

that takes into account a more realistic intrinsic distribution from existing literature to quantify

the current values of relapse parameters and to evaluate the effectiveness of the anti-relapse

therapy. The model is especially suitable for estimating parameters near the Demilitarized

Zone in Korea, in which the disease follows a distinguishable seasonality. Results were

shown that radical cure could significantly reduce the prevalence level of malaria. However,

eradication would still take a long time (over 10 years) even if the high-level treatment were to

persist. In addition, considering that the vector’s behavior is manipulated by the malaria para-

site, relapse repression through vector control at the current level may result in a negative

effect in containing the disease. We conclude that the use of effective drugs should be consid-

ered together with the increased level of the vector control to reduce malaria prevalence.

Introduction

Malaria has persisted in the Republic of Korea since the 1993 Plasmodium vivax (P. vivax)
malaria re-emergence [1]. According to KCDC (Korea Centers for Disease Control & Preven-

tion), the Korean Government Health Authorities’ continued efforts had managed to reduce

the number of malaria patients to a few hundreds, but recently the number has started to

increase again.

Globally, P. vivaxmalaria was one of the most neglected diseases in the world due to its low

rate of fatality, but recently there has been much interest ever since it has been found that
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severe symptoms and deaths due to vivax malaria are not uncommon [2], even in Korea [3]. In

particular, P. vivax is known to produce hypnozoites, which are dormant forms of the parasite

residing in the liver of the victim [4]. Activation of these hypnozoites makes future relapse pos-

sible even if blood-stage malaria is removed from primary infection. Hypnozoites are pro-

duced when the conditions for transmission of the parasite are less favorable, for instance,

during short seasons of appropriate temperatures and vectors available at high latitudes [5].

The relapse rate caused by these hypnozoites is around 68% across the world, without any

popular treatment for such relapses [6]. Therefore, treatment to prevent malaria relapse by

removing the remaining hypnozoites in the liver is imperative alongside blood-stage malaria

treatment.

Treatment of P. vivaxmalaria in Korea generally uses Chloroquine for schizonticide in the

blood and Primaquine for detoxification in the liver, termed ‘radical cure’ [7]. Until now, Pri-
maquine has been the only drug used for radical cure. Primaquine has a short half-life, so

patients faced considerable difficulty in taking their daily medications during the recom-

mended period of 14 days during which dormant hypnozoites in the liver were treated [8].

Thus, the misuse of drugs in patients treated with blood-stage malaria often resulted in poor

treatment rate for hypnozoites [8]. However, with Tafenoquine being approved as a new drug

in relapse treatment by the U.S. FDA in 2018. Tafenoquine only requires a single dose to pre-

vent relapse of malaria due to its long half-life of about 16 days [9]. The development of this

therapy reduces the effort required from an individual during his treatment. Therefore, proper

use of Tafenoquine in addition to the use of Primaquinemay lower the relapse rate even at the

current level [10].

Meanwhile, a model for evaluating malaria relapse patterns has been introduced by Roy

et al. [11]. In this model, the authors developed a mathematical model that uses gamma-dis-

tributed lag-time to cover the mosquito data and the absence of relapse dynamics, demonstrat-

ing a new technique to estimate the rate of relapse of infections in northwest India. In

addition, based on the estimated values of the parameters, the effect of anti-relapse on the area

was evaluated. However, the model presented above is not suitable for use in our research

because, unlike northwest India, the northernmost part of Korea has a yearly variation in tem-

perature of more than 30˚C and is not a mosquito-friendly environment between November

and February. Additionally, due to the higher latitudes of the region, the distribution of the

period between the initial infection and the first relapse has to be expressed in a multimodal

form. Furthermore, the distribution of latent period of malaria in humans is expressed in

short-term and long-term bimodal forms. The Gamma distributed model—a generalized

exponential model—has been widely used for modeling realistic distributions that the expo-

nentially distributed model cannot be used for [12–16]. However, it was revealed that the

exponential or gamma distributions, which are commonly used to model the incubation and

relapse periods, are inadequate in capturing the complexity of the event-time distribution of

P. vivaxmalaria infections in the temperate regions being considered [5]. Therefore, for this

study, a transmission model that considers multimodal distributions is essential. In this paper,

we develop a transmission model to evaluate the rate of malaria relapse infections in the north-

ern part of Korea and to examine its effect at the population-level on radical cure. This model

takes into account data regarding the mosquito population of the region and the intrinsic dis-

tribution of relapses based on existing literature on malaria models in Korea [17–19]. To

model intrinsic distributions of incubation periods and the time between the initial infection

and the first relapse, we introduce a Coxian distribution, which can express multimodal phe-

nomena. Our model measures the effectiveness of the new mass treatment for relapse at the

population-level.
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Materials and methods

Data

Incidence in targeted area. In this study, we focus on the outbreak of P. vivaxmalaria in

Yeoncheon-gun, Gyeonggi-do in Korea in 2007. Yeoncheon-gun is one of the places in Korea

that suffers from the most severe malarial endemic. Geographically, it is located near the

Demilitarized Zone (DMZ). Anopheles sinensis is the most popular malaria-bearing mosquito

in the region. We used weekly malaria incidence data from the Infectious Disease Portal of

Korea Centers for Disease Control & Prevention (KCDC). This region has four distinct sea-

sons with average temperatures in summer and in winter. According to Korea Meteorological

Administration (KMA), the lowest average monthly temperature is -7.0˚C in January, and the

highest average monthly temperature is 23˚C in August. However, the rainfall is heavy enough

to reach 1,300 mm, which is concentrated mostly in summer. Therefore, mosquitoes thrive

during the summer, but their population is significantly reduced in winter. Thus, malaria in

humans is most prevalent during summer, especially in July and August, and conversely, is

least prevalent in winter, especially in December and February.

Incubation periods and the time to first relapse. First, a study containing incubation

period (IP) data for a total of 229 individuals was identified [20]. This study provides analysis

of the data of the incubation periods from cases of civilians infected with P. vivaxmalaria in

Korea using data from the malaria epidemiological survey conducted between 2001 to 2010.

As malaria in Korea is mainly concentrated in the northwestern region, near Yeoncheon-gun,

it is reasonable to use malaria incubation data of the entire country for this study. Data points

were recorded from the histogram presented in the study. Next, the time to first relapse

(TTFR) data was obtained from [21]. This paper presents raw TTFR data for 46 relapsed sam-

ples from South and North Korea.

Fig 1 depicts the histograms indicating the relative frequencies of IPs and TTFRs for P. vivax
malaria in human. The distribution of the histogram clearly explains why the malaria parasite

survives, although mosquitoes cannot survive in the region during winter. Both incubation and

relapse occur in two forms—short-term and long-term. Malaria parasites undergo short-term

incubations of about 1-2 weeks and long-term incubations of about a year [22], and relapse due

to dormant hypnozoites in the liver occurs about 8-10 weeks after the primary attack in the

Fig 1. Normalized histogram of incubation periods between 2001 and 2010 (left), and time to first relapse (right) in Korea.

https://doi.org/10.1371/journal.pone.0227919.g001
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short-term and about a year afterwards in the long-term, depending on the specific strain of

virus [23, 24]. The spread of the disease during the succeeding year is also affected by this.

Mathematical model

We formulate a mathematical model to capture the trend of relapse of P. vivaxmalaria at the

population-level, which has been schematically depicted in Fig 2:

dSðtÞ
dt

¼ m � lðtÞSðtÞ þ ð1 � ð1 � kÞxÞgIpðtÞ þ grIrðtÞ � mSðtÞ;

EðtÞ ¼
Z t

0

lðt � uÞSðt � uÞ expð� muÞPðuÞ du;

dIpðtÞ
dt

¼

Z t

0

lðt � uÞSðt � uÞ½� PuðuÞ� expð� muÞ du � ðgþ mÞIpðtÞ;

LðtÞ ¼
Z t

0

ð1 � kÞxgIpðt � uÞQðuÞ expð� muÞ du;

dIrðtÞ
dt

¼

Z t

0

ð1 � kÞxgIpðt � uÞ½� QuðuÞ� expð� muÞ du � ðgr þ mÞIrðtÞ;

dSMðtÞ
dt

¼ mM � lMðtÞSMðtÞ � mMSMðtÞ;

dEMðtÞ
dt

¼ lMðtÞSMðtÞ � ð�M þ mMÞEMðtÞ;

dIMðtÞ
dt

¼ �MEMðtÞ � mMIMðtÞ;

ð1Þ

where ρ(t) =M(t)/H, λ(t) = bpH ρ(t)IM(t), and λM(t) = bpM(Ip(t) + Ir(t)).

Fig 2. Schematic diagram of the model (1). Human classes are represented as green rectangles with rounded corners, and mosquito classes as

elongated blue hexagons. Arrows indicate the directions of transition between classes and dotted lines indicate the relationships between actions.

https://doi.org/10.1371/journal.pone.0227919.g002
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In the model (1), the component related to humans is formulated by dividing them into

five classes (Table 1): S, E, Ip, L and Ir, which describe the groups of susceptible, exposed, pri-

mary infected, humans who carry liver-stage dormant hypnozoites, and infectious individuals

who have relapsed from the re-emergence of hypnozoites. The populationM of female Anoph-
elesmosquitoes is divided into three classes: SM, standing for susceptible vectors, EM, standing

for exposed vectors, and IM, standing for infectious vectors. The total rate in each case remains

constant, i.e., S(t) + E(t) + Ip(t) + L(t) + Ir(t) = 1 and SM(t) + EM(t) + IM(t) = 1. The ratio of the

number of mosquitoes to that of humans, ρ, represents the seasonality of transmission, and

therefore ρ� ρ(t). As demonstrated in the previous section, one of the most important consid-

erations in modeling P. vivaxmalaria in temperate regions is expressing the multimodal

nature of IP and TTFR. Therefore, we consider P(t) and Q(t), which are the survival functions

of the incubation period and the duration of the overall liver stage, TTFR, respectively, to

reflect realistic distributions.

When a malaria-infected mosquito bites a susceptible human, he/she becomes infected at a

rate of λ(t) and undergoes an incubation period, which follows the survival probability, P(t) in

the body. Following that, he/she becomes infectious and, with subsequent treatment, leaves the

Ip-class at the rate of γ. One section of this population enters the L-class at the rate of ξ, as the

treatment of hypnozoites in the liver is still not complete, and the other section enter the S-
class again at the rate of 1 − ξ after successful completion of treatment. The period that each

individual spends in the L-class until the re-emergence of malaria follows the survival proba-

bility Q(t). The relapsed malaria patient in the Ir-class then begins to infect susceptible mosqui-

toes with a force of infection of λM(t). Relapses can occur for three main reasons: re-infection

from a mosquito, re-emergence from untreated hypnozoites in the liver, and from untreated

blood-stage malaria. However, it is known that blood-stage malaria has a short treatment

period and a high rate of treatment. Therefore, the last reason can be deemed to be statistically

insignificant in our case, and we only consider re-infections caused by mosquitoes and

untreated hypnozoites. Detailed descriptions of relevant parameters are recorded in Table 2.

We consider the control parameter κ to observe the effect of group relapse prevention con-

trol, which prevents relapse due to hypnozoites. We assume that control at a rate κ reduces Ip-
to-L transmission rate ξ by (1 − κ)ξ. Therefore, control at a rate 100 × κ% enables individuals

from the Ip-class to enter L-class at a rate (1 − κ)ξγ, and to enter the S-class at a rate (1 − (1 −
κ)ξ)γ. Note that κ = 0 represents the current level of radical cure, and κ = 1 represents the suc-

cessful control of all primary infected patients occurs.

In addition, we introduce our chosen functions P and Q as the survival functions of the

Coxian distribution. The Coxian distribution, one of the phase-type distributions, is chosen

because of its property that any type of non-negative distributions can be approximated to a

Coxian distribution [25]. The detailed derivation of the Coxian distributed model is as follows:

Table 1. Description of states in model (1).

State Description

S The fraction of susceptible humans

E The fraction exposed humans

Ip The fraction infectious humans who is primary attected

Ir The fraction infectious humans who is relapsed from hypnozoite first

L The fraction of humans who carry liver-stage dormant hypnozoites

SM The fraction of susceptible mosquitoes

EM The fraction of exposed mosquitoes

IM The fraction of infectious mosquitoes

https://doi.org/10.1371/journal.pone.0227919.t001
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Let X and Y be random variables representing the dwelling-times in the exposed stage(E) and

stage of carrying dormant hypnozoites in the liver (L) in humans, respectively. Then the prob-

ability density functions of X and Y, fX and fY, respectively, are defined to be

fXðtÞ ¼ pn expðtΦÞqP and fYðtÞ ¼ pm expðtΨÞqQ; ð2Þ

where

pn ¼ 1 0 � � � 0
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

n� 1

2

4

3

5 2 M1�nðRÞ;

Φ ¼

� zn �pn� 1zn 0 � � � 0

0 � zn� 1
�pn� 2zn� 1 0 � � � 0

..

.

0 � � � � z2
�p1z2

0 � � � 0 � z1

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

2 Mn�nðRÞ;

Ψ ¼

� Zm �qm� 1Zm 0 � � � 0

0 � Zm� 1 �qm� 2Zm� 1 0 � � � 0

..

.

0 � � � � Z2 �q1Z2

0 � � � 0 � Z1

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

2 Mm�mðRÞ;

qP ¼ � Φ1n ¼ pn� 1zn pn� 2zn� 1 � � � p1z2 z1½ �
>
2 Mn�1ðRÞ;

qQ ¼ � Ψ1m ¼ qm� 1Zn qm� 2Zm� 1 � � � q1Z2 Z1½ �
>
2 Mm�1ðRÞ;

ð3Þ

Table 2. Description of parameters.

Parameter Description Dimension

μ Per capita rate of birth and death in human time−1

μM Per capita rate of birth of adult female Anophelesmosquito time−1

1/γ Mean infectiousness period of infectious human who is primary attacked time

1/γr Mean infectiousness period of infectious human who is relapsed time

ξ Rate of remaining hypnozoites after infectious in the liver at the current level 1

Q(t) Survival function of the time-to-relapse (primary infection to the first relapse) are of

human at time t
1

κ Relapse treatment coverage rate from some interventions 1

1/�M Mean incubation time of mosquito time

P(t) Survival function of incubation time of human at time t 1

b The number of biting human per a mosquito per unit time (=(the number of biting per a

mosquito per unit time) × (HBI))

1

pH The probability of an human infection occur when he/she is bitten by an infected

mosquito

1

ρ(t) The rate of the number of mosquitoes to the number of humans at time t 1

λ(t) Force of infections from mosquito to human at time t (= bpH ρ(t)IM(t))
pM The probability of an mosquito infection occur when it bites an infected human 1

λM(t) Force of infections from human to mosquito at time t (= bpM(Ip(t) + Ir(t))

https://doi.org/10.1371/journal.pone.0227919.t002
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and 1n is an n × 1 vector of ones and F and C are transition rate matrices of X and Y, respec-

tively, where �pi ¼ 1 � pi and �qj ¼ 1 � qj for i = 1, 2, � � �, n and j = 1, 2, � � �,m [26]. Corre-

sponding survival function, P and Q, are given by

PðtÞ ¼ pn expðtΦÞ1n; and

QðtÞ ¼ pm expðtΨÞ1m:
ð4Þ

We successfully derived the Ordinary Differential Equation model from (1) in the case in

which P andQ are assumed to correspond to Coxian distributions (4). The techniques for deri-

vation are as follows: we put the 1 × n vector φ as

φðtÞ ¼ pP expðtΦÞ ¼ ½Pn Pn� 1 � � � P2 P1�;

]where P0is are row vectors of functions of t, for i = n, n − 1, � � �, 1. Then, we get

EðtÞ ¼
Xn

i¼1

Z 1

0

PiðuÞlðt � uÞSðt � uÞ expð� muÞ du:

If we put

EiðtÞ ¼
Z 1

0

PiðuÞlðt � uÞSðt � uÞ expð� muÞ du;

for i = n, n − 1, � � �, 1, we could get

dEnðtÞ
dt

¼ lðtÞSðtÞ � ðzn þ mÞEnðtÞ;

dEiðtÞ
dt

¼ �piziþ1Eiþ1ðtÞ � ðzi þ mÞEiðtÞ; i ¼ n � 1; � � � ; 2; 1;

and this yields

dIpðtÞ
dt
¼ z1E1ðtÞ þ

Xn

i¼2

pi� 1ziEiðtÞ � ðgþ mÞIðtÞ:
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Applying a similar process to L(t) yields the Coxian distributed model from (1):

dSðtÞ
dt

¼ m � lðtÞSðtÞ þ ð1 � ð1 � kÞxÞgIpðtÞ þ grIrðtÞ � mSðtÞ;

dEnðtÞ
dt

¼ lðtÞSðtÞ � ðzn þ mÞEnðtÞ;

dEiðtÞ
dt

¼ �piziþ1Eiþ1ðtÞ � ðzi þ mÞEiðtÞ; i ¼ n � 1; � � � ; 2; 1;

dIpðtÞ
dt

¼
Xn

i¼1

pi� 1ziEiðtÞ � ðgþ mÞIpðtÞ;

dLmðtÞ
dt

¼ ð1 � kÞxgIpðtÞ � ðZm þ mÞLmðtÞ;

dLjðtÞ
dt

¼ �qjZjþ1Ljþ1ðtÞ � ðZj þ mÞLjðtÞ; j ¼ m � 1; � � � ; 2; 1;

dIrðtÞ
dt

¼
Xm

j¼1

qj� 1ZjLjðtÞ � ðgr þ mÞIrðtÞ;

dSMðtÞ
dt

¼ mM � lMðtÞSMðtÞ � mMSMðtÞ;

dEMðtÞ
dt

¼ lMðtÞSMðtÞ � ð�M þ mMÞEMðtÞ;

dIMðtÞ
dt

¼ �MEMðtÞ � mMIMðtÞ;

ð1Þ

where EðtÞ ¼
Pn

i¼1
EiðtÞ, LðtÞ ¼

Pm
j¼1
LjðtÞ and p0 = q0 = 1.

In many cases, the threshold principle of in a constant environment is dealt with by using

Diekmann-Heesterbeek-Metz(DHM) definition [27] of the basic reproduction number, R0.

However, it is not applicable to the formulation of threshold principles for population growth

in a periodic environment [28]. In particular, the definition of R0 in a periodic environment

was given by Bacaër and Guernaoui [29], which can be interpreted as the asymptotic per gen-

eration. Motivated by the work, H. Inaba presented a new definition for the basic reproduction

number as the spectral radius of the generation evolution operator (GEO) [28]. Moreover, it

was shown that the supercritical condition R0 > 1 implies existence of positive periodic solu-

tion [30]. These facts together yield the existence of a periodic solution to our model that is

positive (10) at which the reproduction number, according to the GEO definition, is bigger

than unity.

Estimating model parameters. As the Coxian chains in the model (10) cannot be biologi-

cally interpreted because of phenomena that are going out of the absorption state without

going through the all the chains [31], we estimate model parameters using two procedures as

follows:

(A). Fit survival functions P and Q to the IP and TTFR data, respectively.

(B). Fit other model parameters pH, pM and ξ in the model (10) to the parameter values related

to P and Q which are obtained in (A).
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More detailed descriptions are as follows: First, we construct the IP and TTFR data as

depicted in Fig 1 as an empirical cumulative distribution function (ECDF) and fit these to

Coxian CDF (1 − P) and (1 − Q) in (4). That is, we want to find P and Q to minimize

SSR ¼
Xndata

i¼1

½EEðtiÞ � EDðtiÞ�
2
; ð5Þ

where EE(ti) is the CDF corresponding to the Coxian distribution and ED(ti) is the empirical

cumulative distribution function of IP (TTFR) at the i-th sampling time. Especially, ndata = 20

for IP data although 229 individuals were identified because, IP data points were read off the

histogram plots in Fig 1 and converted into ECDF data. The difficulty with using the Coxian

distribution lies in correctly choosing the number of phases. We use Akaike Information Cri-

terion (AIC), which provides the relative quality of the statistical model for a given data set, for

checking the fitting quantity between the empirical data and the distributions and chooses val-

ues for n andm that minimize AIC [32]. As the small sample sizes are small in our case, we use

the second-order AIC, AICc which is defined as

AICc≔ ndata � logðSSR=ndataÞ þ
2KðK þ 1Þ

ndata � K � 1
;

where K is the number of model parameters and ndata is the sample size [33]. Using

lsqnonlin in MATLAB, we choose the number of phases of Coxian distributions as n = 20

andm = 12.

To estimating pH, pM and ξ, we performed a fit of averaged weekly cases for each of the 4

weeks to the incidence data for 4 weeks using our model. Using lsqnonlin in MATLAB, we

found the values of the parameters that minimize the following objective functional:

J ¼
X6

i¼1

45603�

Z 52�19þ4�iþ20

52�19þ4�ði� 1Þþ20

Xn

k¼1

pk� 1zkEiðuÞ þ
Xm

l¼1

ql� 1ZlLlðuÞ

 !

du

"

� Ur �
Xt¼4�iþ20

t¼4�ði� 1Þþ21

CDðtÞ

#2

;

ð6Þ

where CD(t) is the cumulative case data on the t-th week and Ur a parameter related to under-

reporting. The population of Yeoncheon-gun is 45,603.

The seasonal reproduction number

The seasonal (or effective) reproduction number Rs—an alternative form of the DHM defini-

tion of the basic reproduction number—is used when when parameters in the model are sea-

sonally periodic [34]. The method of calculation of Rs is as follows: Rs is determined by the

spectral radius of the next-generation operator. Moreover, the next generation operator is

given by the following 2 × 2 block matrix in the case of a single vector-borne diseases:

KMM KMH

KHM KHH

" #

;

where KAB represents the number of infected cases in B generated by a single A during its

infectious period [27]. Obviously KMM = KHH = 0 in the case of malaria, whereM stands for a

mosquito andH a human, as homogeneous transmission does not exist in this case.
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Motivated by [31], we derive the Rs as follows:

RsðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KHMKMH
p

;

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2pMpHrðtÞ�M
mMð�M þ mMÞ

1 � mP̂
gþ m

þ
ð1 � kÞxgð1 � mP̂Þð1 � mQ̂Þ

ðgþ mÞðgr þ mÞ

� �s

;

where

KHM ¼ bpMr 1 � mP̂
� �

�
1

gþ m
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
from primary infection

þ 1 � mP̂
� �

�
g

gþ m
� 1 � kð Þx � 1 � mQ̂

� �
�

1

gr þ m|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
from relapse due to dormant hypnozoite

8
>>><

>>>:

9
>>>=

>>>;

;

KMH ¼ bpH
1

mM
�

�M
�M þ mM

;

ð7Þ

and

P̂ ¼
Z 1

0

expð� muÞPðuÞ du; Q̂ ¼
Z 1

0

expð� muÞQðuÞ du:

Note the probability of surviving the exposed class is 1 � mP̂ and 1 � mQ̂ represents the proba-

bility of survival in the class L. On one hand, P̂ and Q̂ are solvable using integration by parts,

yielding

1 � mP̂ ¼ ½LfX�ðmÞ and 1 � mQ̂ ¼ ½LfY �ðmÞ:

Thus, Rs is calculated explicitly by

Rs ¼ RsðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2pMpHrðtÞ
mMð�M þ mMÞðgþ mÞ

�
Xn� 1

i¼0

ai
Yn� i

k¼1

znþ1� k

znþ1� k þ m

( )" #v
u
u
t

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ð1 � kÞxg

ðgr þ mÞ

Xm� 1

j¼0

bj
Ym� j

z¼1

dmþ1� z

dmþ1� z þ m

( )" #v
u
u
t ;

ð8Þ

where ai ¼ pi
Qn� 1� i

j¼1
�pjþi and bi ¼ qi

Qm� 1� i
j¼1

�qjþi.
Motivated by [35], we consider the proportion of the contribution of relapse in the seasonal

reproduction number, Rs. Using (7), we can reformulate Rs as the square root of the sum of

the primary-based part, Rp, and the relapse-based part, Rr:

Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rp þRr

p
;

where

Rp ¼ KMH � bpMrðtÞ � ð1 � mP̂Þ �
1

gþ m
;

Rr ¼ KMH � bpMrðtÞ ð1 � mP̂Þ �
g

gþ m
� ð1 � kÞx � ð1 � mQ̂Þ �

1

gr þ m

� �

:

Since Rs > 1 holds if and only if Rp þRr > 1, we can consider the percentage of the
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contribution of relapse in Rs, R% to be

R% ¼
Rr

Rp þRr
� 100ð%Þ;

¼
g � ð1 � kÞx � ð1 � mQ̂Þ

gr þ mþ g � ð1 � kÞx � ð1 � mQ̂Þ
� 100ð%Þ:

ð9Þ

Results

Parameters estimation

Parameters consisting of P and Q and fitted to ECDFs of IP and TTFR to minimize (5), are

given in Table 3. Fitted curves agree well with the data, as shown in Fig 3, and satisfactorily

express multimodal phenomena well.

Next, the model parameters are set as follows: we set the force of mortality of a human as μ,

with the assumption that the death age of of death an individual is distributed exponentially, so

that 1/μ is the average life expectancy. We followed concepts of mosquito physiological parame-

ters, such as μM and ρ(t), as discussed in [17]. These parameters were fitted to the observed

2007 mosquito population data in Paju-si and Cheolwon-gun, near Yeoncheon-gun, with

exponential and Gaussian assumptions. Since the period of recovery for humans is about 2

weeks [17], we assume 1/γ = 2 = 1/γr. We also set 1/�M = 7/9 because the mean incubation

period for mosquitoes is 9 days [36]. The biting rate of a mosquito with respect to a human, b,

is assumed to be the average number of bites for that mosquito per week multiplied by the asso-

ciated Human Blood Index (HBI), which is defined to be by the proportion of the blood in a

mosquito population obtained from human [37]. We set b = 0.138 with the HBI is assumed to

be in the range [0.01, 0.1] and the gonotrophic cycle of mosquito is assumed as about 2.5 days

following [17, 38]. The optimal values of the parameters that minimize (6) are pH = 0.643, pM =

0.492, ξ = 0.133 andUr = 2.21 and the curve fits with the observed data are as shown in Fig 4.

Detailed values of parameters are listed in Table 4.

Effectiveness of relapse control

Contribution of relapse in the seasonal reproduction number. In (9), R% does not

depend on seasonality, and is constant. The left panel in Fig 5 depicts the values of the seasonal

Table 3. Estimated parameters for Coxian distributed IP and TTFR.

Index (i) IP TTFR Index (i) IP TTFR

zi �pi ηi �qi zi �pi ηi �qi

20 0.835 10 0.433 1.000 0.298 1.000

19 0.455 0.337 9 0.433 1.000 0.298 1.000

18 0.455 0.999 8 0.433 1.000 0.298 1.000

17 0.455 0.999 7 0.433 1.000 0.298 1.000

16 0.436 0.635 6 0.433 1.000 0.298 0.696

15 0.434 0.996 5 0.433 1.000 0.215 1.000

14 0.434 1.000 4 0.434 1.000 0.215 1.000

13 0.434 1.000 3 0.434 1.000 0.215 1.000

12 0.434 1.000 0.773 2 0.434 1.000 0.215 1.000

11 0.434 1.000 0.298 0.794 1 0.434 1.000 0.215 1.000

https://doi.org/10.1371/journal.pone.0227919.t003
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reproduction number with changing time. The maximum value occurs in summer between

July and August, when its value is 2.58 in the absence of relapse control, and 2.42 in the pres-

ence of relapse control with complete coverage, respectively. The right panel shows the per-

centage of the contribution of relapse in the seasonal reproduction number, Rs, in the

presence of a relapse treatment with coverage rate κ. It is shown that relapse treatment reduces

the contribution proportion of relapse. With the current coverage of relapse while Primaquine
is being used, the model shows a maximum relapse contribution proportion of 11.7% in

Korea. However, if the coverage of the relapse treatment were 90%, it is possible to reduce R%

to 1.3%.

Malaria prevalence. Fig 6 illustrates the results of the malaria prevalence model using the

parameters estimated in the previous section. During a year, 11.8% of cases resulted from

Fig 3. Approximating the empirical cumulative distribution function (ECDF) of IP to a 20-chained Coxian distribution (left), and that of TTFR to a 12-chained

Coxian distribution (right). Solid lines represent survival functions in each of the figures. Note that both fitted curves express multimodality.

https://doi.org/10.1371/journal.pone.0227919.g003

Fig 4. Fitted model results. The solid blue line indicates the model results representing weekly incidence with best

fitted parameters and the dots are averaged over the data of weekly cases for each of the 4 weeks.

https://doi.org/10.1371/journal.pone.0227919.g004
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Table 4. Collected and estimated model parameters.

Parameter Value (dimension) Reference Parameter Value (dimension) Reference

μ 2.3 × 10−4(/week) [39] μM 0.7949 (/week) Fit in [17]

1/γ 2 (weeks) [17] 1/γr 2 (weeks) [17]

ξ 0.133 Estimated κ [0, 1]

1/�M 9/7 (weeks) [36] b 0.138 (/week) [38]

pH 0.643 Estimated pM 0.492 Estimated

M(t) exp � mod ðt;52Þ� 31:26

3:328

� �2
h i

= exp � 13:26

3:328

� �2
h i

þ 104 Fit in [17]

ρ(t) M(t)/104 Fit in [17]

https://doi.org/10.1371/journal.pone.0227919.t004

Fig 5. Seasonal reproduction number against time (left), and the percentage of the contribution of relapse in the seasonal

reproduction number, R%, against κ (right). In the left panel, the blue solid line records Rs in the absence of any control (κ = 0)

and red dashed line records Rs in the presence of complete control (κ = 1).

https://doi.org/10.1371/journal.pone.0227919.g005

Fig 6. Model result of the percentage of infectious humans with the current level of control. The blue solid line

shows the total number of infectious humans, Ip + Ir, the red dashed line indicates primary infected humans, Ip, and

the yellow dotted line indicates infectious individuals who have relapsed, Ir.

https://doi.org/10.1371/journal.pone.0227919.g006
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relapse in total prevalence. Overall, primary infection is more prevalent than relapsed infec-

tion, but in winter, infected humans who have relapsed are more common. While total preva-

lence of malaria in humans tends to be similar to the prevalence of primary infections,

relapsed prevalence remains more or less constant throughout the year, besides having a peak

during summer, just like the case of primary infections. This is because relapsed infections are

less affected by changes in the mosquito population than primary infections.

Fig 7 depicts the effect of constant control over 5 years. The gradual weakening of the scale

of outbreaks over several consecutive years suggests the possibility of complete elimination of

the parasites. 90% coverage of relapse also reduces relapsed prevalence to zero within 5 years.

A further finding is that control not only reduces the relapse prevalence but also reduces the

rate of primary infections. The upper right panel of the figure shows that the peak of preva-

lence of primary infections reduces by more than 2 times after 5 years of relapse treatment

with 90% coverage.

Eradication of malaria. Fig 8 summarizes the results related to the percentages of reduc-

tion in yearly cases after application of control that could explain the eradication of malaria.

Theoretically, control at an application rate of 20% for a very long time can reduce cases by

more than 90%, and can exterminate malaria at an application rate of approximately 40%.

However, in the case of low coverage control over a period of 5 years or 10 years, control can

reduce a great proportion of malaria incidences, but extinction is not possible. This means that

malaria extinction is impossible via short-term intensive control.

Potential effect of manipulated behavior of mosquito caused by malaria parasites.

Recent studies have shown that manipulated behaviors caused by malaria parasites in mosqui-

toes can increase the force of infection of malaria by more than twofold [40, 41]. These behav-

ioral changes are caused by a survival instinct in malaria parasites, and therefore they tend to

intensify as malaria is controlled [42]. Hence, the absence of these manipulation phenomena

in the usual scenario can be an obstacle to identify appropriate intervention schedules for vec-

tor-borne disease control efforts [43].

We describe the potential effect of this feeding behavioral change over long periods of con-

trol in Fig 9. The solid line in the left panel shows that the bifurcation between the percentages

of reduction in yearly cases with a 5-year control is positive and negative. Although a high rate

Fig 7. Model results of Ip + Ir, Ip, and Ir with control. Control starts at 2 and remains constant for 5 years with a rate κ.

https://doi.org/10.1371/journal.pone.0227919.g007
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of control has been implemented, it shows that a slight increase in the force of infection caused

by control methods can have a negative manipulative effect without being significantly affected

by the delay at the start of the manipulation.

Discussion

We used a transmission model to characterize the relapse of malaria considering realistic

intrinsic distributions of incubation periods and the time to first relapse. We used Coxian dis-

tributed IP and TTFR distribution to model bimodality of incubation and relapse, which are

Fig 8. The percentage of drops in yearly cases after control.

https://doi.org/10.1371/journal.pone.0227919.g008

Fig 9. The effectiveness of relapse control considering manipulated behavior of mosquitoes. Left colormap shows the percentages of reduction in yearly cases during

5-year control against κ and an increasing rate in the force of infection. A positive value indicates that the case is decreasing through control, and a negative value means

the opposite. In the left panel, we assume that manipulation occurs one year after control starts. The black solid line shows the contour that the percentage of drops is 0.

The upper and lower figures on right show the percentages of infectiousness when κ = 0.9 and when there is a 10%, 30% increase in the force of infection in humans with

one year delay in manipulation after the beginning of control methods, respectively.

https://doi.org/10.1371/journal.pone.0227919.g009
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distinct from other countries. Thus, the performance of our suggested method for statistical

inferring of relapse related parameters from prevalence data is lower when considering with

other countries. To the best of our knowledge, there has been no prior modeling study consid-

ering heuristic time to first relapse data for malaria dynamics in Korea. Moreover, incubation

time and realistic relapse time distributions are considered more than others in the existing lit-

erature (refer to the S1 Appendix).

The seasonal reproduction number was used to calculate the proportion of contribution of

relapse, indicating the effect of relapse on the epidemiology of malaria in the Republic of

Korea. By dividing the number by two parts, primary infection based part and relapse based

part, we could get the proportion explicitly. Next, we performed the study to demonstrate the

effectiveness of anti-relapse treatment on the assumption that relapse treatments with greater

coverage compared to the present could be used. The treatment was assumed to have a higher

coverage rate than in the present, and we conducted the study under the assumption that the

treatment rate was κ at the current rate. The results show that the control of relapse reduces

total prevalence of malaria by reducing the numbers of both relapsed and primary infected

individuals even though relapsed cases are significantly fewer in number than primary infected

cases. We also studied whether malaria eradication is possible through relapse treatment. The-

oretically, eradication can be achieved with a relapse coverage rate of 40% after a very long

time, but eradication of malaria within 10 years is not possible even if the relapse is controlled

at a very high rate. Therefore, further developments in vector control or prevention strategies

are necessary. Moreover, considering the manipulated behavior of mosquitoes, our results

demonstrate that negative effects on control might be yielded even if a high rate of treatment is

implemented. We did not consider drug resistance in this study. If this were considered, a

strategy for eradication of malaria in the near future might be necessary, which is difficult to

control by merely controlling relapse. Therefore, it is proposed that mass treatment using new

drugs should be performed with gradual increase in vector control considering the mosqui-

toes’ feeding behavioral changes. The study will also help disease prevention authorities in

implementing timely and effective malaria control measures when new malaria drugs become

commercially available.

Our work has several limitations. We used a data fitting method to quantify the current

level of relapse treatment with absence of time series relapsed data and time to first relapse

data for each patient. In addition, population of malaria mosquitoes in the Republic of Korea

have a bimodal form that rapidly increases around May, temporarily decreases during the

rainy season and then increases rapidly after the rainy season ends. As such, the bimodality of

the number of patients shown in Fig 4 is affected by the number of mosquitoes. However, in

this model, the influence of the peak around May is designed only by relapse and incubation.

This reason may cause overestimation of total relapse prevalence in this model although about

5% of estimated cases of official relapse in 2018 were reported in the Republic of Korea [7]. If

further data are investigated, suggested method may be applied to the current management of

malaria in Korea by investigating the specific contents that can be applied centering on policy

application.

Conclusion

In this work, we constructed a mathematical model to quantify the relapse of malaria in Korea

and to evaluate the effectiveness of control methods in reducing relapse. Our model was able

to express the distribution of multimodal incubation periods and the time to first relapse in

continental climate zones where seasonality is evident. In this study, it was found that control

of malaria relapse in Korea and the progression of control under the current modes of vector
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control can reduce malaria in the short-term but can have potentially negative effects in the

long-term. The results suggest that control at higher vector control levels may result in reduc-

tion of malaria.

A number of recommendations for further research may be provided. For example, consid-

ering the monthly differences in the intrinsic distribution, the model generated by the age

structured PDE may be reconstructed to exhibit the temporal effect on malaria prevalence. In

addition, combinations with higher vector control will allow the reconstruction of the model

to determine the appropriate timings and strategies for malaria control.
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