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A random‑walk‑based 
epidemiological model
Andrew Chu1, Greg Huber1, Aaron McGeever1, Boris Veytsman2,3 & David Yllanes1,4*

Random walkers on a two-dimensional square lattice are used to explore the spatio-temporal growth 
of an epidemic. We have found that a simple random-walk system generates non-trivial dynamics 
compared with traditional well-mixed models. Phase diagrams characterizing the long-term behaviors 
of the epidemics are calculated numerically. The functional dependence of the basic reproductive 
number R

0
 on the model’s defining parameters reveals the role of spatial fluctuations and leads to a 

novel expression for R
0
 . Special attention is given to simulations of inter-regional transmission of the 

contagion. The scaling of the epidemic with respect to space and time scales is studied in detail in the 
critical region, which is shown to be compatible with the directed-percolation universality class.

Classic epidemiological models1,2 often assume panmictic populations: every infected person has an equal chance 
to affect any other person in the population. While these models have been successful in describing an ideal 
dynamics of epidemic spread, they do not account for inhomogeneity: an infected person has higher probability 
to transmit the disease to a member of their household3,4 or to a person in their locale. The overall reduction of 
long-distance travel due to the COVID-19 pandemic makes the latter cause of inhomogeneity especially relevant: 
many infected persons (but not all) spread the infection only in their immediate vicinity. Likewise, the local 
neighborhoods of both susceptible and infected persons are dynamic—they vary in space and time depending 
on the local state of the epidemic. These spatio-temporal inhomogeneities are studied in this paper.

Research into models of spatial epidemiology have produced a number of approaches to the limitations of 
well-mixed models5–9. These works range from exploring known social networks7 to looking at possible policy 
responses to the current pandemic5. The current paper focuses on a simple random-walk model that lends itself to 
analytical analysis, in order to explore epidemic properties that arise in the presence of simple spacial dynamics.

There are two approaches to geographical inhomogeneity: detailed analyses based on contact-tracing and 
mobility data10,11, or analyses based on stylized models4,12,13. The first approach, while potentially highly accurate, 
requires a large number of parameters and is not robust with respect to unforeseen changes in mobility patterns. 
The second approach, in contrast, requires a small number of well-defined parameters and provides a sound intui-
tion about their effects on the outcome. It is especially useful when planning interventions and policy changes, 
or investigating various “what if ” scenarios. It is the latter approach that we have taken here.

In the present paper, we treat a very simple model: a random walker (modeled on an infected person) takes τ 
steps (a positive integer) on a 2D square lattice. After each step, the visited site can become infected with prob-
ability p. In this case, at the site of the new infection, it branches off another random walker, also with lifetime τ , 
that can also further spread the contagion to further sites, and so on. We study the resulting epidemic in space 
and time.

This model depends on two parameters: τ , representing the length of time of the infectious period, and p, 
representing the infectiousness. It also depends on the “walking pattern”, which may include steps to the neigh-
boring sites or jumps to more distant locations.

Panmictic models predict that the spread of epidemics depends only on the basic reproduction number R0 , 
the number of infected persons produced by one walker in a fully susceptible population, which, in turn, can be 
estimated in the panmictic approximation as

We will refer to this estimate as the naïve approximation.
However, the random-walk model exhibits a surprisingly rich behavior, well beyond the “naïve approxima-

tion” above. We will show that the spread of the epidemics depends on the interplay between p and τ . Moreover, 
the detailed geometry of the epidemics depends on the stochasticity of individual walks and the nature of random 

(1)R0 ≈ pτ .
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walks on the plane. In subsequent sections, we describe our model in full, study its behavior using numerical 
simulations and theory, and draw conclusions for real-world epidemics.

Model
We model the geographic distribution of the population by an infinite 2D square lattice. At any given time, 
each site can be in one of three states. Although the model proposed here is fundamentally different than an 
SIR model, the same nomenclature is adopted; namely, each site in the lattice is either susceptible, infected, or 
removed. (Fig. 1). All sites are initialized as susceptible, with the exception of the origin which contains a single 
infectious agent. An infected site generates a brand new random walker, which starts to move on the lattice. If the 
walker lands on a susceptible site (sites are represented as square cells in the figure), it infects it with probability 
p. The infected site starts a new walker and itself becomes removed (no longer susceptible to infection). After τ 
steps, the walker recovers and no longer infects other sites. The label “removed” is used in the same manner as 
in well-mixed SIR models; these sites are not physically removed from the lattice but instead removed from the 
population of susceptible sites and can no longer be infected.

Thus, there are two fundamental parameters that control the outbreak: p, the probability of infection; and τ , 
the number of steps for which an infective agent (walker) is active before recovering.

Another feature of the model is the way the infectious agent chooses its next move. The model is quasilocal: 
most of the time the walker moves to one of the eight adjacent sites, but sometimes it makes a longer jump. 
Namely, if the walker is at r0 = (x0, y0) , its next location, r , is given by

with u and θ drawn from uniform distributions:

Here ⌊X⌋ is the integer part of X (the largest integer number not exceeding X), and U(a, b) is the uniform 
distribution in the interval [a, b]—the nodes of the lattice have integer coordinates, but our walkers move on 
the dual lattice, consisting of the centers of the elementary cells. This function produces a one-step walk to one 
of the eight adjacent sites approximately 66.8% of the time; 95.7% of jumps are within a distance of 2 sites. The 
random-variate generator for the jump distances r in Eq. (2) is derived from a probability density function of the 
form φ(r) = A/r4 , where the constant A is of order the lattice constant cubed a3 (in this paper, a = 1 is chosen 
throughout). Our choice of this kernel seeks a balance, allowing for discrete jumps and generating more interest-
ing dynamics than simple diffusion, while avoiding a regime dominated by long-range jumps (because we focus 
on the short-range evolution of a local outbreak, not on the dynamics caused by, e.g., long-range travel). In fact, 
the exponent of −4 corresponds to interactions of the form ∼ 1/rd+σ when d = 2, σ = 2 , a case of special interest 
in a number of early studies14,15, because it sits at the margin between long-range and short-range interactions. 
However, in the context of epidemic models, as noted by Bunde et al. 16, Grassberger12, and Hallatschek and 
Fisher13, it presents no special difficulties.

One interpretation of this model is that an infectious agent is a representative of a tight-knit population, 
household or community3,4. The susceptible communities are dense and fill the entire lattice. Each time an infec-
tion occurs, a distribution of possible further propagation in neighboring communities is generated, which we 
realize by considering a random walk by a representative infectious agent from the community. The originating 
community is then removed from the susceptible pool, although visitations are still allowed, which can be viewed 
as coming from several causes. The community could undergo lockdown/quarantine measures after the initial 
infections and no further spread occurs. Or, the epidemic burns through the community leaving only recovered 
members, so the community is no longer susceptible.

(2)r =
(

⌊x0 + r sin θ⌋ + 1
2 , ⌊y0 + r cos θ⌋ + 1

2

)

, r =
1

(3u)1/3

(3)u ∈ U(0, 1), θ ∈ U(0, 2π).
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Figure 1.   The model. (a) A walker (solid line) at some step infects a susceptible site, which generates another 
walker (dashed line). (b) The walker state diagram for each step, where p and 1− p transitions are triggered by 
infectious-susceptible interactions. (c) Histogram of jump distances of infective agents for 100,000 realizations.
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Results
Initial stages of the epidemics.  In the initial stage of the outbreak, the infected person (the index case) is 
completely surrounded by the susceptible population. The key parameter describing this state is R0 : the number 
of people infected by the index case. The value of R0 depends on p and τ in some form, but the naïve approxima-
tion, R0 ≈ pτ , must fail, as can be seen whenever the path of even a single walker self intersects; i.e., the approxi-
mation does not account for the recurrence of a two-dimensional random walker.

We ran 100, 000 realizations of the simulation, collecting how many agents were infected by the index case. 
Table 1 shows the R0 calculated for p and τ tabulated on log–log axes, an idea that will be explored further in the 
discussion of the phase diagram. Notice that R0 is slightly less than 1 for p = τ = 1 because there is a very small 
probability that the walker will not leave its starting cell. The breakdown of the naïve approximation is evident 
in the lack of constancy of R0 along the diagonals of the table, which is particularly apparent when pτ is large.

The theoretical result (see “Methods”) is

where K and τ0 are constants that depend on how the walker’s next jump is selected. For the kernel in equa-
tion (2) we have

As shown in Fig. 2, this formula is in excellent agreement with the numerical experiments without any 
adjustable parameters.

An interesting question is the interplay between the length of the walk and the jump length: what is more 
important for the epidemic’s dynamics, the length of the infectious period or the span of contacts of the infected 
individuals? As shown in the “Methods” section, the coefficients in equation (4) scale as K ∝ c−1 , τ0 ∝ c−1 , where 
c is the coefficient of the Fourier expansion of the structure factor. The dimension of c is squared length, so we can 
write down c ∝ ℓ2 , where ℓ is the average jump length, or, in other words, the spread of contacts for an average 
individual. Equation (4) shows that for small infectivity p the result does not depend on ℓ . However, for large p, 
when Kp ln(τ/τ0) ≫ 1 , the number R0 depends on τℓ2 , i.e., the number of persons infected by a single individual 
scales as the square of the jump length (and linearly with the number of jumps). This conclusion might inform 
the policies for outbreak suppression and the details of stay-at-home orders.

Outbreak progression and phase diagrams.  The progression of the outbreak beyond the initial stage 
is illustrated by Fig. 3. Depending on the parameters, the outbreak may die out or spread indefinitely, and it is a 
natural starting point to describe this dependence by a phase diagram.

Phase diagrams are used in physics and related fields as a visualization of how pressure and temperature (or 
other thermodynamic variables) affect the bulk thermodynamic state of a substance. Here, each point in the 
phase diagram will describe the expected behavior of an epidemic with the given p and τ inputs (i.e., how likely 
it is to die out after a certain amount of time has passed).

For each (p, τ) pair we launched many simulations and used to define the phase of an infection by the follow-
ing metric [see Supplemental Material (SM) for details]:

(4)R0 =
pτ

1+ Kp ln(τ/τ0)
,

(5)K ≈ 0.174, τ0 ≈ 2.19.
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Figure 2.   The prediction for R0 and simulation data. Left panel: actual R(simulated)
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The plot of this phase variable is shown in Fig. 4. The determination of the phase boundary allows us to 
predict the behavior of the system in the regions above or below the boundary, even in the absence of extensive 
simulations. For each horizontal cross-section of the phase diagram (corresponding to a 1D phase diagram for a 
fixed value of τ ), we have fitted the phase variable as a function of p to a smooth interpolating function in order 
to find the location of the phase boundary, defined as the point where the phase variable is 0.5. The resulting 
phase boundary is well approximated by a hyperbola in the p, τ plane. In particular, a least-squares fit gives the 
curve pboundary ≈ 2.0τ−1.1

boundary.

(6)phase variable =
number of realizations that die out

total number of realizations
.

τ = 122, p = 1/64

R = 1.870

τ = 16, p = 1/8

R = 1.870

τ = 2, p = 1
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Figure 3.   Progression of the outbreak. Red sites are infective agents, white are removed and black are 
susceptible. Blue sites are not technically part of the SIR categories but represent susceptible sites which have 
been previously visited (but not infected). This fourth color brings attention to the pockets of susceptibles left in 
the wake of the infection. Note that the model exhibits very different behavior for combinations of τ and p with 
almost identical R0 , demonstrating that R0 is not always an accurate characterization of the overall behavior of 
an outbreak. For example, the outbreak in the bottom row grew much more rapidly in the earlier time steps, but 
by the final time step, the outbreak in the middle row had a much larger population of active infective agents. 
Nonetheless, the cumulative number of infections is much higher in the former.The outbreak shown in the top 
row is clearly of much smaller magnitude despite having the same R0 . The boxes are 300× 300 sites.

Table 1.   R0 values calculated over 2,500,000 realizations. The numbers in parenthesis are the standard error in 
the last digits. R0 values which lie in the regime of indefinite spreading are bolded.

τ p = 1 p = 1/2 p = 1/4 p = 1/8 p = 1/16 p = 1/32 p = 1/64

1 0.99927 (2) 0.4997 (3) 0.2498 (3) 0.1252 (2) 0.0627 (2) 0.03130 (11) 0.01577 (8)

2 1.8614 (2) 0.9307 (4) 0.4658 (4) 0.2339 (3) 0.1171 (2) 0.0583 (2) 0.02896 (11)

3 2.67771 (0) 1.37355 (0) 0.69514 (0) 0.34982 (0) 0.17546 (0) 0.08794 (0) 0.044 (0)

4 3.4590 (4) 1.8042 (6) 0.9211 (5) 0.4658 (4) 0.2339(3) 0.1171(2) 0.0586(2)

5 4.21565 (0) 2.23352 (0) 1.14976 (0) 0.58241 (0) 0.29344 (0) 0.14692 (0) 0.0736 (0)

8 6.3862 (7) 3.4885 (8) 1.8251 (7) 0.9334 (6) 0.4723 (4) 0.2375 (3) 0.1189 (2)

10 7.77848 (0) 4.30866 (0) 2.27345 (0) 1.16819 (0) 0.59184 (0) 0.29747 (0) 0.14961 (0)

16 11.7767 (13) 6.7137 (11) 3.6020 (10) 1.8686 (8) 0.9512 (6) 0.4802 (4) 0.2414 (3)

32 21.725 (2) 12.8762 (16) 7.0810 (14) 3.7223 (11) 1.910 (8) 0.9677 (6) 0.4870 (4)

64 40.214 (3) 24.643 (2) 13.8614 (19) 7.3885 (15) 3.8184 (12) 1.9432 (9) 0.9793 (6)

128 74.711 (6) 47.143 (3) 27.092 (2) 14.629 (2) 7.6183 (16) 3.8883 (12) 1.9663 (9)
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It is customary in epidemiology2 to predict the progression of epidemics based on the value of R0 . Accord-
ingly, on Fig. 4 “iso-R0 ” lines were overlaid on the phase diagram: each point on an iso-R0 line has p and τ values 
which produce outbreaks with a common R0 . As expected, the phase boundary indeed coincides with an iso-R0 
line, having R0 ≈ 1.39 (not R0 = 1 , because of the role of statistical fluctuations). As shown in the “Methods” 
section, this finding corresponds to a robust theoretical prediction. Hence, while two outbreaks with the same 
R0 can have very different spatial spread (see Fig. 3), R0 is still a useful variable to predict whether an epidemic 
will die out or keep growing.

Outbreaks across regional boundaries.  In order to complement the mapping out of the phase diagram, 
the random-walk outbreak model was also used to simulate real-world infectious dynamics. In this section, the 
effects of having multiple regions with separate p values (representing adjacent states or provinces with different 
distancing or shelter-in-place policies) is explored. The spatial aspect of this scenario is simplified to two infinite 
half-planes with distinct p values.

Most notably, the random-walk model corroborates the hypothesis that it is possible for an infection to grow 
very slowly (constantly on the brink of completely dying out) until it eventually reaches a region with a higher 
value of p, upon which it exhibits rapid growth. This is demonstrated in Fig. 5. Moreover, there is also a significant 
backflow of infectors returning from the high-p region to the original low-p region.

The initial states of epidemics near a regional boundary can be described by the following model. Consider 
two regions separated by a linear boundary with the infection probabilities p1 and p2 correspondingly. Suppose 
a random walker starts near the border, and its walk is not affected by the border itself (e.g., no checkpoints on 
boundary). Then the ratio of the numbers of infected persons in regions 2 and 1 is (see “Methods”):

where K and τ0 are the same as in equation (4). For short walks ( K max(p1, p2) ln(τ/τ0) ≪ 1 ) this expression 
becomes p2/p1 , which corresponds to the “naïve” idea that the outbreak sizes in each region are proportional 
to p. However for long walks when K min(p1, p2) ln(τ/τ0) dominates, the ratio becomes 1, which means when 
the infection period is long enough, the infected agent revisits their contacts many times, hence the number of 
secondary infections no longer depends on the probability to infect during one meeting.

(7)
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Figure 4.   Phase diagram in log-log scale, including iso-R0 lines. The heatmap scale shows the phase variable of 
Eq. (6), namely, the fraction of realizations where the outbreak dies out. While a continuous red-orange color 
scale is used to plot the phase variable, the phase diagram appears as essentially a binary plot of two colors. This 
behavior reflects the sharp transition.

Figure 5.   Simulation of an outbreak spanning two regions with distinct p values. The border between the two 
regions is located at the green y = 100 line and the infection originates at the center of the grid. Once crossing 
the boundary to the upper region, the infection explodes. For y ≤ 100 , p = 0.1 and for y > 100 , p = 0.3 . This 
illustrates a stark example of the effects of an infection re-igniting upon crossing a regional border. The boxes are 
150× 150 sites.
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Spatial characteristics and scaling of the outbreak.  In our spatial model, we can also study the 
growth and geometry of the affected area and, in particular, its scaling in the critical region. To this end, we can 
consider in more detail one cross-section of the phase boundary of Fig. 4. Fixing τ = 50 , according to Eq. (4) 
the critical value of p is pc ≈ 0.0283 . We are interested in the behavior in the region of indefinite growth as we 
approach this limit, so we have carried out simulations for p = 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06 (if we go 
below p = 0.03 too many runs die out, the statistics grows noisier and it takes too long to reach the asymptotic 
regime). For each p we followed 500 independent runs up to t = 1500 steps. The SM includes a collection of 
snapshots from these simulations for several values of p.

The first quantity that we can study is the growth of the number R of removed/recovered sites as a function 
of time. As expected, all of our simulations are in the indefinite-growth regime (see  for lower values of p, where 
R plateaus as the epidemic dies out). The behavior with time seems to approach a power law, but is difficult to 
analyze. We can, however, make use of the spatial nature of our model to find a more appropriate scaling variable. 
Indeed, a simple and intuitive spatial observable is the radius of gyration Rg of the cluster of removed sites. If ri 
is the position of the i-th removed site, then

As we can see in Fig. 6, in terms of this variable the growth of R rapidly approaches a power law. Moreover, the 
curves for all our values of p collapse. Performing a joint fit of all the points to R ∝ R

c
g for Rg ≥ 20 , we obtain 

c = 2.04(2) with a goodness-of-fit metric of χ2/d.o.f. = 12.27/30 , where d.o.f. = number of degrees of freedom. 
In other words, despite the low value of p, the number of infected sites scales as a volume (i.e., a large proportion 
of sites get infected, see SM for a direct measure of this attack rate), so the clusters are not space-filling fractals. 
The infection clusters could be further characterized by analyzing the scaling of the number S of surface sites. A 
site is on the surface if it (a) belongs to the connected cluster of removed sites growing from the origin and (b) at 
least one of its nearest neighbors is susceptible. Surface estimations are, however, noisy and possibly affected by 
stronger scaling corrections. Indeed, in this case only the curves for 0.03 ≤ p ≤ 0.04 (those closest to the critical 
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Figure 6.   Spatial growth of the outbreak with time. (a) Total number of removed sites (total epidemic size) as 
a function of time in a log-log scale. (b) Same quantity as a function of the radius of gyration. The inset shows 
a closeup to appreciate the power-law fit. (c) Normalized spatial autocorrelation of the set of removed sites, ρ 
in Eq. (9), for p = 0.05 . (d) Spatial autocorrelation in semi-log scale as a function of r/Rg . Again, using Rg as 
scaling variable leads to an enveloping curve.
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point) collapse, yielding an exponent cS = 1.92(5) , with χ2/d.o.f. = 8.25/8 (see SM for figures). This exponent 
is not significantly different from cS = 2 , which would correspond to a linearly widening surface layer, but in 
any case its value is not precise enough to determine the universality class of the problem. Indeed, as we show 
in the next section, S is not the most appropriate observable for such a determination.

Finally, we can characterize the shape of the outbreak by studying its spatial autocorrelation function. For all 
the sites in the lattice, we define a function g(x) that is 1 if the site is removed and 0 otherwise. Then

We have plotted ρ for p = 0.05 in panels (c) and (d) of Fig. 6 (see other p in the SM). Measuring the distance 
in units of Rg again leads to an enveloping curve as time grows, confirming that this is an appropriate length 
scale for the system.

Notice that our approximately quadratic growth of R with Rg translates into a power-law, rather than expo-
nential, incidence of the epidemic in time, as observed in recent works17–19 ( Rg itself approaches a power law in 
time with an exponent close to 1, see SM).

Universality class of the problem and directed percolation.  A natural conjecture regarding a 
random, d-dimensional branching process with an absorbing state (recovered/removed) is that it falls into 
the (d + 1)-dimensional directed-percolation universality class. If this is the case, scaling at the critical point 
between finite and indefinite growth is described by three independent exponents: β , ν⊥ and ν‖ . For d = 2 , we 
have β = 0.583(3) , ν⊥ = 0.733(8) and ν� = 1.295(6)20,21.

In the scaling regime, the size (mass or number of sites) of the growing space-time cluster on transverse 
(two-dimensional) length scale ℓ⊥ and longitudinal (time) scale ℓ‖ is given by

where ǫ is the distance from criticality in the control parameter. Eq. (10) assumes that lengths scale like the cor-
responding correlation lengths along the different axes, e.g., ℓ⊥ ∼ ǫ−ν⊥22,23.

Expressing the total space-time size of the epidemic in terms of the transverse-space scale only yields

This is not, however, the scaling within a space-like slice (i.e., the clusters we analyzed in the previous sec-
tion). One way to find that spatial scaling is to treat the exponent in Eq. (11) as a fractal dimension and intersect 
the epidemic’s space-time history with a transverse slice. The intersection set will scale with the transverse scale 
ℓ⊥ with exponent

For (2+ 1)-dimensional directed percolation we obtain d∩ = 1.20(1) . In other words, the number of active 
sites at fixed time should scale like Nactive ∼ ℓ1.20 as a function of a typical spatial scale ℓ . Translating this analy-
sis back into the language of epidemiology, the analogy with directed percolation predicts that the number of 
infected individuals I in a cluster of radius of gyration Rg,I scales as I ∼ R

1.20
g,I  —a law that is measurably different 

from the Euclidean picture of a compact cluster with an active boundary of radius Rg,I.
We have tested this theory in Fig. 7, by plotting the total number of currently infected sites as a function of 

the radius of gyration of this set. In this case, unlike for the number R of removed sites, the curves for different 

(9)C(r) = �g(x)g(x + r)�, ρ(r) = C(r)/C(0).

(10)M ∼ ǫβℓ�ℓ
d
⊥ ∼ ǫβ−dν⊥−ν� ,

(11)M ∼ ℓ
d−β/ν⊥+ν�/ν⊥
⊥ .

(12)M ∼ ℓ
d∩
⊥ , d∩ = d − β/ν⊥ + ν�/ν⊥ + d − (d + ν�/ν⊥) = d − β/ν⊥.
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Figure 7.   Growth of the number of currently infected sites, against time (left) and against the radius of gyration 
of the set (right). In this case the curves for different p do not collapse, but the curves approach a power law 
I ∝ R

d∩
g,I with d∩ = 1.18(5) , see Eq. (12). This exponent is compatible with the directed-percolation universality 

class. The inset shows a closeup of the fits for p = 0.03, 0.035, 0.04.
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p do not collapse. In the critical region of 0.03 ≤ p ≤ 0.04 , however, we can compute fits to I ∝ R
d∩
g,I . Averaging 

the resulting values of the exponent, we obtain d∩ = 1.18(5) , compatible with the above prediction and clearly 
different from the mean-field prediction of d∩ = 1.

Discussion
We see that a simple lattice model provides a number of interesting insights about epidemic spread. One of the 
most useful features of idealized models like this one is that they provide an understanding of which factors are 
salient for the outcome, and which are not. This understanding can be used in the construction of more detailed 
and realistic models, in the same way that a pencil sketch is useful when starting a full-size oil painting.

One of the most important questions when studying epidemics is whether the value of R0 is sufficient to 
describe the epidemics behavior, or whether a detailed analysis of the contact network is necessary. Our model 
shows that the answer depends on what aspect of the epidemic is interrogated. The spatial features of the out-
break are not determined by R0 alone, but depend on the individual infectivity and the number of individual 
contacts separately. In contrast, the phase boundary between infinite spread and localization of the epidemic is 
still determined by R0.

We provide the dependence of R0 on the easily interpretable and intuitively clear parameters: the average 
number of steps per infected person, the probability to infect another person, the average length of a step. This 
information can be used to form policy decisions. For example, we find that the step length is important if the 
probability to infect is high enough (above we give the estimate Kp ln(τ/τ0) ≫ 1 for the threshold value of p). 
This is relevant to the travel restriction, especially as more contagious strains are discovered.

Finally, we have studied the scaling of our outbreaks in terms of space and length scales in the critical region 
between the extinction and the indefinite spreading regime. By analyzing the fractal nature of the growing clus-
ter, we make a quantitative connection to the problem of directed percolation, whose universality class seems 
to rule our critical regime.

A significant idealization in our model is the motion of the infective agents: the random walkers can go 
anywhere on the lattice and do not have a memory of their origins. In real life, people tend to have permanent 
residences and return there daily. These periodic movements would work to make the outbreaks even more local-
ized than those in our model. Introducing more realistic walking patterns is, therefore, a compelling direction 
for future work. Another interesting possibility would be to use the end state of one simulation, with a lattice 
including both removed and still susceptible sites, as the initial condition to simulate the effect of subsequent 
epidemic waves. Such a numerical experiment has a direct bearing on the question of thresholds to herd immu-
nity in a fully spatial model, a topic that has received scant attention.

Methods
Effect of fluctuations on phase diagram.  The phase boundary introduced above separates the cases 
where an outbreak dies out from those where it spreads indefinitely. Let P0 be the probability that the outbreak 
dies out given one index case. We assume that the number of people infected by the index case has a Poisson 
distribution with mean R0 . The meaning of R0 is thus the same as in classical epidemiology: the number of peo-
ple infected by the index case in a naïve population2. The probability that the number of secondary infections is 
zero, and that the outbreak dies out immediately, is exp(−R0) . The probability that the index case infects exactly 
n persons is exp(−R0)R

n
0/n! If the index case infected n persons, the epidemic dies out only if each secondary 

outbreak caused by each of these n persons dies out. The probability of such an event P1 is, strictly speaking, dif-
ferent from P0 since the secondary infections operate in a different environment than the index case. However, 
we neglect this and stipulate that P1 ≈ P0 . The probability that n secondary outbreaks die out is therefore Pn0 . 
Then we can write down

At 0 ≤ R0 ≤ 1 the only solution for this equation is P0 = 1 . This means that at R0 ≤ 1 the epidemics is always 
localized. At R0 > 1 Eq. (13) gets a solution between 0 and 1. If we draw the phase boundary at the point where 
exactly 50% of outbreaks survive, then the critical value of R0 is R0 = 1.39 . This agrees extremely well with Fig. 4.

If we have N index cases, the probability that the epidemic is localized is, to first approximation, PN0  . At 
large N this probability quickly approaches zero, for R0 > 1 . It is important to note that the phase boundary, 
unlike the other features of the epidemic, depends only on R0 . Note that this derivation does not use the lattice 
approximation and thus should be valid for a wide class of models. The only crucial assumption for the derivation 
is that the environment for the secondary infections is the same as for the index case. This assumption is true 
for well-mixed models and becomes less good in the case of high spatial inhomogeneity around the index case.

Asymptotics for R
0
.  In this section, we derive a theoretical estimate for R0 : the number of infections pro-

duced by one random walker in a susceptible population. We use ideas similar to those in24–26.
Let us consider a walker that starts at the point x . Let C(τ ,m, x,w, y) be the probability for this walker to end 

up at the point y after making τ steps, while visiting the point w exactly m times. The probability that the walker 
does not infect the site w during this trip is (1− p)m , since the probability to infect at each visit is p. Summing 
over w , y and m, we get the total number of infected sites as

(13)P0 = exp(−R0)+
∞
∑

n=1

exp(−R0)
Rn
0P

n
0

n!
= exp

(

−R0(1− P0)
)

.
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where

This function is (up to a normalization) the generating function introduced in Rudnick and Gaspari26 [Sec-
tion 3.2]. To calculate it, we introduce a transformation similar to the transition from the canonical ensemble 
to the grand canonical ensemble in statistical physics. Namely, let us take a complex variable z and write down 
the series:

The inverse transformation is

where the complex integral is taken around the point z = 0 . As we shall see below, the value of this integral is 
defined by the singularity of H at z → 1.

Let P(τ , x, y) be the probability for a random walker starting at the point x to end at the point y . We introduce 
two functions

A remarkable theorem26 [Sect. 3.3] states that function H can be expressed through the functions G and G1:

Integration of G over y and w is easy due to the normalization. The only nontrivial contribution is from 
the function G1 in the denominator of this expression. In two dimensions, this function can be expressed as26 
[Sect. 3.5]

where χ(q) is the structure factor, i.e. the Fourier transform of the jump probability function. More precisely, 
let p(x) be the probability for the walker to go from the point 0 to the point y in one step. We then define the 
structure factor χ(q) as

At small q, we can expand the structure factor as

which gives near the singularity z → 1

Here q0 ≈ 1 is the upper limit in the integral (20) (assuming the lattice constant to be 1). Using these asymp-
totics, and integrating Eqs. (14), (17), and (19), we get Eq. (4) with

Note that we use a different normalization from the one used in the Rudnick and Gaspari26: they count the 
number of random walks, whereas we count the probability. This means that the singularities of the functions 
H, G and G1 are at z = 1 instead of z = zc , and that χ(0) = 1.

The coefficients K and τ0 depend only on the structure factor χ . To calculate these two, let us generate a large 
number N of jumps according to Eqs. (2) and (3). Let us take q along the x axis. If jump number i lands at the 
point ri = (xi , yi) , then it contributes the term

(14)R0 =
�

w



1−
�

y

C′(τ , p, x,w, y)



 =
�

y

�

1−
�

w

C′(τ , p, x,w, y)

�

,

(15)C′(τ , p, x,w, y) =
∞
∑

m=0

(1− p)mC(τ ,m, x,w, y).

(16)H(z, p, x,w, y) =
∞
∑

τ=0

zτC′(τ , p, x,w, y).

(17)C′(τ , p, x,w, y) =
1

2π i

∮

H(z, p, x,w, y)

zτ+1
dz,

(18)G(z, x, y) =
∞
∑

τ=0

zτP(τ , x, y), G1(z, x, y) =
∞
∑

τ=1

zτP(τ , x, y).

(19)H(z, p, x,w, y) = G(z, x, y)−
G(z, x,w)G(z,w, y)

1+ pG1(z,w,w)
.

(20)G1(z,w,w) =
1

(2π)2

∫

dq

1− zχ(q)
− 1,

(21)χ(q) =
∑

x

p(x)eixq .

(22)χ(q) = 1− cq2 +O(q4),

(23)G1(z,w,w) ≈
1

4πc
ln

cq20
1− z

.

(24)K =
1

4πc
, τ0 ≈

1

c
.
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to χ . Due to symmetry, the contribution of the second term is zero, and we arrive at

In our experiments, we generate N = 106 points, which gives c ≈ 0.458 , and the resulting values of K and 
τ0 in Eq. (5).

R
0
 in inhomogeneous case.  The method described in the previous section can be easily generalized for 

the case when the probability of infection p is different for different sites. Indeed, in Eq. (15) C′ depends only 
on the value pw in the point w . Therefore we can take the expressions for C from that section, calculate C′ , and 
obtain R0 by integration in Eq. (14). Let us consider two semi-infinite regions separated by a linear border with 
the probabilities of infection p1 and p2 . Suppose a walker starts in the first region at the distance d from the bor-
der. Then integration in Eq. (14) gives

At d ≪ c2τ 2 we get Eq. (7).

Data availability
Code and data for figures and tables can be found at https://​github.​com/​czbio​hub/​random-​walk-​epide​mic-​model.
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