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ABSTRACT: The accuracy of three different complete active
space (CAS) self-consistent field (CASSCF) methods is
investigated for the electronically excited-state benchmark set
of Schreiber, M.; et al. J. Chem. Phys. 2008, 128, 134110.
Comparison of the CASSCF linear response (LR) methods MC-
RPA and MC-TDA and the state-averaged (SA) CASSCF
method is made for 122 singlet excitation energies and 69
oscillator strengths. Of all CASSCF methods, when considering
the complete test set, MC-RPA performs best for both excitation
energies and oscillator strengths with a mean absolute error
(MAE) of 0.74 eV and 51%, respectively. MC-TDA and SA-CASSCF show a similar accuracy for the excitation energies with a
MAE of ∼1 eV with respect to more accurate coupled cluster (CC3) excitation energies. The opposite trend is observed for the
subset of n → π* excitation energies for which SA-CASSCF exhibits the least deviations (MAE 0.65 eV). By looking at s-
tetrazine in more detail, we conclude that better performance for the n → π* SA-CASSCF excitation energies can be attributed
to a fortunate error compensation. For oscillator strengths, SA-CASSCF performs worst for the complete test set (MAE 100%)
as well as for the subsets of n → π* (MAE 192%) and π → π* excitations (MAE 84.9%). In general, CASSCF gives the worst
performance for excitation energies of all excited-state ab initio methods considered so far due to lacking the major part of
dynamic electron correlation, though MC-RPA and TD-DFT (BP86) show similar performance. Among all LR-type methods,
LR-CASSCF oscillator strengths are the ones with the least accuracy for the same reason. As state-specific orbital relaxation
effects are accounted for in LR-CASSCF, oscillator strengths are significantly more accurate than those of MS-CASPT2. Our
findings should encourage further developments of response theory-based multireference methods with higher accuracy and
feasibility.

1. INTRODUCTION

In 2008, Schreiber et al. established a benchmark set of 28
closed-shell organic molecules that are intended to represent
the most important classes of chromophors,1 which is
commonly referred to as Thiel’s test set. The authors
computed for those molecules in total 223 vertical singlet
and triplet excitation energies and oscillator strengths of
various π → π*, n → π*, and σ → π* valence excitations. In
the initial study, accurate ab initio methods like the complete
active space (CAS) second-order perturbation theory
method2−4 (CASPT2) and a hierarchy of coupled cluster
(CC) linear response (LR) methods CC2,5 CCSD,6,7 and
CC38,9 were used. On the basis of their results1,10,11 and on
previously published literature data, best estimates for each
excited state in the test set were proposed that served as
reference values in later studies.
The same benchmark set has been employed in subsequent

studies by many groups to assess the accuracy of a plethora of
excited-state electronic structure methods that were not
covered in Thiel’s test set1 originally. Silva-Junior et al.12

reported time-dependent density functional theory (TD-
DFT)13,14 calculations with standard density functionals
(BP86,15,16 B3LYP,15,17,18 and BHLYP17,19) as well as
calculations with the semiempirical DFT-based multireference
configuration interaction (DFT/MRCI) method.20,21 The

M06 family of density functionals22−24 were employed by
Jacquemin et al.,25 while Maier et al.26 used their newly
developed local hybrid density functionals.27,28 Moreover,
excited-state calculations with the Bethe−Salpeter equation
(BSE) starting from different Kohn−Sham DFT solutions were
presented by Bruneval et al.29,30 and Jacquemin et al.31−33 Liu
and Subotnik benchmarked their variationally optimized CI
singles method.34 Also, a variety of semiempirical methods for
excited states were benchmarked by Silva-Junior and Thiel35

and Gadaczek et al.36 Recently, benchmark results for second-
order perturbative polarization propagator (SOPPA) methods
and the related algebraic diagrammatic construction (ADC)
were published by several groups.37−39 Scaled-opposite spin
CC2 and ADC(2) benchmark results were reported by Winter
and Haẗtig.40 Kańnaŕ and Szalay employed Thiel’s benchmark
set to compare CC oscillator strengths computed with LR
theory6,7 and the equation-of-motion41,42 (EOM) ansatz.43

Piecuch et al. employed their renormalized EOM-CC method
when benchmarking Thiel’s test set.44 The similarity-trans-
formed EOM-CC45,46 calculations with many variants47 were
presented by Sous et al.48 and Dutta et al.49 Moreover,
Haẗtig39,50−52 and Neese49 and their co-workers used Thiel’s
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test set to investigate the accuracy of their reduced-scaling CC
and ADC excited-state implementations that are based on pair
natural orbitals.50,53,54 Besides CASPT2, also other multi-
reference wave function methods were employed for
benchmarking excited states with Thiel’s test set. Schapiro et
al. reported state-specific (SS) second-order n-electron valence
perturbation theory excitation energies.55 Li et al. tested the
accuracy of their driven similarity renormalization group
method truncated to second order (DSRG-PT2) for singlet
excitation energies.107 Hubert et al.56 and Hedegård57

presented excitation energies and oscillator strengths for LR
long-range MCSCF short-range DFT (srDFT) methods58−60

that significantly improve the LR-CASSCF and TD-DFT
results.
In the present study, we examine the accuracy of three

different CASSCF methods for excited states. The first two
variants are based on CASSCF LR theory for which the
excitation energies and transition moments are obtained from
the poles and residues of the CASSCF LR function,61−63 also
known as the polarization propagator.64 This necessitates the
solution of the generalized eigenvalue problem
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Solving the complete set of eq 1 is often referred to as the
multiconfigurational random phase approximation (MC-RPA).
When invoking the MC Tamm−Dancoff approximation (MC-
TDA), the coupling blocks B and Δ in eq 1 are omitted.
Conceptually, it is much simpler to determine excited-state

CASSCF wave functions directly by enforcing convergence to
a specific excited state than solving the CASSCF-LR eigenvalue
eq 1. However, such a SS-CASSCF approach usually suffers
from convergence problems that are caused by root flipping.65

A much more convenient and computationally even simpler
approach is state-averaged (SA) CASSCF, which performs a
constrained minimization of a weighted sum over energies of
multiple states.65,66 Both ground- and excited-state wave
functions are described within the SA approximation by SS
CI coefficients but use a global single set of orbitals. Beside the
two LR-CASSCF variants MC-RPA and MC-TDA, we also
consider the SA-CASSCF method in the present benchmark
study.
Despite its tempting simplicity, SA-CASSCF has a couple of

drawbacks: (i) Excitation energies and oscillator strengths are
dependent on the number of states and their corresponding
weight for the averaging. (ii) It is not possible to describe
electronic excitations out of the active model space. This often
requires large active spaces for the full CAS-CI calculation. In
such situations CAS-CI isif at allonly affordable with
state-of-the-art quantum Monte Carlo,67,68 selected CI,69−74 or
density matrix renormalization group75−84 algorithms. (iii) If
many roots are optimized simultaneously, valence and Rydberg
states with the same symmetry tend to mix. This unphysical
behavior inherent of SA-CASSCF must be cured a posteriori
by multistate variants of MRPT4,85−87 or MRCC.88

LR-CASSCF does not suffer from all these of issues and
should in general be preferred over SA-CASSCF. Moreover,
due to the presence of both orbital rotation parameters and
state transfer CI coefficients89 in the response vectors, LR-
CASSCF provides SS orbital relaxation, which is missing in SA-
CASSCF. Another advantage of the full LR-CASSCF method
(MC-RPA) is that a minor fraction of dynamic difference

electron correlation is also captured as for all RPA-type
methods.90 Nevertheless, SA-CASSCF has its merits in the
case of quasi-degenerate ground-state wave functions, which is,
for the time being, still a problem for response theory methods.
It is noted in passing that all three CASSCF variants for

excited states give numerically identical results in the limit of a
FCI calculation, i.e., all orbitals are included in the CAS-CI
calculation.
The computational costs of LR-CASSCF calculations are

comparable to those of SA-CASSCF if only a few states are
computed. If the orbital part in a CASSCF calculation (not the
CAS-CI problem) has the largest contribution to the timings
and the number of requested states is large, SA-CASSCF will
eventually be more efficient than LR-CASSCF. Still, LR-
CASSCF calculations of large open-shell molecules with
hundreds of atoms are now feasible91 assuming that the CAS
is of moderate size and the CAS-CI calculation is affordable.
Even though both excited-state CASSCF methods have been

available for more than 4 decades, a systematic comparison and
error analysis for excitation energies and oscillator strengths
has not been attempted so far. A benchmark study on the
accuracy of SA- and LR-CASSCF is particularly interesting
because SA-CASSCF is used more frequently in practice,
thoughfollowing the discussion aboveLR-CASSCF seems
to be advantageous in many aspects. For this purpose, we
employ in the present study Thiel’s test set as it contains highly
accurate reference data obtained from CC3 calculations.1,43

Furthermore, we compare the errors of CASSCF with those of
several other excited-state methods that were employed in
previous benchmark studies. The accuracy of CC3 has been
confirmed very recently by Loos et al. for a test set of 18 small
molecules and amounts to a mean absolute error (MAE) of
0.03 eV in comparison to extrapolated selected full CI (FCI)
calculations.92 It should be noted at this point that the target
application of CASSCF methods in electronic spectroscopy are
open-shell molecules with multireference character primarily.
Unfortunately, neither Thiel’s test set nor any other published
excited-state test set contains open-shell low-spin systems for
which highly accurate MRCC or approximated FCI methods
were employed as reference; however, benchmark studies on
high-spin open-shell systems have been published re-
cently.93−95

The article on our CASSCF benchmark study is organized as
follows: In section 2, we provide details on the calculations and
on the data processing for the statistical analysis. In section 3,
CASSCF calculations for singlet excitation energies and
oscillator strengths are presented, and their deviations from
CC3 references are discussed. We also compare errors of
CASSCF with the ones of other excited-state methods. In the
final section 4, we summarize our findings and give
recommendations for future developments.

2. COMPUTATIONAL DETAILS
All SA-96 and LR-CASSCF91 calculations were performed with
the ORCA quantum chemistry package version 4.1.1.97 The
ground-state equilibrium geometries of the 28 organic
molecules were taken from the original test set1,43 for reasons
of comparability. For the same reason, we employed the
TZVP98 and aug-cc-pVTZ99 basis set for all calculations. The
resolution-of-the-identity (RI) approximation was used
throughout for the two-electron integrals with three and four
active indices.96 The corresponding def2/JK100 and aug-cc-
pVTZ101 auxiliary basis set was chosen for the RI
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approximation with the Coulomb metric,102 respectively. The
1s2 core electrons of the C, N, and O atoms were kept frozen
for all LR-CASSCF calculations.
Different choices of active spaces had to be made depending

on the type of CASSCF calculation, i.e. either LR- or SA-
CASSCF, for the following reason. Prior to the LR calculation,
a SS-CASSCF calculation was performed for the lowest totally
symmetric singlet state. It turned out that such energy
optimizations become unfeasible due to numerical difficulties
if almost doubly occupied, e.g., sigma or nonbonding orbitals,
are included in the active space. If not otherwise noted, the
default active space for LR-CASSCF calculations comprises of
only valence π and π* orbitals. One additional spectator orbital
had to be added to the default active space of the three amides
to ensure that all π and π* orbitals are held in the CAS in the
course of the SS-CASSCF energy minimization. For all SA-
CASSCF calculations, the original active space of ref 1 was
employed, which may also comprise nonbonding and sigma
orbitals to describe n → π* and σ → π* excitations. Note that
in a π-only LR-CASSCF calculation those transitions are
primarily described by the orbital rotation part of the response
vectors.
To make a fair comparison between LR- and SA-CASSCF,

as few as possible states were considered in the state averaging.
The number of states per point group irrep, along with the
symmetry group exploited in the calculation and the number of
active orbitals and electrons in the CAS, is provided in Tables
1 and 2 of the Supporting Information for calculations with the
TZVP and aug-cc-pVTZ basis sets, respectively. In contrast to
previous works,1,55 we average over all singlet states even if
they belong to different irreps because for technical reasons a
single set of orthogonal orbitals is required for computing the
transition moments with SA-CASSCF in ORCA. In many
cases, fewer states were included in the SA in comparison with
refs 1 and 55 as we are not facing MRPT-specific intruder-state
problems.
Apart from comparing LR- and SA-CASSCF transition

moments, an assignment of the electronic excitations between
those methods was made by visualizing natural transition
orbitals91,103 (NTOs) and active natural orbitals, respectively.
To relate our results to those of ref 1, NTOs of the CC2
excited states that form part of the original test set1 were
inspected whenever necessary.

3. RESULTS AND DISCUSSION
3.1. Excitation Energies. Singlet excitation energies were

computed with MC-RPA, MC-TDA, and SA-CASSCF for a
subset of the original benchmark set of ref 1, which in the
present study comprises 122 π → π*, n → π*, and σ → π*
excitations for the TZVP basis set altogether. Concerning the
aug-cc-pVTZ basis set results, we investigated only those 23
states for which accurate CC3/aug-cc-pVTZ reference
excitation energies were provided in a previous study.10

These excitation energies are compiled in Tables 3 and 4 in
the Supporting Information for the TZVP and aug-cc-pVTZ
basis set, respectively, along with the accurate CC3 and MS-
CASPT2 results taken from the literature.1,10,11,43 We decided
to include only those states in our study for which a clear
assignment between different electronic structure methods
could be made and that have been investigated with all other
excited-state methods that we compare with, i.e., CC2,1

CCSD,1 MS-CASPT2,1 SS-NEVPT2,55 CAS-srPBE,56,57

ADC(2),38 ADC(3),38 BP86,12 B3-LYP,12 and the BSE.32 As

the number of CC3/aug-cc-pVTZ reference excitation energies
available from ref 10 is much smaller (23) than those of CC3/
TZVP (122), we decided to omit the statistical analysis for the
aug-cc-pVTZ basis set also because most other excited-state
benchmark studies used the TZVP basis set.
Statistical measures on the deviation with respect to CC3

reference excitation energies are given in Table 1. Though

redundant, the normal distribution of those deviations is
plotted in Figure 1 for illustrative purposes. All excitation
energies with the LR- and SA-CASSCF variants are on average
systematically blue shifted. Concerning the whole test set and
the subset of π → π* excitations, MC-RPA gives on average
the least deviation from the reference. The largest outlier
MAX(+) for MC-RPA and MC-TDA is the 2 1B2g state in s-
tetrazine, which we discuss later. The superior (statistical)
performance of the full LR-CASSCF (MC-RPA) could have
been anticipated because the rotation of orbitals when exciting
from the ground to an excited state is incorporated into the
orbital-rotation part of the LR eigenvectors. On the contrary,
SA-CASSCF uses a single set of orbitals for both the ground
state and all excited states. Thus, any kind of SS orbital
relaxation effects are ignored in the SA-CASSCF method.
Moreover, the statistical analysis reveals that applying the TDA
deteriorates the accuracy of LR-CASSCF noticeably. Accord-
ing to the variational principle, the lowest excitation energy for
each irrep is always strictly larger when invoking the TDA. By
comparing each MC-RPA and MC-TDA excitation energy in
Table 3 of the Supporting Information, we can see that even
for the higher roots MC-RPA excitation energies are lower
than those of MC-TDA except for the 2 1B1g state in pyrazine.
Because the MC-RPA excitation energies are on average

Table 1. Statistical Analysis of the Singlet CASSCF
Excitation Energy Deviation with Respect to a CC3
Reference Given in eVa

MC-RPA MC-TDA SA-CAS

complete test set
count 122 122 122
ME 0.63 0.96 0.84
MAE 0.74 1.01 0.98
SD 0.78 0.73 0.87
MAX(+) 3.57 3.63 3.09
MAX(−) −0.74 −0.43 −0.85
n → π* subset
count 39 39 39
ME 0.98 1.46 0.40
MAE 1.02 1.46 0.65
SD 1.02 0.80 0.84
MAX(+) 3.57 3.63 3.09
MAX(−) −0.25 0.37 −0.85
π → π* subset
count 80 80 80
ME 0.47 0.74 1.08
MAE 0.62 0.81 1.16
SD 0.58 0.58 0.82
MAX(+) 2.81 3.04 2.50
MAX(−) −0.74 −0.43 −0.56

aThe following abbreviations were used: ME  mean error; MAE 
mean absolute error; SD  standard deviation; MAX(+) 
maximum error with positive sign; MAX(−)  maximum error
with negative sign.
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already blue shifted, the mean deviation of MC-TDA with
respect to the reference is increased. It was shown in a previous
work on an efficient LR-CASSCF implementation91 that the
computational performance is improved only marginally when
invoking the TDA even though there are fewer terms due to
the neglect of coupling blocks in eq 1. Due to the higher
accuracy of MC-RPA, we conclude that employing the TDA
should in general be omitted for LR-CASSCF excitation energy
calculations.
For the subset of n → π* excitations, the SA-CASSCF

excitation energies show much smaller deviations from the
reference than LR-CASSCF for which a π-only active space is
employed. For those n → π* excitations, all relevant
nonbonding orbitals at the N and O atoms that are involved
in the excitation processes are also included in the active space
of SA-CASSCF calculations. Additional dynamic difference
correlation is accounted for in n → π* excitations in SA-
CASSCF calculations by means of an enlarged active space that
is augmented by the relevant nonbonding orbitals. By contrast,
the n→ π* LR eigenvectors are expanded primarily in terms of
orbital rotation parameters, and a major part of electron
correlation is missing. Hence, LR-CASSCF is outperformed by
SA-CASSCF for the n → π* excitations with the current
choice of active spaces, as shown in Table 1 and Figure 1.
At this point, we would like to investigate if and how an

augmented active space affects the accuracy of LR-CASSCF
excitations, primarily for n → π* excitations. For this purpose,
we compare the lowest CC3 and CASSCF excitation energies
of s-tetrazine with two different active spaces in Figure 2.
Employing the augmented CAS(14,10) lowers systematically
the deviation from CC3 compared to the π-only active space
for all of the nine lowest states of s-tetrazine. However, the
difference of the CAS(14,10) and CAS(6,6) LR-CASSCF
excitation energies varies strongly among the nine lowest
states. In the case of the 1 1B3u state, the MC-RPA and MC-
TDA excitation energies are only lowered when augmenting
the active space by −0.037 and −0.147 eV, respectively. In

contrast to this, the MC-RPA and MC-TDA excitation
energies of 2 1B2g improve significantly in accuracy with
CAS(14,10) by −1.441 and −1.018 eV, respectively. That is
surprising as 1 1B3u and 2 1B2g are both n → π* excitations and
should in principal benefit from an augmented active space in
the LR-CASSCF calculation. From all CASSCF excited-state
variants discussed here, the SA-CASSCF shows the best
agreement with accurate CC3 reference data, which is in line
with the average performance for the subset of n → π*
excitations. This is mainly caused by cancellation of errors in
the SA approximation for which the ground-state energy
increases more than the excited-state energies. This may
partially compensate the lack of differential dynamic
correlation, which usually lowers excitation energies. The
fortunate error compensation of SA-CASSCF can be revealed
when computing excitation energies with the SS-CASSCF
approach. The deviation of SS-CASSCF from the CC3
reference for the 1 1B3u state is by 3.51 eV much larger than
the deviation of SA-CASSCF (3.14 eV) and MC-RPA (3.37 eV
CAS(6,6); 3.34 eV CAS(14,10)).
It has been discussed already in section 2 that adding

strongly occupied orbitals to the active space usually results in
convergence issues of the SS CASSCF energy minimization.
Instead of extending the active space, dynamic correlation
effects on excitation energies and transition properties should
rather taken into account by MRPT104 or MRCC-based105 LR
methods, which are at the moment not fully explored yet and
available in terms of pilot implementations or from automati-
cally generated codes. Alternatively, dynamic correlation can
be introduced by means of exchange−correlation functionals in
a very cost-effective fashion, as shown for srDFT-type
methods.56−60

To compare the accuracy of CASSCF with other excited-
state methods, we performed a statistical analysis for exactly
the same states as those in Thiel’s test set that were computed
in previous works with CC2,1 CCSD,1 MS-CASPT2,1 SS-
NEVPT2,55 CAS-srPBE,56,57 ADC(2),38 ADC(3),38 BP86,12

and B3-LYP.12 The statistical measures are compiled in Table
3. The normal distribution for some of the just mentioned
excited-state methods is shown in Figure 3. It is interesting to
see that MC-RPA (MAE = 0.74 eV) excitation energies show
statistically a similar (but slightly worse) performance as BP86
(TD-DFT, MAE = 0.67 eV); however, MC-RPA excitation

Figure 1. Normal distribution of deviation from the CC3 reference
singlet excitation energies of the complete test set and subsets of n →
π* and π → π* excitations.

Figure 2. Lowest singlet excitation energies of s-tetrazine with
different CASSCF methods and CC3. Solid lines are n → π*
excitations; dashed lines are π → π* excitations.
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energies are on average blue shifted, whereas the ones of BP86
are shifted into the red. As has been pointed out already by
Hubert et al.56 and Hedegård,57 a combination of MC-RPA
and TD-DFT by means of the srDFT ansatz significantly
improves the accuracy (MAE = 0.26 eV), which is comparable
to the MRPT methods MS-CASPT2 (MAE = 0.21 eV) and
SS-NEVPT2 (MAE = 0.22 eV). Also ADC(2) and ADC(3)
show on average a similar accuracy as CAS-srPBE (see Table
3). The smallest errors were obtained from the CC LR
methods CCSD (MAE = 0.24 eV, SD = 0.17 eV) and CC2
(MAE = 0.13 eV, SD = 0.19 eV).
3.2. Oscillator Strengths. Accurate CC3 oscillator

strengths f were omitted in the initial work of Schreiber et
al.1 but have been provided some years later by Kańnaŕ and
Szalay43 for the TZVP basis set with the purpose to compare
LR- and EOM-CC oscillator strengths. Those CC3/TZVP
oscillator strengths are taken as reference in the present work
when benchmarking the SA- and LR-CASSCF methods for

excited states. In the present study, we discuss only benchmark
results with the TZVP basis set because accurate CC3/aug-cc-
pVTZ oscillator strengths have not been reported so far for
Thiel’s test set. Because oscillator strengths of π → π*
excitations might be many orders of magnitude larger than
those of n → π* excitations, Kańnaŕ and Szalay43 suggested
considering relative deviation from CC3 rather than absolute
deviations as done for the excitation energies. However, this
would lead to the situation that the error statistics are
dominated by deviations of oscillator strengths that are small in
magnitude, i.e., σ → π* and n → π* excitations. Therefore,
only states with f > 0.003 are taken here into account for the
statistical analysis, as done in previous investigations.37

Statistical measures on the deviation with respect to CC3
oscillator strengths are given in Table 2. For illustrative
purposes, we plotted the normal distribution of those
deviations in Figure 4. As can be seen in Table 2, MC-RPA
has the lowest mean error (ME) and MAE for the complete set
and the subsets of π → π* and n → π* excitations. Slightly
larger ME and MAE are obtained when invoking the MC-
TDA. Of the three methods covered in this work, SA-CASSCF
shows the largest ME and MAE, which are larger than those of
MC-RPA by roughly a factor of 1.2 to 3.2, respectively.
Depending on the benchmark set, the standard deviation (SD)
of SA-CASSCF from the CC3 references is by a factor of 2−3
larger than the SD of MC-RPA. Surprisingly, we observe one of
the largest outliers (MAX (+)) for a MC-RPA π → π*
excitation, which gives on average the best performance for
both singlet excitation energies and oscillator strengths. It is
the 1 1B2 state in norbornadiene that also showed a significant

Table 2. Statistical Analysis of CASSCF Oscillator
Strengthsa

MC-RPA MC-TDA SA-CAS

complete test set
count 69 69 69
ME 25.8 33.8 79.0
MAE 50.8 55.7 100.
SD 79.3 76.7 134.
MAX(+) 469. 366. 870.
MAX(−) −89.7 −86.8 −95.5
n → π* subset
count 10 10 10
ME 71.4 114. 184.
MAE 91.4 131. 192.
SD 77.9 97.5 252.
MAX(+) 153. 227. 870.
MAX(−) −85.0 −85.3 −35.9
π → π* subset
count 59 59 59
ME 18.1 20.2 61.1
MAE 43.9 42.9 84.9
SD 77.5 64.3 93.9
MAX(+) 469. 366. 341.
MAX(−) −89.7 −86.8 −95.5

aOnly those states with f > 0.003 were included in the analysis.
Relative deviations with respect to CC3 are given in percent. The
following abbreviations were used: ME  mean error; MAE mean
absolute error; SD  standard deviation; MAX(+)  maximum
error with positive sign; MAX(−)  maximum error with negative
sign.

Table 3. Statistical Analysis of the Singlet Excitation Energy Deviation of Various Methods with Respect to a CC3 Reference
Given in eVa

CC2 CCSD CASPT2 NEVPT2 srPBE ADC(2) ADC(3) BP86 B3-LYP

count 122 122 122 122 122 122 122 122 122
ME 0.08 0.24 −0.19 0.01 −0.04 −0.08 −0.16 −0.65 −0.306
MAE 0.13 0.24 0.21 0.22 0.26 0.22 0.26 0.67 0.37
SD 0.19 0.17 0.21 0.30 0.47 0.47 0.44 0.41 0.325
MAX(+) 0.95 1.00 0.65 0.54 0.92 1.00 0.64 0.34 0.48
MAX(−) −0.25 −0.31 −1.14 −1.37 −2.42 −2.96 −2.42 −1.90 −1.28

aThe following abbreviations were used: ME mean error; MAE mean absolute error; SD  standard deviation; MAX(+) maximum error
with positive sign; MAX(−)  maximum error with negative sign.

Figure 3. Normal distribution of deviation from the CC3 reference
singlet excitation energies computed with various methods.
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deviation in the excitation energy from CC3 of at least 1.39 eV.
Apparently, a large part of the dynamic correlation
contribution to the 1 1B2 excitation energy and transition
moments is not included by any of the CASSCF methods. It is
also interesting to see that for the oscillator strengths, on
average, LR-CASSCF clearly outperforms SA-CASSCF also for
the n → π* excitations for which SA-CASSCF excitation
energies performed best. This is a further indication for the
importance of excited-state orbital relaxation covered by the
LR-CASSCF method but omitted in SA-CASSCF.
At this point, we would like to investigate how the accuracy

of CASSCF oscillator strengths compares with the one
obtained from other excited-state methods. For this purpose,
we have performed a statistical analysis of the oscillator
strengths deviations from CC3 (see Table 4) that were
computed from previously published results of CC2,1 CCSD,1

MS-CASPT2,1 CAS-srPBE,56,57 ADC(2),38 ADC(3),38

BP86,12 B3-LYP,12 and BSE32 and have plotted the normal
error distribution for some of the just mentioned methods in
Figure 5. As for the singlet excitation energies, we observe that
MC-RPA overshoots the oscillator strengths (ME = 25.8%),
whereas BP86 (TD-DFT) underestimates them (ME =
−18.2%). Again, a combination of MC-RPA with TD-DFT,
i.e., srDFT, improves the accuracy of oscillator strengths (ME

= 14.0%, SD = 44.0%), which is comparable to ADC(2),
ADC(3), and BSE (see Table 4). As for singlet excitation
energies, the oscillator strengths of CC LR variants CC2 (ME
= 12.4%, SD = 19.6%) and CCSD (ME = 11.0%, SD = 15.0%)
are the most accurate ones among the excited-state methods
considered here.
In contrast to excitation energies, MS-CASPT2 shows the

worst performance for oscillator strengths of all excited-state
methods considered here. The already deficient accuracy of
SA-CASSCF oscillator strengths is even degraded when
considering the statistical measures in Table 4. Computing
the transition moments from the one-particle density matrix
that includes the first-order MRPT wave function might be
more accurate than the perturbation modified CAS approx-
imation4,106 and could be explored in future MS-MRPT
developments as implemented for the DSRG-PT2 method.107

4. CONCLUSIONS
The accuracy of SA-CASSCF and LR-CASSCF singlet
excitation energies and oscillator strengths was investigated
for the electronically excited-state benchmark set of Schreiber
et al.,1 which contains various valence π → π*, n → π*, and σ
→ π* excitations in 28 closed-shell organic molecules. For
those states, highly accurate benchmark data from the CC3
method were provided,1,43 which allows us to provide reliable
statistical measures for more approximate electronic structure
methods as CASSCF. Besides the full LR-CASSCF method, we
have also investigated the accuracy of the Tamm−Dancoff
approximation, which we refer to as MC-TDA.
For a set of 122 excited states, we showed that MC-RPA

performs best with a MAE of 0.74 eV and a SD of 0.78 eV for

Figure 4. Normal distribution of deviation from the CC3 reference
oscillator strengths of the complete test set and subsets of n→ π* and
π → π* excitations.

Table 4. Statistical Analysis of Oscillator Strengths from Various Methodsa

CC2 CCSD CASPT2 srPBE ADC(2) ADC(3) BP86 B3-LYP BSE

count 69 69 69 69 69 69 69 69 69
ME 12.4 11.0 91.6 14.9 17.2 0.71 −18.2 −7.28 6.52
MAE 15.1 13.9 97.6 26.8 27.4 27.7 31.3 26.9 23.4
SD 19.6 15.0 136. 44.0 35.4 40.5 34.0 35.9 43.1
MAX(+) 120.0 60.0 858. 164. 140. 172. 78.9 97.4 176.
MAX(−) −25.0 −50.0 −80.0 −75.1 −100.0 −100.0 −83.3 −83.3 −100.0

aOnly those states with f > 0.003 were included in the analysis. Relative deviations with respect to CC3 are given in percent. The following
abbreviations were used: ME  mean error; MAE  mean absolute error; SD  standard deviation; MAX(+)  maximum error with positive
sign; MAX(−)  maximum error with negative sign.

Figure 5. Normal distribution of deviation from the CC3 reference
oscillator strengths computed with various methods.
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excitation energies. MC-TDA (MAE 1.01 eV and SD 0.73 eV)
and SA-CASSCF (MAE 0.98 eV and SD 0.87 eV) showed on
average larger errors with very similar statistical error measures.
The accuracy of CASSCF excitation energies differs strongly
for different types of excitations. The subset of π → π*
excitations was calculated significantly more accurately by the
two CASSCF-LR methods with a MAE and SD that are up to a
factor of 2 smaller than those with SA-CASSCF. By contrast,
the average errors of CASSCF-LR are much larger than those
of SA-CASSCF for the subset of n → π* excitations. This has
been attributed, on the one hand, to the larger active space for
our SA-CASSCF calculations with nonbonding orbitals
included and, on the other hand, to a fortunate error
compensation for SA-CASSCF excitation energies in general.
In comparison with other excited-state methods that were

previously used when studying Thiel’s test set, CASSCF shows
in general the worst performance for singlet excitation energies.
A significant improvement of the accuracy with only minor
computational overhead can be achieved with srDFT LR
methods, which has been shown previously by Hubert et al.56

and Hedegård.57

The statistical analysis for the CASSCF oscillator strength
deviations from CC3 gave a more uniform picture than that for
the singlet excitation energies. Among those three CASSCF
methods, the two CASSCF-LR variants clearly outperform SA-
CASSCF in terms of all statistical measures by often a factor of
2 and more for the whole test set as well as for the subsets of π
→ π* and n → π* excitations. Again, the full MC-RPA is on
average more accurate than MC-TDA. When comparing MC-
RPA oscillator strengths with other excited-state methods, we
have shown that MC-RPA has the least accuracy of all LR-type
methods. Again, including dynamic correlation as done in
srDFT gives more accurate oscillator strengths than with BP86
(TD-DFT) and MC-RPA. By far, the least accurate oscillator
strengths of all methods considered here were obtained by SA-
CASSCF and MS-CASPT2.
From our point of view, the better performance of LR-

CASSCF is mainly due to excited SS orbital relaxation
mimicked by the orbital rotation part of the response vectors,
which is omitted in SA-CASSCF (and MS-CASPT2) by
construction. This is revealed especially when comparing the
accuracy of oscillator strength calculations with SA- and LR-
CASSCF that are also sensitive to errors in the ground- and
excited-state wave functions rather in energies.
Our results should encourage further developments in the

field of MR-LR or MR polarization propagator methods that
also account for the majority of dynamic correlation effects, as
has been initiated recently.104 It would also be interesting and
much needed to assess the accuracy of excitation energies and
excited-state properties calculated from CASSCF and other
multireference methods for open-shell molecules, in particular,
transition metal complexes in a low-spin state. Such an
endeavor has not been undertaken so far due to the lack of
highly accurate and, at the same time, computationally feasible
MR methods. This may change in the future with more
efficient selected FCI or MRCC implementations.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jctc.9b00325.

Number of states for each irrep employed in the SA-
CASSCF TZVP and aug-cc-pVTZ calculations and all
MC-RPA, MC-TDA, and SA-CASSCF excitation
energies (TZVP and aug-cc-pVTZ) and oscillator
strengths (TZVP) together with the CC3 and MS-
CASPT2 results (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: helmichparis@kofo.mpg.de.
ORCID
Benjamin Helmich-Paris: 0000-0002-3616-9671
Funding
The author acknowledges gratefully financial support from The
Netherlands Organisation for Scientific Research NWO by a
Veni fellowship (Grant No. 722.016.011).
Notes
The author declares no competing financial interest.

■ ACKNOWLEDGMENTS
The author thanks cordially Frank Neese, Alexander A. Auer,
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