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ABSTR ACT
PURPOSE: The intracytoplasmic morphologically selected sperm injection (IMSI) procedure has been associated with better laboratory and clinical 
outcomes in assisted reproduction technologies. Less information is available regarding the relationship between embryo aneuploidy rate and the IMSI 
procedure. The aim of this study is to compare the clinical outcomes and chromosomal status of IMSI-derived embryos with those obtained from intracy-
toplasmic sperm injection (ICSI) in order to establish a clearer view of the benefits of IMSI in infertile patients.
METHODS: We retrospectively analyzed a total of 11 cycles of IMSI and 20 cycles of ICSI with preimplantation genetic diagnosis. The fertilization rate, 
cleavage rate, embryo quality, blastocyst development, aneuploidy rate, pregnancy rate, implantation rate, and miscarriage rate were compared between the 
groups.
RESULTS: Similar rates of fertilization (70% and 73%), cleavage (98% and 100%), and aneuploidy (76.9% and 70.9%) were observed in the IMSI and ICSI 
groups, respectively. The IMSI group had significantly more good quality embryos at day 3 (95% vs 73%), higher blastocyst development rates (33% vs 19%), 
and greater number of hatching blastocysts (43% vs 28%), cycles with at least one blastocyst at day 5 (55% vs 35%), and blastocysts with good trophoectoderm 
morphology (21% vs 6%) compared with the ICSI group (P , 0.001). Significantly higher implantation rates were observed in the IMSI group compared 
with the ICSI group (57% vs 27%; P , 0.05). Pregnancy and miscarriage rates were similar in both groups (80% vs 50% and 0% vs 33%, respectively).
CONCLUSION: The IMSI procedure significantly improves the embryo quality/development by increasing the implantation rates without affecting the 
chromosomal status of embryos. There is a tendency for the IMSI procedure to enhance the pregnancy rates and lower the miscarriage rates when compared 
with ICSI.
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Introduction
Since the introduction of the intracytoplasmic sperm injection 
(ICSI) in 1992,1 it became clear that the morphology of sper-
matozoa used for injection was related to fertilization and 
pregnancy rates.2 Nowadays, ICSI is used as a mechanism to 
overcome male factor infertility by selecting motile spermato-
zoa with normal morphology and motility under a magnifica-
tion of ×400. However, several studies have shown that subtle 
morphological malformations of the sperm nucleus are related 
to low fertilization rates,3 reduced blastocyst formation,4 and 
poor clinical outcomes.5–7 Bartoov et al8 introduced the motile 
sperm organelle morphology examination (MSOME) using 
high-power differential interference contrast optics, allowing 
the implementation of a new method: the intracytoplasmic 
morphologically selected sperm injection (IMSI). This high 
magnification allowed the identification of spermatozoa with 
a morphologically normal nucleus, which has a symmetrical 
and oval shape with homogeneous chromatin mass and does 

not demonstrate more than one vacuole involving less than 
4% of the nuclear area.3 Vacuoles are a possible indicator of 
sperm DNA damage (fragmentation or denaturation)9,10 and 
negatively affect human embryo development.

Paternal influences cause about half of the infertile 
couples to turn to assisted reproduction technology (ART) 
procedures. Potential predictors of male factor infertility 
include age, method of fertilization, reactive oxygen species, 
sperm quality parameters, and DNA fragmentation. Further-
more, recent studies have suggested factors such as body mass 
index, smoking, male age, and stress as additional causes of 
infertility.11 The male factor exerts its influence primarily after 
embryo genome activation, causing lower blastocyst quality 
and affecting clinical outcomes.12 The adverse effects of sperm 
quality are evident as early as in the pronuclear zygote stage, 
embryo morphology, and low cleavage speed (early paternal 
effect) and later related to failure in blastocyst formation 
(late paternal effect).13 Paternal effects have been shown to 
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be related to repeated failure of assisted reproduction treat-
ment attempts.14–16 Since the sperm DNA represents half of 
the offspring’s genomic material, a genetically normal sperm is 
necessary for a successful fertilization, embryo development, 
and clinical outcomes to produce healthy offspring.17,18 Dam-
age and severe fragmentation of the sperm DNA can lead to 
errors in the reproductive process that are associated with male 
infertility.19,20 Various studies have reported a negative effect 
of high levels of sperm DNA fragmentation on pregnancy rates 
in ART.21–25 Sperm DNA fragmentation or errors in the first 
meiotic divisions of the embryo, which are not under the DNA 
correction mechanisms because the embryo’s genome is yet to 
be activated, can lead to embryo aneuploidy,26 which is one of 
the most important contributors to poor laboratory and clini-
cal outcomes of ART. Several studies have independently con-
cluded that human embryos intrinsically contain substantial 
chromosomal errors27–29 and that this problem is exacerbated 
as maternal age increases.30 Souza Setti et al31 compared the 
IMSI and ICSI procedures and reported a significantly higher 
percentage of top quality embryos, implantation and pregnancy 
rates, and reduced miscarriage rates in patients from the IMSI 
group compared with those observed in patients from the 
ICSI group. Furthermore, Knez et al32 found, in a comparative 
study between IMSI and ICSI procedures, a trend of higher 
number of blastocysts per cycle in the IMSI group, but their 
quality was independent of the procedure of sperm selection.

On the other hand, there is insufficient information 
regarding the effect of IMSI, compared to ICSI, on the aneu-
ploidy rates in embryos. The study by Figueira Rde et  al33 
reported that the total aneuploidy rate was not statistically 
different between IMSI and ICSI procedures, but there was 
a significantly increased incidence of sex chromosome aneu-
ploidy in the ICSI embryos. Therefore, this study was con-
ducted to evaluate the overall effect of IMSI compared to 
ICSI by evaluating the laboratory (fertilization, cleavage, 
blastocyst development, embryo morphology) and clinical 
outcomes (pregnancy and implantation rates), as well as the 
embryo aneuploidy rate, in order to establish a clearer view of 
the benefits of IMSI in couples with male infertility and its 
impact on embryo aneuploidy.

Materials and Methods
Patients. A total of 31 cycles of IMSI (n = 11) and ICSI 

(n = 20) procedures with preimplantation genetic diagnosis 
(PGD) performed between July 2011 and February 2015 at 
FERTILAB Laboratory of Assisted Reproduction (Lima, 
Peru) were analyzed. Cases of azoospermia and egg donation 
were not included.

The causes for infertility among the patients in the IMSI 
and ICSI groups were female factor (18% and 45%), male fac-
tor (9% and 10%), female and male factor (63% and 45%), and 
unexplained factor (9% and 0%, respectively). Furthermore, 
the ICSI and IMSI procedures were recommended by the 
physician in charge of the patient’s fertility treatment and are 

based on the patient’s medical chart, sperm DNA fragmenta-
tion, and previous in vitro fertilization (IVF) or ICSI failures.

All cycles and procedures were approved by the Institu-
tional Review Board and the associated Ethics Committee. 
Written consent was obtained from all patients and their part-
ners included in this study. All experimental procedures were 
performed according to the Declaration of Helsinki of 1975 
and its modifications.

Assessment of sperm DNA fragmentation. Prior 
to the hormonal stimulation, sperm DNA fragmentation 
values were evaluated with the sperm chromatin disper-
sion test34 using Halosperm® Kit (Halotech DNA). Briefly, 
sperm samples from each patient, containing not ,5 million 
and  .10  million spermatozoa per milliliter after dilution, 
were used. The kit contains aliquots of agarose gel in Eppen-
dorf tubes. Each semen sample was processed after the agarose 
gelled (by immersion in a water bath at 90°C for five minutes). 
When the Eppendorf tubes reached a temperature of 37°C 
(five minutes at 37°C in a dry atmosphere), 25  µL of the 
sperm samples was added and gently mixed. Then, 20 µL of 
this mixture was placed on precoated slides and covered with 
22 × 22-mm coverslides. The slides were maintained at 4°C 
for five minutes to produce a microgel containing embedded 
spermatozoa. The  coverslides were gently removed, and the 
slides were immersed in a previously prepared acid solution 
(80 µL of HCl added to 10 mL of distilled water) for seven 
minutes. After removal from this solution, the slides were 
incubated for 25 minutes in 10 mL of lysing solution (provided 
in the Halosperm kit). The slides were then rinsed in distilled 
water, dehydrated in three concentrations of alcohol (70%, 
90%, and 100% vol) for two minutes in each concentration, 
and were either stored (storage was possible for several months 
in optimal conditions) or processed immediately with a stain-
ing solution for 10 minutes with continuous airflow. Staining 
was performed with 1:1 (vol/vol) Wright’s solution (Merck) 
and phosphate-buffered saline solution (Merck). The slides 
were rinsed in tap water, allowed to dry at room tempera-
ture, processed for upright or inverted bright-field microscopy 
at ×100, and covered with 22 × 22-mm coverslides. Operators 
scored  $500 spermatozoa for each patient according to the 
patterns established by Fernández et al.34 Strong staining is 
preferred to visualize the dispersed DNA loop halos. Removal 
of sperm nuclear proteins results in nucleoids with a central 
core and a peripheral halo of dispersed DNA loops. The sperm 
tails remain preserved. The acid treatment produces DNA 
unwinding that is restricted in those nuclei with high levels 
of DNA strand breakage. After the subsequent lysis, sperm 
nuclei with fragmented DNA produce very small or no halos 
of dispersed DNA. However, nuclei without DNA fragmen-
tation release their DNA loops to form large halos.

Ovarian stimulation and oocyte collection. The men-
strual cycles of patients were stimulated using recombinant 
follicle-stimulating hormone (rFSH; Gonal®, Merck Serono 
Laboratories) according to previously established stimulation 
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protocols,35 and starting on day 2 of the menstrual cycle until 
when at least three follicles reached ~18  mm in diameter. 
The  oocyte recovery was performed by vaginal ultrasound 
under general anesthesia with intravenous injection of 200 mg 
of propofol (Diprivan® 1% P/V; AstraZeneca Laboratories) 
36 hours after the intramuscular application of human chori-
onic gonadotropin (Pregnyl®, Ferring Pharmaceutical).

During the follicular aspiration procedure, the oocytes 
were recovered in Global® N-(2-Hydroxyethyl)piperazine-
N′-(2-ethanesulfonic acid)) (HEPES)-buffered medium 
(LifeGlobal) supplemented with 10% vol/vol serum substitute 
supplement (SSS; Irvine Scientific). After retrieval, cumulus–
oocyte complexes were manually trimmed of excess cumulus 
cells and cultured in ~200  µL drops of Global® Fertiliza-
tion medium (LifeGlobal) supplemented with 10% vol/vol 
SSS under mineral oil (Lite Oil®, LifeGlobal) at 37°C and 
an atmosphere containing 6% CO2, 5% O2, and 89% N2 for 
five hours before the IMSI or ICSI procedure.

Evaluation and preparation of sperm samples. On the 
day of the ICSI or IMSI procedure, semen samples were col-
lected by masturbation into sterile cups after three to five days 
of abstinence. After semen liquefaction for 30 minutes at room 
temperature, the concentration, progressive motility, and 
morphology of spermatozoa were assessed according to the 
World Health Organization criteria.36 Motile spermatozoa 
were separated from the seminal plasma by centrifugation at 
300× g for 10 minutes through 1.0 mL of 95% and 45% isolate 

gradients (Irvine Scientific). The pellet was washed once by 
centrifugation for three minutes and later resuspended in pre-
gassed Global® Fertilization medium supplemented with 10% 
vol/vol SSS for the microinjection procedures.

Sperm selection for IMSI procedure. For sperm retrieval 
and immobilization, a glass bottom dish (Willco Wells) with 
one 5-µL microdroplet of polyvinylpyrrolidone (PVP; Irvine 
Scientific) and another microdroplet of Global® HEPES-
buffered medium supplemented with 10% vol/vol SSS 
under mineral oil were prepared. Spermatozoa were selected 
under ×10,160 magnification in an inverted microscope (IX71; 
Olympus) equipped with a Normarski differential interference 
contrast optics, ×100/1.30 oil objective lens, and a variable 
zoom lens. Spermatozoa were retrieved from the medium and 
then transferred to the PVP microdroplet to be immobilized by 
tail crushing. Afterward, they were classified according to their 
morphology and grade of vacuolization pattern (types I–IV) as 
described by Vanderzwalmen et al4 (Fig. 1). The spermatozoa 
with a normal morphology and presenting a vacuolization pat-
tern of type I or II were used for injection into the oocytes.

Oocyte preparation and microinjection. For IMSI and 
ICSI procedures, the oocytes were denudated by incubation 
for ~30 seconds in 80 UI/mL of hyaluronidase (LifeGlobal). 
The oocytes were then aspirated in and out of a glass pipette to 
allow the complete removal of the cumulus and corona cells. 
Only the metaphase II oocytes were selected for sperm injec-
tion, which was performed five hours after oocyte retrieval. 

Figure 1. Grading of spermatozoa into four groups according to the presence or size of vacuoles. Grade I: normal form and no vacuoles (A). Grade II: 
normal form with less than or equal to two small vacuoles (B, C). Grade III: normal form with more than two small vacuoles or at least one large vacuole 
(D, E). Grade IV: large vacuole and abnormal head shapes or other abnormalities (F, G).
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Table 1. Characteristics of study patients.

IMSI ICSI

No. of cycles 11 20

Female age (years) (Mean ± SD) 35.73 ± 5.75 37 ± 4.68

Male age (years) (Mean ± SD) 41.5 ± 7.93 42.7 ± 5.8

rFSH dose/patient (IU/L)  
(Mean ± SD)

1207 ± 339 1636 ± 322a

No. of days of stimulation  
(Mean ± SD)

7.18 ± 0.75 8.35 ± 1.39a

Note: aStatistically significant difference between IMSI and ICSI groups 
(P , 0.001).

For sperm selection, a number of suitable spermatozoa 
according to the number of retrieved oocytes were selected by 
the MSOME method for IMSI or by morphology for ICSI.

Microinjection was performed in a plastic culture dish 
containing four microdroplets of 10 µL of Global® HEPES-
buffered medium supplemented with 10% vol/vol SSS around 
a 20 µL microdroplet of PVP at the center and covered with 
mineral oil. The selected spermatozoa were transferred into 
the PVP microdoplet, and the oocytes were placed on the 
surrounding droplets. A single spermatozoon was aspirated 
by the injection pipette and, after crushing the tail one more 
time, injected into the oocyte as described elsewhere.37 Subse-
quently, all injected oocytes were cultured at 37°C in an atmo-
sphere of 6% CO2, 5% O2, and 89% N2.

Fertilization, embryo culture, and transfer. Fertil-
ization was evaluated 16–18  hours post injection (day 1) by 
the presence of two pronuclei. The zygotes were individu-
ally cultured under mineral oil, in 10-µL droplets of Global® 
medium supplemented with 10% vol/vol SSS from day 1 to 
day 3. On day 3, the embryos were moved to fresh 10-µL 
droplets of Global® medium supplemented with 10% vol/vol 
SSS and cultured for two more days up to the transfer day in 
blastocyst stage.

On day 3, the embryos were evaluated for cell number, 
fragmentation, and multinucleation. Good quality day 3 
embryos were defined as those with six to eight cells and #10% 
of fragmentation. Good quality blastocysts were defined as hav-
ing an inner cell mass (ICM) and trophoectoderm (TE) type A 
or B, according to Gardner’s scoring system.38 The ICM score 
was evaluated as follows: type A = compact area, many cells 
present; type B = cells are loosely grouped. The TE was scored 
as follows: type A = many cells forming a tight epithelial net-
work of cells; type B = few cells forming a loose network of cells.

The embryos were transferred on day 5 using an Emtrac 
embryo transfer catheter (Gynétics) that had been previously 
washed with the culture medium. The catheter was completely 
filled with the culture medium, and the embryos were filled 
in the last 10 µL of the catheter. All transfers were performed 
according to the methods previously described by Mansour.39 
The blastocysts that were not transferred were cryopreserved 
or discarded according to their morphology.

Embryo biopsy, fixation, and FISH analysis. In patients 
with PGD indication, one cell per embryo was biopsied at the 
third day after insemination following a protocol described else-
where.40 Individual embryos were placed into calcium/magne-
sium-free media (PGD Biopsy Medium; LifeGlobal), and one 
nucleated blastomere was mechanically removed through a hole 
in the zona pellucida opened using Tyrode’s acid (LifeGlobal) 
solution. After biopsies, the embryos were rinsed thoroughly 
and returned to culture under mineral oil, in 10-µL droplets of 
Global® medium supplemented with 10% vol/vol SSS.

The blastomeres were fixed individually following routine 
protocols to minimize signal overlap and loss of micronuclei.41 
PGD analysis was performed by fluorescence in situ hybridization 

(FISH) using probes specific for 12 chromosomes 8, 13, 14, 16, 
18, 20, 21, 22 (Abbott Laboratories), X, Y, 15, and 17 (Cellay 
Inc.) following the manufacturer’s instructions.

Pregnancy determinations. The biochemical pregnancy 
was assessed 14 days after the embryo transfer by measuring 
the human chorionic gonadotropin beta subunit in blood. 
The clinical pregnancy was determined by transvaginal ultra-
sonography to detect gestational sacs and fetal heartbeats at 
approximately 21 and 28 days after transfer, respectively.

Statistical analysis. Statistical analysis was carried out 
using the statistical package Stata 12 (StataCorp). Data are 
represented as mean ± standard deviation. Group comparisons 
were made using the χ2-test and Student’s t-test. P values ,0.05 
were considered for showing statistically significant differences.

The normal fertilization rate was calculated from the 
number of zygotes with two pronuclei of IMSI/ICSI and 
divided by the number of injected oocytes by 100. The cleav-
age rate was calculated from the number of embryos with 
six or more cells at day 3 and divided by the total number of 
zygotes by 100. The implantation rate was calculated from the 
number of gestational sacs observed by ultrasound at day 21 
post transfer and divided by the total number of transferred 
embryos by 100. The rate of clinical pregnancy was calculated 
from the number of patients with at least one gestational sac 
divided by the total number of transferred embryos by 100. 
The miscarriage rate was defined as the number of pregnancies 
with a total loss of gestational sacs before 20 weeks of gesta-
tion divided by the numbers of pregnancies by 100. The aneu-
ploidy rate was defined as the number of genetically abnormal 
embryos, analyzed by the 12 chromosomes, divided by the 
total number of biopsied embryos by 100.

Results
During a period of three years and seven months, 31 couples 
with an indication of a 12-chromosome PGD were involved 
in 11 IMSI cycles (IMSI group) and 20 ICSI cycles (ICSI 
group). There was no difference in terms of age of females and 
males in both evaluated groups (Table 1). The mean number 
of days of stimulation were significantly higher in the ICSI 
group compared to that in the IMSI group (8.35 ± 1.39 vs 
7.18 ± 0.75 days, respectively; P , 0.01); the same situation 
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was observed for the mean rFSH treatment dose when com-
paring the IMSI and ICSI groups (1636 ± 322 vs 1207 ± 
339 IU/L, respectively; P , 0.01) (Table 1). The parameters 
of morphology, volume, concentration, and progressive motil-
ity were similar between the IMSI and ICSI cycles (Table 2). 
There was no difference in the DNA fragmentation percent-
ages between the IMSI and ICSI groups (20% vs 18%, respec-
tively; P: not significant [NS]).

Laboratory outcomes obtained from both groups 
are shown in Table 3. A total of 67 and 139 oocytes were 
retrieved from women of the IMSI and ICSI groups, of 
which 60 and 127 oocytes were injected, respectively. The 
normal fertilization rate (2PN) was similar in both evaluated 
groups (IMSI group: 70% vs ICSI group: 73%). There was 
no difference in the cleavage rate, but the percentage of good 
quality embryos at day 3 was higher in the IMSI group (95% 
vs 73%; P = 0.02). Blastocyst development rate was higher 
in the IMSI group than in the ICSI group (33% and 19%, 
respectively; P , 0.01). There was a statistically significant 
tendency toward a higher number of cycles with at least one 
blastocyst in the IMSI group (54% and 35.1%, P , 0.01) 
and a lower number of cycles with all embryos arrested at 
the morula stage or earlier (0% and 45%, P , 0.01). When 
blastocysts developed, they did not differ in their quality 
according to the procedure of sperm microinjection, except 
for hatching blastocysts (43% and 28% for IMSI and ICSI, 
respectively; P , 0.01) (Fig.  2). There were approximately 

the same proportions of full (57% and 67%) and expanded 
(0% and 5%) blastocysts in the current IMSI and ICSI group 
cycles, respectively. The IMSI and ICSI groups presented 
approximately the same proportions of blastocysts accord-
ing to the morphology of the ICM, but a tendency toward 
a better TE morphology was observed in the IMSI group 
(Fig. 3). Euploidy and aneuploidy rates were similar in both 
study groups (23% vs 29% and 77% vs 71%, respectively; 
P . 0.05) (Table 5).

Clinical outcomes obtained from both groups are shown 
in Table 4. Cancelation rates, mainly because of abnormal 
PGD or bad quality embryos, were similar in both groups 
(64% and 65%). The mean number of embryos transferred per 
patient was similar in both groups (1.75 ± 0.5 and 1.83 ± 0.41; 
P: NS). The clinical pregnancy rate per transfer in the IMSI 
group tended to be higher than that in the ICSI group (80% 
vs 50%, P = 0.559), although not statistically significant. All 
pregnancies achieved by the blastocyst transfer were single-
ton, and one pregnancy in the ICSI group terminated with an 
abortion (0% vs 33%, P = 0.439). The implantation rate was 
higher in the IMSI group than in the ICSI group (57% and 
27%; P , 0.01); miscarriage rates were similar in both groups 
(Table 4).

Table 2. Seminal parameters in the IMSI and ICSI groups.

IMSI ICSI

Volume (mL) 3.29 ± 1.18 2.68 ± 1.03

Sperm concentration (×106/mL) 61.45 ± 35.83 79.45 ± 53.69

Progressive motility (%) 17.73 ± 7.19 20.9 ± 15.37

Sperm morphology (%) 4.55 ± 3.11 5.55 ± 6.12

Sperm DNA fragmentation (%) 20.46 ± 12.06 18.47 ± 7.81

Note: P: NS.

Table 3. Comparison of laboratory results between IMSI and ICSI 
groups.

IMSI ICSI

No. of retrieved oocytes 67 139

No. of injected oocytes 60 127

No. of fertilized oocytes (%) 42 (70) 93 (73)

No. of embryos cleaved at day 3 (%) 41 (98) 93 (100)

Number of cells at day 3 (Mean ± SD) 7.25 ± 1.15 6.99 ± 0.95

No. of good quality embryos at  
day 3 (%)

39 (95) 68 (73)a

No of blastocysts at day 5 (%) 14 (33) 18 (19)a

Note: aStatistically significant difference between IMSI and ICSI groups 
(P , 0.001).

Figure 2. Blastocyst quality in the IMSI and ICSI cycles.
Note: *P , 0.001 between the IMSI and ICSI groups.

Figure 3. Comparison of ICM and TE from blastocysts between IMSI and 
ICSI groups.
Note: *P , 0.001 between the IMSI and ICSI groups.
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Discussion
Cleavage rate, multinucleation, and embryo morphology at 
the cleavage stage have been shown to be important mark-
ers of embryo quality and viability during in vitro culture.42,43 
After the introduction of extended culture to blastocyst stage, 
improved clinical outcomes have been reported because of 
better embryo selection and better synchronization between 
the embryo developmental stage and uterine environment. 
However, with a better sperm selection, we can be confident 
that embryos will have better chances of achieving the blas-
tocyst stage, thereby increasing their chances of implantation.

Classical parameters of sperm quality are not always 
related to a good prognosis and fertility, since sperm DNA 
fragmentation and head vacuoles might be present. This prob-
lem can be dealt with by the use of sperm selection under high 
magnification or IMSI. The results from this study indicate 
that patients undergoing ICSI would benefit from sperm 
selection under high magnification. The benefits of IMSI to 
improve outcomes in cases of male infertility patients have 
already been published.4,6,32,44,45

In the present study, couples included in both study groups 
showed similar baseline characteristics (Tables 1 and 2), and thus 
there were no confounding factors regarding sperm parameters, 
oocyte characteristics, and infertility etiology. The IMSI and 
ICSI differ only in terms of treatment characteristics, the total 
doses of rFSH, and the number of days of stimulation (1636 ± 
322 vs 1207 ± 339 and 8.35 ± 1.39 vs 7.18 ± 0.75, respectively, 
P , 0.01). This difference does not qualify as a confounding 

Table 4. Clinical outcomes in the IMSI and ICSI groups.

IMSI ICSI

No. of cycles with embryo transfer 4 7

No. total of embryo transferred  
(Mean ± SD)

7 (1.75 ± 0.5) 11 (1.83 ± 0.41)

Cycles with at least one blastocyst  
at Day 5 (%)

55a 35

Cycles with embryos available  
to cryopreserve (%)

0 5

Pregnancy rate (%) 50 43

Implantation rate (%) 57a 27

Miscarriage rate (%) 0 33

Note: aStatistically significant difference between IMSI and ICSI groups  
(P , 0.001).

Table 5. Aneuploidy rate in patients from IMSI and ICSI cycles 
with PGD.

IMSI ICSI

No. of genetically analyzed embryos 39 86

Aneuploidy rate (%) 76.9 70.9

Aneuploid blastocyst (%) 16.0 22.0

Note: P: NS.

factor since several recent studies reported that gonadotropin 
doses and duration of the protocol of controlled ovarian stimu-
lation are independent of laboratory and clinical outcomes.46,47 
Increasing the starting dose of FSH stimulation does not yield a 
significant improvement in oocyte or embryo yield or pregnancy 
rates observed following such an upward FSH dose adjustment. 
Furthermore, a shorter protocol allows obtaining IVF results 
similar to those of a classical long protocol with a high dose 
of exogenous gonadotropins, as shown by recent studies and 
meta-analysis.48,49 In the present study, there were no differ-
ences in embryo quality until day 3 of development; however, 
after the eight-cell stage, improvements occurred in the devel-
opment rate and in the blastocyst quality for IMSI patients, in 
accordance with previous studies that suggested that the ben-
eficial effect of MSOME can be observed at the later stages 
of embryo development.4,31,44,50 Therefore, the IMSI procedure 
appears to positively affect embryo development closely to and 
after the embryo genome activation, representing an early and 
late paternal effect. Our hypothesis is that the presence of vacu-
oles and their size influence the outcome of an ART cycle by 
an early and late embryo development action. Early paternal 
effect is a consequence of sperm cytoplasmic content, which can 
influence fertilization and early stages of embryo development 
probably until the embryo genome activation at the four- to 
eight-cell stage with a subsequent effect on cellular division and 
embryo fragmentation, thereby affecting embryo quality.13 The 
increased top quality embryo rate observed in the IMSI group 
is due to the early paternal effect of the sperm selected by the 
MSOME method, which, in the absence of nuclear vacuoles, 
can be observed at the early stages of embryo development.51 
These effects may be genetic or epigenetic, since a weak tran-
scriptional activity has been detected in human male pro-
nuclei52,53 that is crucial for nucleolar development.54 More 
research is needed in order to ensure if this phenomenon that 
causes a lag in male pronuclear development is the origin of the 
observed early paternal effect on embryo development.

The elevated blastocyst development rate, high propor-
tion of good quality blastocysts, and high proportion of cycles 
with at least one blastocyst in the IMSI group are an indica-
tion that a late paternal effect is present. Various studies have 
proved a positive association between sperm nuclear vacu-
oles and sperm DNA damage9,10 and vacuoles and chroma-
tin remodeling during the sperm maturation process.55,56 An 
error in the integrity of sperm chromatin can lead to abnormal 
embryo development or failure to progress to the blastocyst 
stage57,58 because the sperm chromatin is highly condensed and 
its insoluble nature plays a protective role during the transfer 
of paternal genetic information through the male and female 
reproductive tracts.59–61 Sperm DNA fragmentation effects 
can be present at different stages of the ART procedure, start-
ing from preimplantation development of the embryo to the 
birth of healthy offspring. Several studies proved the effect 
of sperm DNA damage and its correlation with crucial lab-
oratory and clinical outcomes, including fertilization rates, 
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embryonic development, implantation, pregnancy, and mis-
carriage rates.62–64 If sperm selection had been done on the 
same population who underwent IMSI, but using the classic 
ICSI parameters, the odds of selecting spermatozoa with large 
nuclear vacuoles (LNV) or multiple ones would have been very 
high, thereby severely affecting posterior embryo development. 
Moreover, some studies observed a significant improvement in 
the implantation rate after IMSI in the presence of male factor-
related infertility.65,66 The higher blastocyst development rate 
in the IMSI procedure is related to the fact that in this group 
approximately 60% of the cycles have at least one blastocyst 
and few embryos were arrested at the morula stage or earlier; 
with a higher chance of developing a blastocyst, there will be 
a lower chance of an embryo to be arrested through develop-
ment. The blastocysts from the IMSI group were mostly high 
quality ones, presenting better quality than those from the 
ICSI procedure that had more low quality blastocysts (67% vs 
57% of full blastocysts). Furthermore, the blastocysts from the 
IMSI group showed a tendency for better ICM quality and a 
statistically significant difference for a better TE quality by a 
15% increment on grade A when compared with those from 
the conventional ICSI. The initial contact between the blas-
tocyst and maternal tissues is by adhesion of the trophoblast 
to the uterine epithelium and the cell-to-cell interaction. This 
interaction is believed to be critical for implantation, so the 
trophoblast quality highly influences the chances of embryo 
implantation.67–69 Therefore, by generating a better TE quality 
blastocyst, the IMSI method has more likelihood of implan-
tation and pregnancy with a lower miscarriage rate, which is 
in agreement with our findings. The  role of the TE is bet-
ter understood during and after implantation as it plays a key 
role in apposition, adhesion, and invasion of the endometrium, 
thus allowing the blastocyst to embed in the uterus. The ICM 
quality should not be disregarded since it would become the 
primordial structure of the fetus,70,71 and thus, a low or bad 
quality ICM could result in an unembryonated gestational sac. 
Despite the fact that the implantation rate of the IMSI group 
is higher, we observe no difference in the miscarriage rate. 
This can be due to multiple factors unrelated to embryo qual-
ity such as genetic, immunologic, and anatomic characteristics 
of the patient. We should not forget that this study has very 
few patients, so further studies should be addressed in order to 
confirm the benefits in clinical outcomes observed (pregnancy, 
implantation, and miscarriage rates).

Several studies indicate that the injection of DNA-
damaged or vacuolated spermatozoa is related to a blockage of 
embryo development before and after implantation, reflecting a 
late paternal effect,9,51,72 providing more evidence to support the 
fact that the ICSI method may yield lower embryo quality and 
clinical outcomes than IMSI because of the chance of injecting 
highly vacuolated and DNA-damaged sperm into the oocytes,73 
since sperm DNA integrity, chromosomal constitution, and 
nuclear morphology cannot be assessed in the sperm cell used 
for ICSI. An adverse late paternal effect can be characterized 

by poor embryo development to the blastocyst stage, implanta-
tion failure, and pregnancy loss as observed in the ICSI group. 
Furthermore, a high percentage of abnormal spermatozoa with 
LNV, according to MSOME criteria, was observed in male 
patients older than 40 years,74 and up to 65% of spermatozoa 
that were deemed suitable for ICSI by conventional methods 
were subsequently deselected after high magnification analysis 
(MSOME).75 Since the mean male age in both the study groups 
was approximately 42 years and because male factor infertility 
is mostly related to advanced paternal age, it is safe to assume 
that in the cases of ICSI, the reduced potential of success can be 
caused by the injection of abnormal sperm with LNV. In addi-
tion, LNV are closely associated with chromatin condensation 
failure and a potential increase in susceptibility to DNA dam-
age during the IMSI/ICSI procedure,76,77 thereby explaining 
the reduced potential of success of the ICSI procedures.

The IMSI sperm selection method requires more time 
and the spermatozoa are present for a prolonged time in the 
PVP microdroplet. This may be damaging to the sperm cells 
since PVP can cause significant damage to sperm membranes 
and induce the acrosome reaction, thereby reducing the fertil-
ization rate by causing injury to the ultrastructure of the mito-
chondria and sperm tail.78,79 Some studies report that there 
are risks of using the PVP microdroplet and that the pro-
longed exposure of sperm cells can lead to DNA damage.80,81 
Consequently, the IMSI method damages the sperm DNA, 
since the average time to select a vacuole-free or less than 4% 
of nuclear space is twice as that for conventional ICSI.10,74

On the other hand, a study on embryo aneuploidy 
reported that the proportion of abnormal embryos is increased 
with the severity of male factor condition, but the type of 
defect depends on the sperm characteristics.82 In addition, less 
information is available regarding the comparison of aneu-
ploidy rate between ICSI and IMSI, with one study reporting 
that autosomal aneuploidy was not affected by sperm selection 
method, but there was a higher sex chromosomal aneuploidy 
in IMSI.33 The aneuploidy rates obtained in this study are in 
agreement with previous studies that report embryo aneu-
ploidy in cleavage stage and blastocysts utilizing FISH83 and 
comparative genomic hybridization (CGH).84

However, our findings show that the aneuploidy rate 
remains the same between the IMSI and ICSI groups, imply-
ing that the time used for selecting the suitable MSOME 
grade spermatozoon on a PVP microdroplet is not detrimental 
to DNA integrity and does not lead to lower embryo quality 
or lower blastocyst development rates and that IMSI presents 
no apparent adverse effects. Furthermore, since no damage to 
DNA is done, the IMSI procedure is adequate for patients 
with elevated DNA fragmentation in order to select the sperm 
with better morphology, but without increasing the under-
lying DNA fragmentation since it is related to poor semen 
parameters85,86 and clinical outcomes.87 Sperm aneuploidy 
was not evaluated since the sperm DNA fragmentation test 
is simpler, easier, and less expensive and its results have been 
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proven to be correlated to sperm parameters and clinical 
outcomes.85–87

It is important to point out that aneuploidy is indepen-
dent of embryo quality since a good quality blastocyst can be 
aneuploid and implanted, but it will result in a miscarriage.88 
This phenomenon was also observed in our PGD reports 
(Table 5), where a significant number of embryos achieving 
the blastocyst stage were aneuploid and unsuitable for trans-
fer (16% and 22% for IMSI and ICSI, respectively; P: NS). 
However, it is important to indicate that the PGD diagnosis 
by FISH provides information regarding only the 12 chro-
mosomes, in contrast to a method such as CGH that has a 
24-chromosome resolution, which is associated with better 
clinical outcome and more accurate PGD results.84 We sug-
gest that further studies should be conducted with CGH in 
order to obtain precise information about the effect of IMSI 
on chromosome aneuploidy.

Conclusion
In conclusion, the IMSI procedure not only significantly 
improves embryo morphology and implantation and pregnancy 
rates but also presents a tendency to increase day 3 embryo 
quality, reduce miscarriage rates, and maintain an equal 
aneuploidy rate as compared with ICSI. The IMSI procedure 
provides more viable blastocysts without chromosomal abnor-
malities as a consequence of a greater blastocyst development 
rate that will increase the chances of having genetically normal 
blastocysts. Despite the reduced number of cycles, these data 
justify the clinical application of IMSI. Therefore, the IMSI 
technique can be considered an alternative to bypass the gap 
created by male factor infertility in couples trying to achieve 
a successful ART cycle outcome. Well-designed prospective 
studies, in which variables are controlled and include a greater 
number of cycles, are needed in order to corroborate the ten-
dencies observed in this retrospective study and to reveal more 
advantages regarding the application of IMSI in ART.
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