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Abstract

Protected areas are the flagship management tools to secure biodiversity from anthropo-

genic impacts. However, the extent to which adjacent areas with distinct protection levels

host different species numbers and compositions remains uncertain. Here, using reef fishes,

European alpine plants, and North American birds, we show that the composition of species

in adjacent Strictly Protected, Restricted, and Non-Protected areas is highly dissimilar,

whereas the number of species is similar, after controlling for environmental conditions,

sample size, and rarity. We find that between 12% and 15% of species are only recorded in

Non-Protected areas, suggesting that a non-negligible part of regional biodiversity occurs

where human activities are less regulated. For imperiled species, the proportion only

recorded in Strictly Protected areas reaches 58% for fishes, 11% for birds, and 7% for

plants, highlighting the fundamental and unique role of protected areas and their environ-

mental conditions in biodiversity conservation.

Introduction

Species diversity is changing at all spatial scales under ever-increasing habitat degradation,

spread of non-native species, overexploitation of resources, and climate warming [1–4]. Ambi-

tious conservation targets have been recently proposed to halt and even reverse the ongoing

biodiversity erosion with the commitment to protect at least 30% of the global ocean and land

by 2030 [5,6]. Yet, although a few studies indicate that species diversity tends to be higher

inside than outside protected areas worldwide [7,8], the extent to which adjacent Strictly Pro-

tected, Restricted, and Non-Protected areas support different levels of species richness (α-

diversity) or different species compositions (ß-diversity) remains unclear while being a key

issue. Indeed, the stability of ecosystem functioning and the continuous delivery of ecosystem
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services at the regional scale is positively related to the number of species comprising the

regional pool (γ-diversity) [9–11] which depends on both local or site diversity (α-diversity)

and the dissimilarity in species composition between sites (ß-diversity) [12,13].

Historically, many protected areas have been created to conserve iconic landscapes and sea-

scapes and to provide favorable environmental conditions (habitat and climate) for exploited

and threatened species [14]. Such arbitrary choices may have contributed to a marked species

dissimilarity between adjacent Protected and Non-Protected areas primarily due to habitat dif-

ferences within a region. Beyond this potential habitat effect, some conservation-dependent

species can be extirpated by human activities outside protected areas [3,15,16] which may also

increase species dissimilarity between protection levels. So, on the balance, the relative influ-

ence of local environmental conditions and protection level on species composition is still

largely unknown, while the partial influence of protection level when controlling for environ-

mental conditions, sample size, and species occurrences remains to be investigated across taxa

and biomes. Here, we make the hypothesis that protected areas host higher α-diversity than

their non-protected counterparts with a nested pattern in ß-diversity where non-protected

areas host only a subset of those species present in nearby protected areas (Fig 1). As an alter-

native, protected and non-protected may host different species inducing a mechanical increase

in γ-diversity (Fig 1).

More specifically, we use 3 extensive and species-rich datasets across many regions (1,447

reef fish species in 44 protected areas, 3,532 plant species of the French Alps in 192 protected

areas, and 639 North American bird species in 415 protected areas; see S1 Table) to compare

Fig 1. Illustration of species dissimilarity and ß-diversity partitioning between 2 components—species turnover

and species nestedness with a theoretical comparison between a protected and a non-protected area sharing some

species. This hypothetical example considers only 2 levels of protection and 2 levels of difference in species richness

(circle area). On the left species occurring in the non-protected area are also present in the protected area while the

opposite is not true, so the poorer area hosts only a subset of species which is nested in the species composition of the

richer area. On the right, species turnover is maximal, with 3 species unique to each protection level and no species in

common to both. Increase of species turnover induces a mechanical increase in γ-diversity. At the center, both patterns

are present, some species occur in both the non-protected and the protected area (nestedness), but some species are

unique to each protection level (turnover). Icons were extracted from https://www.publicdomainpictures.net/and are

under the Public Domain Dedication 1.0 license.

https://doi.org/10.1371/journal.pbio.3001195.g001
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(BBS surveys) are provided at https://www.pwrc.

usgs.gov/bbs/. Alpine data are available from http://

www.cbn-alpin.fr/ [46]. Official coverages of all

existing protected areas in US and France

(Protected Areas Database of the United States and

The World Database on Protected Areas, WDPA)

are respectively available at https://gapanalysis.

usgs.gov/padus/ and https://www.protectedplanet.

net/. Land cover in the US and France are

respectively available at https://catalog.data.gov/

dataset and http://www.theia-land.fr/.

Funding: Funding and support come from the

European project RESERVEBENEFIT (European call

BIODIVERSA3 2015-2016 call, SM). Additional

support was provided by Australian Research

Council [CE140100020, FT160100047] (JEC) &

Australian Research Council [LP150100761]

(GJE), the Ian Potter Foundation (GJE), the Royal

Society University Research Fellowship

(UF140691, NAJG), the ANR project Origin-Alps

(ANR-16-CE93-0004,WT & JR) and from

‘Investissement d’Avenir’ grants managed by the

ANR (Trajectories: ANR-15-IDEX-02; Montane:

OSUG@2020: ANR-10-LAB-56, WT & JR). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: AU : Anabbreviationlisthasbeencompiledforthoseusedinthetext:Pleaseverifythatallentriesarecorrect:BBS, Breeding Bird Survey; CBNA,

National Alpine Botanical Conservatory; CR,

Critically Endangered; dbRDA, distance-based

redundancy analyses; DD, Data Deficient; EN,

Endangered; IUCN, The International Union for

Conservation of Nature; LC, Least Concern; NLCD,

National Land Cover Database; NPA, Non-

Protected Areas; NT, Near Threatened; RA,

Restricted Areas; RLS, Reef Life Survey; SES,

standardized effect sizes; SPA, Strictly Protected

Areas; UVC, underwater visual census; VU,

Vulnerable; WDPA, World Database on Protected

Areas.

https://www.publicdomainpictures.net/and
https://doi.org/10.1371/journal.pbio.3001195.g001
https://doi.org/10.1371/journal.pbio.3001195
https://www.pwrc.usgs.gov/bbs/
https://www.pwrc.usgs.gov/bbs/
http://www.cbn-alpin.fr/
http://www.cbn-alpin.fr/
https://gapanalysis.usgs.gov/padus/
https://gapanalysis.usgs.gov/padus/
https://www.protectedplanet.net/
https://www.protectedplanet.net/
https://catalog.data.gov/dataset
https://catalog.data.gov/dataset
http://www.theia-land.fr/


species diversity and composition between adjacent (<50 km) Strictly Protected, Restricted,

and Non-Protected areas. We define an area as Strictly Protected when human visitation, use,

and impacts are strictly controlled and limited, for instance, no-take marine reserves, i.e.,

International Union for Conservation of Nature (IUCNAU : Pleasenotethat� IUCN � hasbeendefinedas� InternationalUnionforConservationofNature� initsfirstmentioninthesentence� WedefineanareaasStrictlyProtectedwhenhumanvisitation . . .� Pleasecorrectifnecessary:) categories I and II. In Restricted

areas, human activities are controlled but some resource extraction is permitted corresponding

to IUCN categories III to VI. We perform 2 complementary statistical analyses at 2 spatial

scales to test the relative influence of environmental conditions and protection on species

diversities and to shed light on conservation effect, if any.

First, we use distance-based redundancy analyses (dbRDA) at the scale of local surveys (i.e.,

transects) to disentangle environmental versus protection effects on species composition

within each region. Second, we use the Jaccard dissimilarity index (ß-diversity) to determine

whether differences in species composition between protection levels are nested in a given

region (i.e., species present in less protected areas are also present in more protected areas) or

are mainly due to species turnover or replacement along the protection gradient (i.e., species

present in protected areas are absent in non-protected areas and vice versa) (Fig 2). Finally, we

identify the amount and characteristics of species being unique to one protection level.

Results

Both environment conditions and protection level shape species

composition

We collected species survey data in 655 protected areas for fish, birds, and plants across the

Indo-Pacific reefs, the French Alps, and the United States, respectively (S1 Table). We define a

Fig 2. Result of the partial dbRDAs. Marginal effect of protection and environmental conditions to observed turnover

between Strictly Protected areas surveys and surrounding surveys within a 50-km buffer (from non-protected areas and/

or restricted areas (n = 18, 131, 5) for reef fishes (A), birds (B), and alpine plants (C). Some Strictly Protected areas were

removed because environmental conditions were strictly identical between surveys making impossible comparison of the

relative contribution of both protection and environmental conditions. Asterisks indicate the Fisher p-value, denoting the

combined partial effect of protection and environmental conditions for each taxon using permutation ANOVA, i.e.,

whether or not each environment and protection level had a significant association with observed species turnover. The

raw data can be found in https://github.com/LoiseauN/Betadiversity-protected-areas.

https://doi.org/10.1371/journal.pbio.3001195.g002
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region as a Strictly Protected or Restricted area and its surrounding Non-Protected areas

within a 50-km buffer, the 3 protection levels being present together in 45 regions. We also

extracted 6, 20, and 21 environmental variables recognized as major drivers of species compo-

sition for reef fishes, birds, and plants, respectively, on the same surveys (see Materials and

methods).

At the scale of individual surveys, we observe a high species turnover within regions with

on average 62% (+/−14) for fish, 64% (+/−17) for birds, and 97% (+/− 1) for plants, suggesting

a high heterogeneity between surveys. The dbRDA reveal that both environmental conditions

and protection significantly explain this turnover in species composition between surveys of

the same region (overall F-test = 2.8 ± 1.9, 9.3 ± 5.7, 35.4 ± 9.7, mean adjusted R2 = 0.21 ± 0.1,

0.14 ± 0.06, 0.01 ± 0.05, for fishes, birds, and plants, respectively; S1 Fig). Yet, the explanatory

power of dbRDA remains low, particularly for plants, suggesting that, at the scale of surveys,

many other microhabitat variations may drive species composition beyond protection and

macrohabitat effects. There is a lot of sampling “noise” at this spatial scale.

Partial dbRDA reveal that environmental conditions, after controlling for protection level,

significantly explain species turnover between surveys of the same region for the 3 taxa (Fig 2).

Symmetrically, protection, after accounting for environmental conditions, also significantly

explains species turnover for the 3 taxa (Fig 2). On the balance, environmental conditions have

more influence than protection on species turnover between surveys of the same region for

birds (70% versus 30%) and fish (69% versus 31%) but this is the opposite for plants (28% ver-

sus 56%). These results highlight that differences in environmental conditions cannot explain,

alone, the high species turnover between surveys of the same region. Since most of variation in

species turnover remains unexplained between surveys within a region, owing to sampling

“noise” and unmeasured microhabitat variations, we then pooled surveys by protection level

for a given region with the same sampling effort in each protection level (see Materials and

methods) for the following analyses. In others words, pooling surveys by protection level may

reduce the heterogeneity induced by the sampling performed at very small scale.

Similar species richness between protection levels

In each region, we randomly sampled 999 times the same number of surveys in Non-Protected

areas as in the Strictly Protected or Restricted area to standardize sampling effort and allow

species diversity comparisons between pairs of protection levels. We find very low and non-

significant differences in the number of bird and reef fish species between the different protec-

tion levels within the same region (Fig 3). By contrast, Non-Protected areas in the Alps host

significantly more plant species than adjacent Restricted and Strictly Protected areas, while

Strictly Protected areas host significantly fewer species than Restricted areas (Fig 3C). We also

show that environmental differences between surveys have very low or no significant influence

on species richness differences between protection levels across taxa and regions (Fig 4).

High species turnover between protection levels

Using the same protocol, we show that the level of species dissimilarity between protection lev-

els within the same region is consistently high in the 3 datasets, with a median ß-diversity

value ranging between 40% (for birds between Strict Protected and Non-Protected areas) and

80% (for plants between Restricted and Non-Protected areas) (Fig 5) suggesting that adjacent

areas (<50 km) with different protection levels host very dissimilar species. Since this result

can be due to species richness and occurrence patterns without any effect of protection, we

tested whether our observed ß-diversity values among protection levels were larger or smaller

than expected under a random assembly model (see Materials and methods). Overall, observed
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ß-diversity values between protection levels are higher than expected by chance (combined

Fisher p-value< 0.001, Fig 5), except for reef fishes between Restricted Protected areas and

Non-Protected areas (Fig 5D, S2 Fig). This exception highlights that only Strictly Protected

areas play a key and unique role in sustaining regional fish biodiversity.

All datasets combined, the high species dissimilarity between protection levels within a

region is primarily due to species turnover (74% ± 20% of the total dissimilarity) and not nest-

edness (26% ± 20% of the total dissimilarity or ß-diversity). On average, 29% (±14%) of bird,

32% (±8%) of plant, and 43% (±16%) fish species are replaced between adjacent areas under

different protection levels, while nestedness represents, on average, between 9% (fish) and 30%

(plant) of total species dissimilarity (Fig 5). This proportion of species turnover is also signifi-

cantly higher than expected at random (combined Fisher p-value < 0.001, Fig 5). Only plant

species diversity in Strictly Protected areas is strongly nested within plant diversity in nearby

Restricted areas (32%, Fig 5F). Like for species richness, this pattern for plants can be explained

by the spatial nestedness of Strictly Protected areas within Restricted areas, both nested in

Non-Protected areas within regions. The results remain unchanged when smaller (10 km) and

larger (100 km) buffers are applied (compared to 50 km; S3 Fig) or when rare species (species

with a number of occurrences lower than 3 within a region) are removed (S4 Fig).

We then tested the correlation between the difference in environmental conditions and spe-

cies turnover for each pair of protection levels within each region for each taxon (Fig 6). Spe-

cies turnover between Strictly Protected and Non-Protected areas is inconsistently (positive or

negative, Fig 6A) and non-significantly related to the difference in environmental conditions

for fish (R2 between 0.014 and 0.15, p-value > 0.1). For birds and plants, the difference in envi-

ronmental conditions explains a significant amount of species turnover between Restricted

and Non-Protected areas (R2 = 0.24 and 0.40, p-value < 0.001, respectively, Fig 6B and 6C) but

Fig 3. Pairwise comparisons of the number of species between SPA, RA, and NPA in surrounding areas within a buffer of 50

km (each dot is a protected area) for reef fishes (A, D, G), birds (B, E, H), and alpine plants (C, F, I). The difference in the

number of species, after controlling for the number of surveys inside each protection level, is shown along with the

significance of this difference (Wilcoxon): ns for p> 0.05, � for p< 0.05, �� for p< 0.01, and ��� for p< 0.001. Negative

values indicate that areas with the highest protection level host less species than less protected areas. The raw data can be

found in https://github.com/LoiseauN/Betadiversity-protected-areas. NPAAU : AnabbreviationlisthasbeencompiledforthoseusedinFig3:Pleaseverifythatallentriesarecorrect:Inaddition; pleasedefine� ns� inFig3abbreviationlistifthisindeedisanabbreviation:, Non-Protected Areas; ns, non significant; RA,

Restricted Areas; SPA, Strictly Protected Areas.

https://doi.org/10.1371/journal.pbio.3001195.g003
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has a weak effect for the other comparisons between protection levels (R2 between 0.09 and

0.3, significant for birds, p-value< 0.05, but not for plants p-value > 0.1).

Many species unique to one protection level

When considering only regions with all 3 protection levels (Strictly Protected, Restricted, and

Non-Protected areas) in a buffer of 50 km and a standardized subsample (see Materials and

methods), we reveal an unexpectedly high proportion of species recorded only in one protec-

tion level at the regional scale (Fig 7). For instance, 12%, 13%, and 15% of bird, fish, and plant

regional or γ-diversity is only recorded in Non-Protected areas, so absent from nearby

Restricted or Strict Protected areas (Fig 7), showing that a non-negligible portion of biodiver-

sity is concentrated in areas where human activities are not buffered through protection. By

comparison, 22% of fish species are only recorded in Strictly Protected areas, while this per-

centage drops to 9% and 4% for birds and plants, respectively. Restricted areas also host a large

proportion of unique regional biodiversity ranging from 11% of species for birds to 21% for

fishes. Together, Restricted and Strictly Protected areas host, on average, 88%, 87%, and 85%

of bird, fish, and plant species regional diversity, respectively.

The proportion of species recorded only in Strictly Protected areas increases when only

considering “imperiled” or conservation-dependent species, so a group gathering Critically

Endangered, Endangered, Vulnerable, and Near Threatened species, with 58% for fishes, 11%

for birds, and 7% for plants (Fig 7D–7F, S4 Fig). This result highlights the capacity of Strictly

Fig 4. Linear relationships between environmental dissimilarity and the difference in species richness (ΔS) for reef

fishes (A, D, G), birds (B, E, H), and alpine plants (C, F, I) for pairwise comparisons between SPA, RA, and NPA

across regions in a buffer of 50 km (each dot is a protected area). ��� p-value< 0.001, �� p-value< 0.01, � p-

value< 0.05. The raw data can be found in https://github.com/LoiseauN/Betadiversity-protected-areas. NPAAU : AnabbreviationlisthasbeencompiledforthoseusedinFig4:Pleaseverifythatallentriesarecorrect:Inaddition; pleasedefine� ns� inFig4abbreviationlistifthisindeedisanabbreviation:, Non-

Protected Areas; ns, non significant; RA, Restricted Areas; SPA, Strictly Protected Areas.

https://doi.org/10.1371/journal.pbio.3001195.g004
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Fig 5. Species dissimilarity and its partitioning components of turnover and nestedness between SPA, RA, and NPA in surrounding areas within a buffer of 50 km, after

controlling for the number of surveys inside each protection level for reef fishes (A, D, G), birds (B, E, H), and alpine plants (C, F, I). Asterisks indicate the Fisher p-value,

denoting the probability that the observed combination of dissimilarity values and their partitioning components are different from a random allocation species to surveys;

when values of ß-diversity are higher than a random allocation of species to surveys asterisks are in black while for ß-diversity values lower of lower values are in gray (S2

Fig). ��� p-value< 0.01, �� p-value< 0.05, � p-value< 0.1. The raw data can be found in https://github.com/LoiseauN/Betadiversity-protected-areas. NPAAU : AnabbreviationlisthasbeencompiledforthoseusedinFig5:Pleaseverifythatallentriesarecorrect:Inaddition; pleasedefine� ns� inFig5abbreviationlistifthisindeedisanabbreviation:, Non-Protected

Areas; ns, non significant; RA, Restricted Areas; SPA, Strictly Protected Areas.

https://doi.org/10.1371/journal.pbio.3001195.g005
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Protected areas to provide refuges for imperiled species. For birds and plants, our results also

highlight the critical role of conservation efforts in the protection of imperiled species, since

together Restricted and Strictly Protected areas host 94% and 62% of the regional and imper-

iled species diversity, respectively. Yet, a non-negligible proportion of regional imperiled spe-

cies (27% for fishes, 6% for birds, and 38% for plants, Fig 7G–7I; S5 Fig) are only recorded in

Non-Protected areas, increasing their potential exposure and vulnerability to human activities.

Discussion

Here, we tested the influence of environmental conditions and protection level on regional

biodiversity patterns across 3 taxa and we also used null models and sensibility analyzes to

assess the potential effects of species rarity and distribution on those patterns. Since environ-

mental conditions, rarity (patterns remain identical when species with a number of occur-

rences lower than 3 within a region were removed) or species occurrences cannot fully explain

differences in species richness and compositions between protection levels within regions at 2

spatial scales (surveys and areas), a likely explanation for our results is that species have differ-

ential responses to direct and indirect human impacts. Humans have transformed ecosystems

across more than three-quarters of the terrestrial biosphere [17], while only 13% of oceans

globally are classified as wilderness areas [18]. Human activities usually erode ß-diversity by

homogenizing landscapes and generating conditions suitable for only a subset of species [19].

In other words, human activities favor the spread of some “winner” species in Non-Protected

Fig 6. Linear relationships between environmental dissimilarity and species turnover for reef fishes (A, D, G), birds

(B, E, H), and alpine plants (C, F, I). for pairwise comparisons between SPA, RA, and PA) across regions in a buffer of

50 km (each dot is a protected area). ��� p-value< 0.001, �� p-value< 0.01, � p-value< 0.05. The raw data can be

found in https://github.com/LoiseauN/Betadiversity-protected-areas. NPAAU : AnabbreviationlisthasbeencompiledforthoseusedinFig6:Pleaseverifythatallentriesarecorrect:Inaddition; pleasedefine� ns� inFig6abbreviationlistifthisindeedisanabbreviation:, Non-Protected Areas; ns, non significant;

RA, Restricted Areas; SPA, Strictly Protected Areas.

https://doi.org/10.1371/journal.pbio.3001195.g006
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Areas to the detriment of “loser” disturbance-sensitive species [20]. For instance, some birds

(Galliformes, [16]) or fish predators (sharks, [15]) are known to almost exclusively occur in

Strictly Protected areas far from humans. These disturbance-sensitive species may be provided

refuge in protected areas, maintaining regional biotic heterogeneity and biodiversity, which

are key to ecosystem functioning owing to spatial insurance stabilizing ecological processes

across scales [9,10].

Species targeted by hunting and fishing may also adapt their behavior, such as reducing

their movement to decrease likelihood of encountering hunters or fishers [21]. Such species

may increasingly, sometimes exclusively, occur in Protected areas [22,23], or may become too

rare and elusive to be detected in Non-Protected areas [24]. The intensity of human pressure

(fishing, hunting, land use, etc.) within Restricted areas could also explain the high number of

species not shared with adjacent areas that are Strictly Protected [25–27]. For instance, the

presence of livestock and mowing in the French Alps, to maintain the biodiversity of grassland

and avoid wood encroachment [26], induces species turnover between Strictly Protected and

Restricted areas. This land management is deliberately applied to maintain the biodiversity of

alpine grasslands by avoiding succession and dominance by larger plants and forests [26].

Moreover, species abundances differ between Protected and Non-Protected areas [15], altering

predator–prey interactions, competition and trophic cascades, and thus species composition

[28]. Apex predators are generally the most impacted by human activities and are mostly

absent in Non-Protected areas [15]. By favoring the presence of apex predators, Strictly

Fig 7. Venn diagrams showing the mean percentage of regional gamma species richness shared or unique to the 3

protection levels—SPA, RA, and NPA for reef fishes (A, D, G), birds (B, E, H), and alpine plants (C, F, I). Analyses

have been reduced to regions with surveys for the 3 types of protection levels in a buffer of 50 km (6, 43, and 5 strict

protected areas, respectively). For fishes, regions with surveys across the 3 types of protection levels in surrounding

areas within a buffer of 50 km did not have enough IUCN-assessed species to evaluate the mean percentage of species

that are shared and unique. Consequently, for fishes, analyses were performed on the 14 strict protected areas with

non-protected area surveys in a buffer of 50 km. CR, EN, VU, and NT species are considered as “Imperiled” (D–F)

while LC as “Low risk” (G–I). The raw data can be found in https://github.com/LoiseauN/Betadiversity-protected-

areas. CR, Critically Endangered; EN, Endangered; LC, Least Concern; NPA, Non-Protected Areas; NT, Near

Threatened; RA, Restricted Areas; SPA, Strictly Protected Areas; VU, Vulnerable.

https://doi.org/10.1371/journal.pbio.3001195.g007
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Protected areas host unique trophic structures and species compositions, different from those

observed in Non-Protected or even Restricted areas [29]. Thus, species appear to be “sorting”

among different protection levels, and management diversity is needed to maintain larger

scale biodiversity.

A non-mutually exclusive but alternative explanation is that protected areas are placed in a

way that captures the geographic range of some species but not others [30–32]. Moreover, the

simple occurrence within a protected area is insufficient to ensure the long-term persistence of

many species, particularly those demanding particular environmental conditions [30,31] or

extensive home range [33]. Both mechanisms may lead to the exclusion of some species from

Protected areas but also increase the turnover between Protected and Non-Protected areas. In

the same way, economic and social dimensions strongly influence the positioning of protected

areas. For instance, the most isolated places are easier to protect due to a better social accep-

tance [34,35]. From this attempt to manage social-ecological systems, it may result that pro-

tected species assemblages may not be representative of regional species pools, increasing

species dissimilarity between protection levels. At the global scale, protection coverage tends to

increase in wilderness areas to the detriment of “Key Biodiversity Areas” [6] so some regional

biodiversity hotspots may lack a diversity of management options, notably Strictly Protected

areas [36].

Our results reiterate that the number of species living inside versus outside protected areas

is a poor indicator of management effectiveness because the identity and composition of spe-

cies they host can be markedly different while species richness remains similar [37,38]. This

contrasts with some studies showing that species richness is 10.6% higher inside protected

areas compared to the outside [8]. However, this difference may be due to the difference in

spatial extent of pairwise area comparisons and species analyzed between studies since our

approach is based on within-region biodiversity patterns using null models and 3 different

taxa. Even if our results suggest that species turnover is partly dependent on environmental

conditions, the consequence in terms of regional biodiversity conservation remains identical

with Strictly Protected, Restricted, and Non-Protected areas not sharing a non-negligible part

of species regional pools so being complementary instead of nested. In addition, the influence

of environmental conditions is limited by only considering less strictly protected areas within

a 50-km buffer (with similar results at 10 and 100 km) around the more protected areas. In

other words, changes in macrohabitat (e.g., climate) remain relatively limited over our regional

spatial scale. However, from a conservation perspective, expanding protection to environmen-

tal conditions that are not already or weakly protected would be highly beneficial for imperiled

species [39]. Our data did not allow to determine whether a given protected area was estab-

lished a priori in specific environmental conditions or if protection induced a differentiation

of its environmental conditions a posteriori. For instance, the management of land outside

protected areas may favor certain species that are not found within more “natural” environ-

mental conditions like inside protected areas. Finally, future investigation on species identities

and functions would reveal mechanisms underlying the high species turnover we observe. Can

disparity in trophic level or other functional traits explain changes in species composition

between protection levels? What is the contribution of non-native species to the turnover

between these management levels?

More generally, our results suggest that human activities do not necessarily reduce α-diver-

sity, but instead lead to a shift in species composition, similar to findings assessing biodiversity

trends through time [2,39,40]. Human modification of natural environments can even increase

local species richness, and thus β-diversity, because some species can be present in altered con-

ditions only [41,42]. We suggest that, in a world with a predominance of altered landscapes

and seascapes, reinforcing Strictly Protected areas with Restricted areas nearby may create a

PLOS BIOLOGY High species turnover among protection levels

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001195 May 19, 2021 10 / 18

https://doi.org/10.1371/journal.pbio.3001195


mosaic of protection levels maximizing the number of species at the regional scale, an impor-

tant outcome for sustaining ecosystems and their services [14,43,44]. Broadening and diversi-

fying the scope of conservation options to not only focus on local versus global issues but also

include regional contexts is critical to prevent future extinctions and to maintain ecosystem

multifunctionality under fluctuating and uncertain environmental and human stressors.

Materials and methods

Species datasets

Reef fishes. We used the global Reef Life Survey (RLS) database [45] and data from coral

reef surveys [46]. These reef fish surveys involve underwater visual census (UVC) by SCUBA

divers along a 50-m transect line, laid along a depth contour on hard substrata (coral or tem-

perate rocky reef). Observers included highly trained volunteers who produce survey counts

statistically indistinguishable from professional researchers [47]. All fish species observed

within 5 m of the transect line were recorded as the diver swam slowly along the line. Full

details of methods can be found in an online method manual available at www.reeflifesurvey.

com [45]. Initially, 39 no-take Strictly Protected areas and 40 Restricted areas were used. How-

ever, because habitat was unavailable for most of the reefs, we standardized the habitat of sur-

veys a priori to those performed on reef within the depth range 4 to 20 m. This choice greatly

reduced the number of analyzed marine protected areas but minimized any bias due to dissim-

ilarity in habitat. Thus, analyses were reduced to 25 Strictly Protected areas and 19 Restricted

areas, plus respective Non-Protected areas. A total of 1,447 species were surveyed along 2,156

transects. We did not compare surveys across the 2 datasets to avoid any methodological bias.

French alpine plants. We used a database of vegetation surveys provided by the National

Alpine Botanical Conservatory (CBNA) over the French Alps region which covers over 26,000

square kilometers [26]. Database included 42,290 community plots sampled in natural or

seminatural areas from 1980 to 2009, encompassing a total of 3,532 plant species. Each plot

was approximately 10 m × 10 m and within each sample, species occurrences were recorded.

Five Strictly Protected areas and 191 Restricted areas were analyzed.

Birds. We use the North American Breeding Bird Survey (BBS), which estimates species

bird abundances in 48 US states along 40 km routes. In BBS, yearly, during the breeding sea-

son, observers census birds along c. 50 km survey routes with stops separated from 1 km apart

and counting all bird species present. We selected the 2,411 routes with surveys from 2010 to

2015. A total of 639 bird species were surveyed. OneAU : PerPLOSstyle; numeralsarenotallowedatthebeginningofasentence:Therefore; pleaseconfirmthattheeditstothesentence� Onehundredthirty � twoStrictlyProtectedareasand283Restricted . . .� arecorrect; andamendifnecessary:hundred thirty-two Strictly Protected

areas and 283 Restricted areas were analyzed.

IUCN status. For each taxon, we grouped species in 3 categories depending on their threat

level according to IUCN red list: Critically Endangered (CR), Endangered (EN), Vulnerable

(VU), and Near Threatened (NT) as “Imperiled”; Least Concern (LC) species as “Not Threat-

ened”; Data Deficient (DD) species and species without known status as “Not Assessed” species.

For fishes, 43 species were classified as “Imperiled,” 482 as “Not Threatened,” and 922 as “Not

Assessed.” For birds, 38 species were classified as “Imperiled,” 405 as “Not Threatened,” and

196 as “Not Assessed.” For plants, 280 species were classified as “Imperiled,” 1,884 as “Not

Threatened,” and 1,368 as “Not Assessed.” We choose to group “Near Threatened” species with

threatened species, i.e., those classified as CR, EN, and VU because we considered that these

species should be covered by protected areas networks since being conservation dependent.

Protection levels

We distinguished 2 different statuses of protected areas: Strictly Protected areas where human

activities are prohibited (IUCN I-II) and Restricted areas (IUCN III-VI) where limited
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extractive activities are authorized [48]. For birds and plants, we intersected all sites using offi-

cial coverage of all existing protected areas in US and France (Protected Areas Database of the

United States and The World Database on Protected Areas, WDPA). For reef fishes, we used

management available data [45,46]. For each survey, we assessed if it was unfished, that is

within the borders of a no-take marine reserve; restricted, with active restrictions on particular

gear types (for example, bans on the use of nets, spear guns, or traps) or fishing effort (which

could have included areas inside marine parks that were not necessarily no-take); or fished,

that is, regularly fished without effective restrictions.

Environmental conditions with habitat and climatic data

Reefs. For global RLS, we used the data from benthic photoquadrats taken along the

same transect lines surveyed for fishes to quantify local habitat differences between sites.

Photoquadrats were taken vertically downward of the substrate every 2.5 m along each of

the same transect lines, and later scored using a grid overlay of 5 points per image, 100

points per transect. Categories of benthic cover scored were from a set of 50 morphological

and functional groups of algae and corals. Substratum categories used for analyses here

were the sum of all live hard coral categories, macroalgaes, and others. Full details of the

photoquadrat method and scoring procedure are already provided [49]. We also included

depth of the transect as a local environmental variable. For other data [46], we used habitat

(whether the reef is a slope, crest, flat, or back reef/lagoon) and depth recorded along tran-

sects. For both databases, we also extracted sea surface temperature and chlorophyll-a con-

centration using Bio-Oracle at 10 km of resolution average on the period 2000 to 2014 [50].

These variables were all recognized as major drivers of fish diversity on coral reefs [51,52].

As we did not compare surveys across the 2 datasets, differences in environmental datasets

should not affect outcomes. Some environmental data were not available for all sites (34%

for RLS surveys and 38% for other data [46]). We removed these surveys when testing

influence of environmental conditions on diversity.

French Alps. We used the official coverage of land cover in France (Theia Land, 2016, 20

meters of resolutions). This dataset included 17 variables impacting plants: winter agriculture,

summer agriculture, hardwood forest, coniferous forest, lawns, woody moors, dense urban,

sprawling urban, industrial and commercial areas, roads, mineral surfaces, beaches and dunes,

water, glaciers or snow, grasslands, orchards, vineyards. We chose a 1-km buffer as a reason-

able range at which principal habitats of recorded species lived and to capture the relevant hab-

itat. We also included average annual precipitation and annual temperature from 1979 to 2013

using Chelsa at 1 km of resolution (http://chelsa-climate.org/).

US land cover and climate. We used the official coverage of land cover in the US (The

National Land Cover Database (NLCD, 2016, 30 meters of resolution). NLCD land cover clas-

ses (20) were water, perennial ice snow, low intensity residential, high intensity residential,

developed/open space intensity, developed/medium intensity, developed high intensity, bare

rock/sand/clay, deciduous forest, evergreen forest, mixed forest, shrub/scrub, grasslands/her-

baceous, pasture/hay, row crops, woody wetlands, emergent herbaceous wetlands. We created

a 19.7-km radius circle (one half the length of a BBS route) around the centroid of each BBS

route [53–56] and used this to extract land cover. We chose this radius because it encompassed

the entire BBS route, regardless of route path, and a circle because it provided a uniform area

and shape around each BBS route. We also included average precipitation and temperature

from 1979 to 2013 using Chelsa at 1 km of resolution (http://chelsa-climate.org/). We averaged

the climatic data within a 19.7-km radius circle.

All data sources are provided in S2 Table.
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Biodiversity assessments and statistical analyses

ß-diversity indices. When measuring ß-diversity, 2 independent patterns may occur,

turnover and nestedness [13] (Fig 1). Turnover occurs when species present at one site are

absent at another site but are replaced by other species absent from the first. The nestedness

component measures differences in richness between assemblages nested to some degree, i.e.,

species present at one site are absent at another but are not replaced by new species. In order

to determine the relative contribution of turnover and nestedness to total ß-diversity, we used

the additive partitioning of the pairwise Jaccard dissimilarity [13]. This framework teases apart

the variation in species composition from species turnover only, which is independent of rich-

ness, and from nested patterns (Fig 1).

Total b ¼ Jaccard ¼
bþ c

aþ bþ b
¼ Turnover þ Nestedness

where

Turnover ¼
2 �minðb; cÞ

aþ 2 �minðb; cÞ

Nestedness ¼
jb � cj
aþ bþ c

�
a

aþ 2 �minðb; cÞ

where a is the number of species present in both sites, b is the number of species present in the

first site, but not in the second, and c is the number of species present in the second site, but

not in the first.

Geographical clustering (buffer of fixed radius). Beyond the surveys, protected areas

(PA) were the spatial units in our study. First, we determined whether a given sample was

within a protected area or outside. And then, for those outside, samples within a 50-km buffer

of a protected area were designated as Non-Protected area or Restricted area if sample were

inside another protected area with a lower level of protection and retained for analyses. The

same 50 km buffering approach was applied on restricted areas allowing comparison between

restricted and non-protected areas. Because the number of sites sampled outside and inside

the protected area was different, we standardized the survey effort by randomly selecting the

minimum number of surveys inside and outside, 999 times. With this approach, our design is

perfectly balanced in terms of sampled effort between management options. At each iteration,

for each site, we took the randomly minimum number of surveys done for all selected sites.

For each iteration, we computed ß-diversity indices between pooled protected plots and

pooled Non-Protected plots and used the average value of the indices. Pooling surveys allows

to limit the sampling “noise.” To test the robustness of observed patterns, identical clustering

methods were applied at 10 and 100 km. We chose 10, 50, and 100 km as a reasonable range to

control environmental conditions (habitat and climate).

Null models. We tested whether our observed ß-diversity values among levels of protec-

tion were larger or smaller than expected under a random assembly model. For each protected

area and for each iteration of the bootstrap, we generated 999 random species assemblages

using the curveball algorithm using nullmodel() function from vegan v2.4–2 packages [57].

This algorithm maintains species frequency and sample species richness while shuffling species

co-occurrences across surveys. In other words, this method maintains row and column totals

in a species by survey matrix while shuffling presences within that matrix. Then, we calculated

the ß-diversity expected at random. Standardized effect sizes (SES) were calculated using the

observed ß-diversity values and the mean and standard deviation of the null distributions. We
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plotted (S2 Fig) the average SES per protected area:

SES ¼
observed � meanðnullÞ

SDðnullÞ

SES values can serve as a measure of departure from a pure null expectation. Values greater

than 0 are larger than expected, whereas those smaller than 0 are less than expected. Essen-

tially, departures from 0 indicate non-randomness: Values greater than 1.96 or less than 1.96

are significantly greater or less than expected, at α = 0.05. We also derived the p-value as the

proportion of the null distribution of ß-diversity that was more extreme than the observed ß-

diversity. We combined p-values using Fisher methods [58]. P values denoted the probability

that the observed combination of ß-diversity and its partitioning components were different

from null expectation.

Disentangling the effect of protection and environmental conditions. We performed 2

complementary analyses to tease apart the effects of protection and environmental conditions

on species turnover.

Environmental dissimilarity diversity. We applied a similar approach as taxonomic beta

diversity. At each iteration, for each region, we took the minimum number of surveys done for

all selected areas. For each iteration, we computed Euclidean environmental distance using all

habitat and climate information between pooled protected surveys and pooled Non-Protected

surveys and used the average value of the distance (note that environmental variables were log

transformed). With this approach, the area of environmental conditions sampled inside and

outside protected areas is perfectly balanced. Then, we tested the link using linear regression

between species turnover and average environmental distance for each taxon and each pair of

protection levels.

dbRDA. At the scale of individual surveys, we performed a complementary explicit test of

compositional differences between different environmental conditions and protection levels

using distance-based redundancy analyses (dbRDA). dbRDA were centered on Strictly Pro-

tected areas. First, we used the extracted environmental conditions data and computed Euclid-

ean environmental distance between each pair of surveys. Then, we performed a PCoA and

extracted the first 2 axes. Second, for each Strictly Protected area, we selected all surveys inside

and outside the protected area in the buffer of 50 km. Each survey was associated with its pro-

tection level and when environmental conditions were available, 2 PCoA axes as explanatory

variables. Turnover was calculated for presence–absence matrices. Significance of the models

as well as the significance of each axis and of the marginal effect of each variable were tested

using ANOVA-like permutation tests with 9,999 permutations. Finally, we computed 2 partial

dbRDA using the Jaccard turnover distance to (i) isolate the exclusive effect of protection after

accounting for environmental conditions and (ii) isolate the exclusive effect of environmental

conditions after accounting for protection.

Supporting information

S1 Table. Information on sampling size for Strictly Protected Areas (SPA), Restricted

Areas (RA), and Non-protected Areas (NPA) for birds, reef fishes, and alpine plants.

(PDF)

S2 Table. Names and sources of datasets used in the present study.

(PDF)

S1 Fig. Result of the partial dbRDAs. Rsquare of the marginal effect of protection and habitat

to observed turnover between Strictly Protected areas surveys and surrounding surveys within
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a 50-km buffer (from non-protected areas and/or restricted areas (n = 18, 131, 5) for reef

fishes, birds, and alpine plants. Some Strictly Protected was removed because habitat was

strictly identical between surveys making impossible comparison of the relative contribution

of both protection and habitat. The raw data can be found in https://github.com/LoiseauN/

Betadiversity-protected-areas.

(PDF)

S2 Fig. Boxplot showing SES values of multiple-site beta diversities (green) and their parti-

tioning components of turnover (orange) and nestedness-resultant (blue) computed

between SPA, RA, and NPA for reef fishes, birds, and plants. Bold black dotted line indicate

0 SES, for random values. Black dotted lines indicate the α = 0.05 threshold of 1.96 SES for sig-

nificantly nonrandom values. Each data point represents a comparison between protected area

and its proximate less protected area (in a buffer of 50 km, 100 km, and 10 km). The raw data

can be found in https://github.com/LoiseauN/Betadiversity-protected-areas. NPAAU : AnabbreviationlisthasbeencompiledforthoseusedinS2Fig:Pleaseverifythatallentriesarecorrect:, Non-Pro-

tected Area; RA, Restricted Area; SES, standardized effect size; SPA, Strict Protected Area.

(PDF)

S3 Fig. Boxplots showing the multiple-site beta diversities (green) and their partitioning

components of turnover (orange) and nestedness-resultant (blue) computed between SPA,

RA, and NPA in a buffer of 100 km and 10 km. The raw data can be found in https://github.

com/LoiseauN/Betadiversity-protected-areas. NPAAU : AnabbreviationlisthasbeencompiledforthoseusedinS3Fig:Pleaseverifythatallentriesarecorrect:, Non-Protected Area; RA, Restricted Area;

SPA, Strict Protected Area.

(PDF)

S4 Fig. Boxplots showing the multiple-site beta diversities (green) and their partitioning

components of turnover (orange) and nestedness-resultant (blue) computed between SPA,

RA, and NPA when rare species (species with a number of occurrences lower than 3) are

removed. The raw data can be found in https://github.com/LoiseauN/Betadiversity-protected-

areas. NPAAU : AnabbreviationlisthasbeencompiledforthoseusedinS4Fig:Pleaseverifythatallentriesarecorrect:, Non-Protected Area; RA, Restricted Area; SPA, Strict Protected Area.

(PDF)

S5 Fig. Probability of presence of reef fishes, birds, and alpine plants species for the 3 man-

agement types—SPA, RA, and NPA without any geographical buffer and control of sam-

pling effort. CR, EN, VU, and NT species as “Imperiled”; LC as “Low risk.” Stars indicate

significance of Tukey post hoc test computed after the analysis of variance. ��� p-value < 0.01,
�� p-value< 0.05, � p-value< 0.1. The raw data can be found in https://github.com/LoiseauN/

Betadiversity-protected-areas. CRAU : AnabbreviationlisthasbeencompiledforthoseusedinS5Fig:Pleaseverifythatallentriesarecorrect:, Critically Endangered; EN, Endangered; LC, Least Con-

cern; NPA, Non-Protected Areas; NT, Near Threatened; RA, Restricted Areas; SPA, Strictly

Protected Areas; VU, Vulnerable.

(PDF)
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