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Abstract
Objective This proof-of-principle study integrates joint reaction forces (JRFs) and bone shape to assess acute cartilage 
changes from walking and cycling.
Methods Sixteen women with symptomatic knee osteoarthritis were recruited. Biomechanical assessment estimated JRFs 
during walking and cycling. Subsamples had magnetic resonance imaging (MRI) performed before and after a 25-min walk-
ing (n = 7) and/or cycling (n = 9) activity. MRI scans were obtained to assess cartilage shape and composition (T2 relaxation 
time). Bone shape was quantified using a statistical shape model built from 13 local participants and 100 MRI scans from 
the Osteoarthritis Initiative. Statistical parametric mapping quantified cartilage change and correlations between cartilage 
change with JRFs and statistical shape model features.
Results Cartilage thickness (interior lateral, Δ − 0.10 mm) and T2 (medial, Δ − 4 ms) decreased on the tibial plateau. On 
the femur, T2 change depended on the activity. Greater tibiofemoral JRF was associated with more cartilage deformation on 
the lateral femoral trochlea after walking (r − 0.56). Knees more consistent with osteoarthritis showed smaller decreases in 
tibial cartilage thickness.
Discussion Walking and cycling caused distinct patterns of cartilage deformation, which depended on knee JRFs and bone 
morphology. For the first time, these results show that cartilage deformation is dependent on bone shapes and JRFs in vivo.

Keywords Biomechanical phenomena · Statistics · Cartilage · Articular · Osteoarthritis · Aerobic exercise

Introduction

Relationships between joint mechanics and cartilage tissue 
characteristics vary across the osteoarthritis (OA) disease 
spectrum [1]. In healthy joints, larger loads [2–4] and greater 
cartilage surface pressures [5] are related to greater cartilage 
thickness and quality (denser proteoglycans), suggesting 
healthy adaptation to loading. Cartilage quality or compo-
sition is typically measured using magnetic resonance (MR) 
relaxometry; of particular interest are T2 and T1ρ relaxation 
times. In cartilage, T2 is related to free-water content and 
collagen fibre alignment, whereas T1ρ is less specific but 
has been related to cartilage proteoglycan content [6, 7]. 
In early OA, there is little to no correlation between joint 
loads and cartilage thickness [8–10]. In late OA, there is a 
negative correlation between loading and cartilage thick-
ness, suggesting loading may cause cartilage damage [9, 11]. 
While there is a plethora of research relating cross-sectional 
cartilage morphology and composition with joint mechanics, 
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we are aware of only three experimental studies investigating 
cartilage deformation and joint mechanics [12–14], all of 
which examined healthy young adults. Thus, it is unclear if 
and how joint mechanics affect cartilage deformation in dif-
ferent stages of the disease course and how these mechanics 
may affect disease initiation and progression.

Bone shape is critical for understanding and character-
izing OA, with Kellgren and Lawrence first using features 
of bone shape to diagnose OA from radiographs [15]. 
Three-dimensional bone shape, obtained from statistical 
shape models, has become a promising OA biomarker that 
is fundamental in understanding joint health and structural 
degeneration [16, 17]. For example, Neogi and colleagues 
predicted radiographic knee OA progression using Statistical 
Shape Models (SSM); OA was characterized by a widen-
ing and flattening of the medial joint surface areas, with a 
ridge of osteophytic growth around the cartilage plate [18]. 
Pedoia and colleagues found that bone shape features distin-
guish between an anterior cruciate ligament (ACL)-injury 
and a control group, showing that the injury group had a 
narrower intercondylar notch [19]. Furthermore, the tibial 
plateau size, the relative heights of the tibial eminences, and 
the concavity of the lateral patellar facet, are systematically 
different between high-knee impact (basketball) and non-
knee impact (swimming) collegiate athletes [20]. Given that 
bone shape features have been able to distinguish between 
OA and control knees in a general population, in a post-
traumatic ACL-injury model, and in distinct athlete groups, 
these bone-shape features may be able to provide insights 
into varying patterns of structural joint wear and degenera-
tion. Nonetheless, no research to-date has directly assessed 
how bone shape is related to cross-sectional cartilage health 
or in vivo cartilage deformation.

Computational biomechanical studies show that bone 
shape affects cartilage surface pressures during gait [21]. 
Clouthier and colleagues showed that changing bone shape 
along the principal components of a statistical shape model 
leads to considerable changes in the peak surface pres-
sures as well as the locations of the peak pressures [21]. 
For example, changing bone shape from − 3 to + 3 stand-
ard deviations along the third principal component of their 
shape model reduced overall surface pressures and shifted 
the location of the peak tibial cartilage surface pressure dur-
ing gait from the medial to the lateral plateau. Interestingly, 
this third principal component showed a wider and flatter 
medial tibial plateau, which was indicative of knee OA in the 
Neogi et al. [18] model. Together, the Neogi and Clouthier 
findings contribute to a hypothetical mechanical pathway 
of cartilage degeneration that highlights how bone shape 
may relate with, perhaps even predict, distinct patterns in 
OA disease, such as medial versus lateral tibiofemoral OA. 
However, in vivo research into the effect of bone shape on 
cartilage deformation is required to validate these findings.

This proof-of-principle study integrates biomechanics, 
statistical shape models, and cartilage outcomes (cartilage 
thickness and T2) in an experimental study of joint tissues 
and mechanical loading in vivo. In women with sympto-
matic knee OA, the primary objectives were to determine 
(1) whether cartilage thickness and T2 changed after activity; 
and (2) whether changes in cartilage thickness and T2 cor-
relate with joint reaction forces. We also conducted explora-
tory analyses of bone shape as it relates with cartilage and 
joint reaction forces to identify (3) whether bone shape fea-
tures correlate with changes in cartilage thickness and T2; 
and (4) relationships between tibiofemoral and patellofemo-
ral joint reaction forces from gait with bone shape features. 
We hypothesized that (1) cartilage thickness and T2 would 
decrease in the medial and lateral tibia, the weight-bearing 
regions of the femur, and the trochlea; and (2) absolute tibi-
ofemoral and patellofemoral joint reaction forces would be 
inversely related to cartilage change in these same regions. 
Due to the lack of a priori knowledge of the statistical shape 
model features, objectives 3 and 4 were exploratory and no 
specific hypotheses were proposed.

Materials and methods

This study was approved by the Hamilton Integrated 
Research Ethics Board and the Office of Research Ethics 
at the University of Waterloo. Participants provided writ-
ten, informed consent. An overview of the study data and 
analyses are provided in Fig. 1.

Participants

We recruited sixteen women > 50 years of age with symp-
tomatic knee OA, according to the American College of 
Rheumatology criteria [22], and Lower Extremity Func-
tional Scale (LEFS) scores between 30 and 71 [23]. Exclu-
sion included any of: rheumatoid arthritis, gout, unstable 
angina, acute lower-limb injury in the preceding 3-months, 
and contraindications to MRI. The Get Active Question-
naire (GAQ) was used to screen that exercise was safe [24]. 
Descriptive statistics included age, height, body mass, body 
mass index, inseam, 25 min walking speed, cycling cadence 
and power output, and LEFS scores.

Visits

This experimental study included three visits: one for bio-
mechanical analyses and two to obtain MRI scans immedi-
ately before and after cycling and walking. MRI visits were 
scheduled in pseudo-random order.
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Biomechanics visit

The biomechanics visit included four steps: First, 
we standardized walking speed to a Froude num-
ber (Fr) of 0.25, which produces ~ 3% cartilage strain 
after 25  min of walking [25]. The Fr, a unitless sca-
lar, normalizes walking speed to leg length where 
walkingspeed =

√

(Fr)(leglength; m)(gravity; 9.81m∕s2)  . 
Participants completed a 100 m walk at their fastest self-
selected speed. If their fastest speed was below the Fr-
defined speed, the lower speed was used. Second, bicy-
cle-fit using an inseam-based equation and handlebars set 
based on rider preference [26, 27] was determined. Third, 

an incremental cycling protocol [28] to determine moder-
ate cycling intensity (i.e., steady-state heart rate between 
70–75% of age-predicted maximum (208–0.7*Age) [26, 29]) 
was completed. Last, synchronous motion and force data 
were collected during gait trials and cycling bouts performed 
using the intensities and bicycle-fit determined from these 
protocols.

Magnetic resonance imaging (MRI) visits

Visits two and three required participants to arrive at 8 am 
and rest, laying supine, for 30 min [14]. Then, participants 
underwent pre-activity scanning, followed by a 25 min 

Fig. 1  Overview of the data and statistical analyses conducted in this 
study. Abbreviations: 3D, three-dimensional; DESS, dual echo in the 
steady state; fSPGR, fast spoiled gradient recalled; JRF, joint reac-
tion force; KL, Kellgren Lawrence; MESE, multi-echo spin echo; 

OAI, Osteoarthritis Initiative; PC, principal component; ROI, region 
of interest; SVD, singular value decomposition; T2, transverse relaxa-
tion time
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activity (walking or cycling) and finally post-activity 
MRI scans. The treadmill and stationary bike were in the 
room directly adjacent to the MRI scanner, enabling fast 
and accurate repositioning on the scanner table immedi-
ately after activity cessation. Thus, post activity scanning 
was started ~ 5-min after activity cessation, thereby limit-
ing recovery of tissues before post exercise imaging [30]. 
Activities were performed at the intensities determined at 
the biomechanics visit.

Patellofemoral and tibiofemoral joint reaction 
forces

Joint reaction forces were modeled from kinematic and 
kinetic data collected during walking and cycling at the 
biomechanics visit. Participants wore 40 markers attached 
to anatomical locations (Supplemental 1). Marker data were 
collected at 112.5 Hz (Motion Analysis Corporation, Santa 
Rosa, CA). During walking, synchronous force plate data 
were collected at 1125 Hz (OR6-7, AMTI, MA, USA). Dur-
ing cycling, synchronous three-dimensional pedal forces and 
moments were collected at 450 Hz (Science To Practice, 
Ljubljana, Slovenia). Marker positions and kinetic data were 
filtered using a second-order low-pass dual-pass Butterworth 
filter with a cut-off frequency of 6 Hz. Motion and force data 
were processed as previously published [26].

Functional knee joint centres were fit from cycling data 
[31]. Hip joint centres were determined using the Harrington 
method [32]. A 16 degrees-of-freedom lower-body model 
with 86 musculotendon actuators was scaled with OpenSim 
3.2 [33]. Joint kinematics and dynamics were calculated 
using inverse methods [33]. Static optimization with mus-
cle weightings validated using in vivo joint reaction forces 
[26, 34] was used. Using the OpenSim Joint Reaction Tool, 
the patellofemoral joint reaction force was calculated as the 
sagittal plane resultant force, and the tibiofemoral joint reac-
tion force as the compressive component of the tibiofemoral 
joint reaction force defined along the long axis of the tibia 
[34]. Reaction forces were extracted using all revolutions 
from the last minute of each cycling bout and 5 gait trials 
[35]. Data were divided into individual pedal revolutions or 
stance phases to generate median ensemble curves for each 
reaction force and activity; the absolute peak joint reaction 
force was extracted from each ensemble.

Magnetic resonance imaging data acquisition 
and analysis

MR images were acquired using a dedicated quadrature 
transmit and 16-channel receive knee coil array (Invivo 
Corp) in a 3-Tesla GE Discovery MR750 (GE Health-
care). Two sequences were collected before and after 
activity. Following a 3-plane localizer scan a commercial 

sagittal multi-echo spin echo (MESE) sequence (Car-
tiGram; GE Healthcare) was acquired for T2 mapping 
[14] (relaxation time (TR) 2450 ms, 8 echo times (TE) 
at multiples of 6.312 ms, flip angle 90°, in-plane reso-
lution 0.625 × 0.625  mm, slice thickness 3  mm, slice 
spacing 1 mm, field-of-view 16 cm, receiver bandwidth, 
488.28 Hz/pixel). All echoes were used in the T2 fit; the 
Cartigram sequence uses a crusher gradient to reduce the 
effect of stimulated echoes (GE Healthcare). For segmen-
tation, a 3D fat-saturated T1-weighted sagittal fast spoiled 
gradient recalled (fSPGR) sequence was acquired (TR 
17.388 ms, TE 5.832 ms, flip angle 18º, in-plane resolution 
0.3125 × 0.3125 mm, slice thickness 1 mm, slice spacing 
0 mm, field-of-view 16 cm, receiver bandwidth 122.07 Hz/
pixel). Pre-activity, the fSPGR scan was collected first and 
the MESE second. Post-activity, the MESE was acquired 
first. This order of acquisition was used to minimize recov-
ery of T2 post activity.

Calculation of cartilage thickness and T2

fSPGR images were segmented using a convolutional neural 
network (CNN) [36], then manually checked [37]. The CNN 
segmentation algorithm had a Dice similarity coefficient 
of 0.88–0.91 when compared to expert manual segmenta-
tions for the tibial and femoral cartilage of participants with 
osteoarthritis [36]. Bone and cartilage surfaces were cre-
ated by applying a Gaussian filter to the binary mask from 
each tissue (bone σ2 = 1.0 mm, cartilage σ2 = 0.625 mm) 
followed by surface extraction using the Marching Cubes 
algorithm [38, 39]. Bone surfaces were resampled to have 
10,000 vertices using Voronoi clustering [40, 41]. Cartilage 
thickness was calculated for each bone vertex by project-
ing vectors normal to the surface and calculating the 3D 
Euclidean distance from the bone to articular surface. Using 
these methods, unpublished data on the reliability of carti-
lage thickness measurements determined on repeated MRI 
scans over 2 years from 94 individuals with Kellgren-Law-
rence grade 0 knees had a standard error of measurement of 
0.05–0.08 mm for mean tibial and weight-bearing femoral 
cartilage regions of interest; these are comparable to reliabil-
ity of expert manual methods and other deep learning-based 
predictions [42]. T2 maps were created by fitting a mono-
exponential decay curve (Eq. 1) to the signal intensities (SI) 
collected at the 8 TEs using a Levenberg–Marquardt algo-
rithm, where the intercept is equivalent to the mobile proton 
density (PD) [14]. T2 map post-processing excluded voxels 
with T2 > 100 ms, and  R2 < 0.7 [14]. Furthermore, T2 values 
were assigned to the bone meshes by projecting vectors nor-
mal to the surface. When vectors intersected cartilage, all T2 
cartilage voxels along the vector were averaged and assigned 
to the vertex [43].
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Statistical shape modelling

The statistical shape model was built using scans acquired 
from 113 women. Of these, 13 scans were from the women 
we recruited that completed MRI visits in the current experi-
ment, and 100 were from the Osteoarthritis Initiative (OAI) 
(https:// nda. nih. gov/ oai) [44]. The 100 scans from the 
OAI were included to increase robustness of the statistical 
shape model. To represent individuals with demographics 
similar to our local participants across the OA spectrum, 
specific sampling strategies were used. First, only women 
were included. Second, stratified sampling was used across 
5 Kellgren-Lawrence (KL) grades of severity [15]. Finally, 
for each KL grade, 20 sets of potential demographics (age, 
height, and body mass) were randomly sampled from a 
multivariate normal distribution and the OAI participant 
that best matched each set of demographics using a z-score 
normalized root mean squared (RMS) error was included 
in the study. The multivariate normal distribution was cre-
ated from the demographics of the 13 local participants that 
completed MRI visits for this study. This strategy enabled 
us to increase the sample size used to build our statistical 
shape model while keeping demographics of the pool of 
participants comparable to our local sample. For each of 
the selected OAI participants, baseline knee images (sagittal 
dual echo in the steady state (DESS) with in-plane resolution 
0.365 × 0.365 mm, slice thickness 0.7 mm and slice spacing 
0 mm [44]) were extracted and segmented using the same 
CNN as the locally acquired images [36].

The statistical shape model was built in four steps. (i) 
For each segmentation, a 3D surface with 10,000 vertices 
was generated using the same methods as described for the 
cartilage analyses. (ii) A reference knee, with the smallest 
RMS surface error to all other knees after rigid plus scal-
ing registration using the iterative closest point algorithm, 
was identified; all knees were registered to this reference 
knee. A rigid plus scaling version of the iterative closest 
point algorithm removes the scale factor. (iii) Point cor-
respondences between the reference and every other bone 
were found using the Feature Oriented Correspondence 
using Spectral Regularization algorithm with minimum and 
maximum curvature as the features [19, 45]. (iv) Using cor-
responding points, mean bone shape was computed and after 
mean centering the data, singular value decomposition was 
used to find the principal modes of variation [46]. Statisti-
cal shape model mode scores were generated by projecting 
each mesh onto the mode vectors. Statistical shape model 
mode 1 explains the most variance, each subsequent mode 
explains less variance than the previous one. To minimize 
the number of statistical comparisons, we tested correlations 

(1)SI(TE) = PD × e−TE∕T2
between cartilage outcomes and bone shape using statistical 
shape model mode 1; and relationships between knee joint 
reaction forces and the first three statistical shape model 
modes. The mean bone shape and principal components of 
the statistical shape model are freely available (www. github. 
com/ gattia/ MAGMA- SSM).

Statistical analysis

Statistical parametric mapping

Statistical parametric mapping was used for statistical infer-
ence. Cluster-wise inference was performed using a permu-
tation method (10,000 permutations), thus statistical signifi-
cance was determined at the cluster level. The permutation 
method minimizes the risk of committing a Type I error 
and assumptions involved with identifying field smoothness 
and stationarity [47–50]. Test statistics (z-statistics for one-
sample difference tests, and t-statistics for correlations) were 
computed for every permutation. Clusters above thresholds 
(p = 0.05, 0.025, 0.01, 0.005, and 0.001) were identified. The 
maximum contiguous cluster area for every permutation and 
threshold was recorded. Significance of a cluster at a given 
threshold was identified based on its position in the permu-
tation distribution. For each threshold level, clusters with a 
p < 0.05 were identified as statistically significant. Clusters 
that were significant (p < 0.05) at 2 or more threshold lev-
els are presented. Cluster significance at different threshold 
levels should be interpreted differently. Typically, as the 
threshold statistic (t-statistic, z-statistic) is increased the 
cluster area needed to be statistically significant decreases, 
therefore, lower test-statistic thresholds are likely to show 
more diffuse but smaller magnitude effects, while higher 
test-statistic thresholds are likely to show smaller area but 
greater magnitude effects. Code used to perform the statis-
tical parametric mapping analysis on the bone surface is 
available under an open-source license (www. github. com/ 
gattia/ pyKne eSPM).

For objective 1, we identified whether significant clus-
ters of T2 or thickness change occurred using a one-sample 
difference test. Significant clusters of change show regions 
of consistent change in T2 or thickness across participants. 
For objective 2, we identified whether significant clusters of 
correlation between T2 or thickness change and either patel-
lofemoral or tibiofemoral joint reaction forces existed. In our 
exploratory analysis (objective 3), we determined whether 
significant clusters of correlation between T2 or thickness 
change and the tibia or femur statistical shape model modes 
1 existed. Significant clusters of correlations show regions 
of cartilage change (T2 or thickness) that are dependent on 
joint reaction forces and/or bone shape. Statistical para-
metric mapping was conducted for only walking data, only 
cycling data, and data from walking and cycling combined.

https://nda.nih.gov/oai
http://www.github.com/gattia/MAGMA-SSM
http://www.github.com/gattia/MAGMA-SSM
http://www.github.com/gattia/pyKneeSPM
http://www.github.com/gattia/pyKneeSPM


866 Magnetic Resonance Materials in Physics, Biology and Medicine (2022) 35:861–873

1 3

Regression analyses

For objective 4, we computed simple linear regressions 
between each of tibiofemoral compression and the resultant 
patellofemoral joint reaction force during gait with each of 
the first 3 statistical shape model modes.

Results

Participants

Data collection was interrupted by COVID-19 restrictions. 
Sixteen women were recruited and scheduled. Of these, 
three completed all visits (biomechanics and 2 × MRI). 
Another ten participants completed the biomechanics visit 
and at least one MRI visit (n = 4 walking visit, n = 6 cycling 
visit). As such, biomechanics and MRI data were available 
from 13 different participants; therefore, the statistical shape 

Table 1  Participant 
demographics*

* Demographics (mean ± standard deviation) of women that completed just the cycling MRI visit, just the 
walking MRI visit, or both MRI visits. LEFS Lower Extremity Functional Scale; a higher LEFS score 
reflects better physical function

Cycling MRI visit 
(n = 6)

Walking MRI visit 
(n = 4)

Both MRI visits (n = 3)

Age (years) 61.7 ± 6.5 59.8 ± 5.7 65.3 ± 3.5
Height (m) 1.60 ± 0.04 1.66 ± 0.04 1.56 ± 0.03
Mass (kg) 76.1 ± 10.4 81.2 ± 10.4 64.2 ± 19.9
Body mass index (kg/m2) 29.8 ± 4.0 29.5 ± 4.1 26.2 ± 7.6
Inseam length (m) 0.75 ± 0.03 0.77 ± 0.03 0.73 ± 0.01
Walking speed (m/s) 1.42 ± 0.04 1.46 ± 0.04 1.39 ± 0.04
Cadence (rpm) 67.5 ± 6.1 70.3 ± 5.5
Power (watts) 52.2 ± 21.6 52.7 ± 5.7
LEFS score (/80) 58.7 ± 8.8 70.0 ± 0.8 57.0 ± 2.7
n maintained Froude speed 4 4 2

Fig. 2  Superior view show-
ing changes in tibial cartilage 
thickness (left two columns), 
and T2 (right column). The top 
is anterior, medial and lateral 
sides are labelled in the figure. 
Each tibial plateau shows the 
region of significant (p < 0.05) 
change after thresholding at the 
p-value on the y-axis. Walk-
ing & Cycling indicates that 
data from walking and cycling 
were combined in the analysis. 
Surfaces are colored by the 
z-statistic associated with the 
change, where purple indicates 
a decrease in T2 or thickness. 
Spaces with no surface mesh 
indicate no significant clusters. 
No column is provided for 
walking data because there were 
no significant changes when 
analyzing walking alone
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model includes 13 locally acquired knees. Demographics 
are included in Table 1. Three of 13 participants (only 1 that 
completed the walking MRI visit) were unable to maintain 
the Fr-defined walking speed (Table 1). These participants 
were negligibly slower than the Fr-defined speed (0.001 to 
0.045 m/s).

Cartilage response to activity

Cycling, as well as walking and cycling analyzed together, 
reduced cartilage thickness on the lateral tibial plateau 
(Fig. 2). Cycling reduced T2 on the medial tibial plateau 
(Fig. 2) and increased T2 along the lateral condyle (Fig. 3). 
On the lateral femoral condyle, cycling also caused a notable 
region of large, but insignificant, decrease in T2 adjacent to 
the region of significant increase (Fig. 4). Walking decreased 
T2 at the lateral trochlea (Fig. 3).

Relationships between joint reaction forces 
and cartilage change

A greater tibiofemoral compressive joint reaction force 
during walking resulted in greater reduction in lateral 
femoral cartilage thickness after walking (Fig. 5). On 
the lateral trochlea and the posterior medial femoral con-
dyle, greater tibiofemoral compression produced a greater 
increase in T2 after cycling.

Statistical shape model

The mean shapes, as well as plus and minus three standard 
deviation shapes were plotted for statistical shape model 
modes 1 of the femur and tibia (Fig. 6). These visualiza-
tions were qualitatively interpreted. Positive values for the 
statistical shape model mode 1 for both the tibia and femur 
showed characteristic signs of OA. Tibia mode 1 (Fig. 6) 
had three main features. First, viewed anteriorly, increas-
ing values corresponded with an increased height of the 
medial plateau. Second, when viewed superiorly, increas-
ing values corresponded to widening the anterior lateral 
border of the lateral tibial plateau. Last, when viewed 
posteriorly, increasing values corresponded with greater 
concavity between the shaft and the tibial plateau indicat-
ing relative broadening. Femur mode 1 (Fig. 6) revealed 
one major feature: increasing values corresponded with 
an increased bone-cartilage-interface (BCI) surface area. 
This feature was best observed in the inferior view where 
the femoral condyles broaden [16, 18]. This broaden-
ing corresponded with a narrower intercondylar notch 
observed inferiorly and posteriorly. From an anterior view, 
increasing femur mode 1 corresponded with a ridge of 

osteophytes at the cartilage borders of the trochlea and 
weightbearing femur.

Relationships between statistical shape model 
and cartilage change

Cartilage thickness change and bone statistical shape 
model correlation

Analysing walking data only, increased tibia and femur 
modes 1 (interpreted as greater OA severity) corresponded 
with smaller reductions in lateral tibial cartilage thickness 
after walking (Fig. 7). Meanwhile, analysing walking and 
cycling together, we noted increased femur mode 1 (greater 
BCI surface area) corresponded with smaller reductions in 
medial tibial cartilage thickness (Fig. 7).

Fig. 3  Inferior view (left column) and antero-inferior view (right col-
umn) of the changes in femoral cartilage T2 after walking or cycling. 
Medial and lateral sides are labelled in the figure. Each femoral sur-
face mesh shows the region of significant (p < 0.05) change after 
thresholding at the p-value on the y-axis. Surfaces are colored by 
the z-statistic associated with the change, where purple indicates a 
decrease in T2 or thickness and yellow indicates an increase. Spaces 
with no surface mesh indicate no significant clusters. All surface 
meshes are of the right knee



868 Magnetic Resonance Materials in Physics, Biology and Medicine (2022) 35:861–873

1 3

Cartilage T2 change and bone statistical shape model 
correlation

Correlations between T2 change and statistical shape model 
features occurred for the femur (Fig. 8) and tibia (Fig. 9). 
With the analysis of walking and cycling together, greater 
increases in T2 on the posterior medial femoral condyle 
occurred with higher femur statistical shape model mode 1 
(Fig. 8). Following analysis of both activities, femoral and 
tibial bones with higher modes 1 showed smaller decreases 
in T2 on the tibial plateaus (Fig. 9). When analyzing cycling, 
higher femoral statistical shape model mode 1 resulted in 
smaller decreases in T2 on the lateral tibia (Fig. 9). 

Relationship between joint reaction forces and bone 
statistical shape model features

Femur statistical shape model mode 1 negatively related 
to the patellofemoral resultant joint reaction force (inter-
cept = 555.7, beta coefficient = − 151.2, R2 = 0.4, p = 0.021) 
(Supplemental 2). Femur mode 1 explained 27% of the vari-
ance in tibiofemoral compression (intercept = 2017.1, beta 
coefficient = − 203.0, R2 = 0.27, p = 0.067) (Supplemental 
2). All other correlations had R2 < 0.18 and p > 0.14.

Discussion

This work uniquely integrated biomechanical outcomes, 
measures of cartilage thickness and composition, and bone 
shape to explore the acute responses of osteoarthritic car-
tilage to physical activity. Statistical parametric mapping 
applied to the bone surface showed that walking and cycling 
caused distinct patterns of cartilage deformation, and that 
joint reaction forces correlated with focalized regions of 

Fig. 4  Inferior view of the mean change in femoral cartilage T2 after 
cycling for 25  min at a moderate 70–75% of maximum heart rate. 
The colormap shows decreases in T2 as purple and increases as yel-
low. The surface mesh is of a right knee; the anterior and lateral sides 
are labelled in the figure. A region of large magnitude decrease in T2 
can be observed on the lateral weight-bearing femur, with primarily 
increased or negligible change in T2 throughout the rest of the surface

Fig. 5  Visualization of statistically significant (p < 0.05) clusters 
of correlations between the tibiofemoral compressive joint reac-
tion force and cartilage change after walking or cycling. The top row 
shows significant correlations between changes in cartilage thickness 
after walking with peak tibiofemoral compression when thresholded 
at p = 0.01. The bottom row shows significant correlations between 
changes in T2 after cycling with peak tibiofemoral compression when 
thresholded at p = 0.05. The colormap shows t-statistics for the cor-

relations, where yellow indicates positive correlations and purple 
indicates negative correlations. All meshes are of a right knee; the 
medial and lateral sides are labelled in the figure. The walking cluster 
was significant at thresholds p = 0.01, 0.005, and 0.001. The anterior 
cycling cluster was significant at thresholds p = 0.05 and 0.025. The 
posterior cycling cluster was significant at thresholds p = 0.05, 0.025 
and p = 0.01. The displayed thresholds were chosen for consistency 
between visualizations within this figure
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cartilage change. The bone statistical shape models reflected 
features of OA [18, 19, 51] and these features were associ-
ated with the cartilage changes resulting from activity. Fur-
ther, femurs with more severe OA had lower knee joint reac-
tion forces during gait. Together these findings show that, 
among women with symptomatic knee OA, weight-bearing 
cartilage T2 and thickness decrease in response to loading; 
however, greater disease severity and differences in knee 
joint reaction forces modulate individual responses.

It is likely that weight-bearing physical activity exposure 
causes exudation of the fluid phase of cartilage from regions 
sustaining loading, resulting in deformation that reduces 
cartilage thickness and volume. This mechanism is consist-
ent with findings highlighted in a systematic review on the 
influence of running on lower limb cartilage [52]. Exuda-
tion of free water from weight-bearing regions is thought 
to be a primary driver of decreased T2 [7, 53]. It is likely 

that water redistribution caused by loading is transient and 
recovers during unloading. Evidence supporting this recov-
ery includes data showing ~ 80% of cartilage volume is 
recovered within 90 min of loading and a systematic review 
reported that recovery to baseline T2 and volume occurs 
within 24 h [52, 54]. The regions of significant T2 and thick-
ness decrease observed in the current study primarily align 
with the weight-bearing regions of cartilage. Concurrently, 
the regions of increased T2 and cartilage thickness, particu-
larly those that appeared significant in correlations with 
bone shape and JRFs, were observed in non-weight bearing 
regions. These findings suggest that the regions of increased 
T2 observed in the current study are caused, at least in part, 
by redistribution of free water from load-bearing to non-
load-bearing regions.

Femoral cartilage deformation was associated with joint 
reaction forces. This finding corroborates a previous study 

Fig. 6  Visualization of mode 1 
of the femur (top) and tibia (bot-
tom) statistical shape models. 
The y-axis identifies the per-
spective displayed for that row. 
The x-axis identifies where on 
the continuum of the statistical 
shape model mode the visuali-
zation falls from – 3 standard 
deviations (SD) to + 3 SDs. The 
medial and lateral sides for each 
row are presented on the right 
and left borders
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that found lateral femoral cartilage deformation was related 
to tibiofemoral compression [12]. After walking, we found 
a cluster on the lateral trochlea that was thinned more with 
greater tibiofemoral compression. We concurrently found 
greater increases in T2 on the posterior medial condyle with 
greater tibiofemoral compression (Fig. 5). Increased T2 
likely reflects mobile water redistribution away from regions 
of compression; [7, 54, 55] with more redistribution occur-
ring with greater joint reaction forces.

Tibial plateau T2 and thickness decreased following 
loading in this sample (Fig. 2), coinciding with the regions 

of peak cartilage surface pressures during gait in previ-
ous work [5, 21]. After walking, trochlear T2 decreased, as 
hypothesized. However, after cycling, T2 on the lateral con-
dyle increased (Fig. 3). The increased T2 may reflect water 
redistribution away from adjacent regions of insignificant 
T2 decrease (Fig. 4). The larger area where T2 increase was 
observed, compared to the region of decrease, may explain 
why the region of decrease was not statistically significant. 
Larger regions in different compartments could explain 
why tibial changes in T2 and thickness occurred on either 
the medial or lateral plateaus. Future work should compare 
statistical parametric mapping applied to the whole tibia 

Fig. 7  Visualization of clusters of significant (p < 0.05) correlation 
obtained after thresholding the t-statistic at p = 0.01; p = 0.01 was 
used because all displayed results were significant at this threshold. 
Correlations are between change in tibial cartilage thickness and the 
statistical shape model mode identified on the x-axis for data ana-
lyzed from activities listed on the y-axis. Cycling & Walking indi-
cates that cycling and walking were analyzed together. No cycling 
column is included because no significant clusters existed for cycling 
data alone. The colormap shows the t-statistic for correlations, with 
positive t-statistics, and thus correlations, in yellow. The top is ante-
rior. Medial and lateral sides are labelled in the figure. All visualiza-
tions are of the right knee. For femur mode 1 Cycling & Walking, the 
same significant cluster existed at thresholds of p = 0.01, 0.005, and 
0.001. For femur mode 1 Walking data, the same significant cluster 
existed at thresholds of p = 0.01 and 0.005. For tibia mode 1 Walking 
data, the same significant cluster existed at p = 0.01 and 0.005

Fig. 8  Visualization of clusters of significant (p < 0.05) correla-
tion between change in femoral cartilage T2 and femoral statistical 
shape model mode 1 when analyzing data from walking and cycling 
together. Each femoral surface mesh shows the region of significant 

correlation after thresholding at the p-value on the x-axis. Surfaces 
are colored by the t-statistic associated with the change, where yellow 
indicates a positive t-statistic and correlation. All surface meshes are 
of the right knee; the medial and lateral sides are labelled in the figure

Fig. 9  Visualization of clusters of significant correlation (p < 0.05) 
between change in tibial cartilage T2 and statistical shape model 
features when thresholded at p = 0.025; p = 0.025 was used because 
all displayed results were significant at this threshold. The x-axis 
identifies what statistical shape model mode was used in the corre-
lation. The y-axis identifies what data was included in the analysis. 
The medial and lateral sides are labelled in the figure. Surfaces are 
colored by the t-statistic associated with the correlation, where yel-
low indicates a positive t-statistic and correlation. All surface meshes 
are of the right knee. The walking and cycling clusters were signifi-
cant (p < 0.05) at every threshold level (p = 0.05, 0.025, 0.01, 0.005, 
0.001). The cycling only cluster was significant (p < 0.05) at thresh-
olds p = 0.05 and 0.025
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versus each tibial plateau analyzed separately. These find-
ings highlight that statistical parametric mapping may avoid 
challenges inherent in mean values of anatomically-defined 
cartilage subregions.

Femur statistical shape model mode 1 shows key features 
of OA. This single mode closely matches the OA versus 
non-OA axis of the 70-dimensional statistical shape model 
by Neogi and colleagues, which was also built from OAI 
data [18]. Our model, and previously published ones [18, 51] 
included broadening of the distal femoral cartilage surfaces, 
increased osteophytes, and narrowing of the intercondylar 
notch. Consistency between studies signifies robustness of 
these features.

The acute response of cartilage to a standardized load 
depends on the statistical shape model mode score. Since the 
statistical shape model reflected features of OA, this finding 
supports the Integrated Joint System theory, which hypoth-
esizes that relationships between cartilage, mechanics, and 
bone differ over the disease spectrum [1]. For example, at 
the lateral tibial plateau, T2 decreased less with increasing 
tibia mode 1 that likely reflects OA severity. In this case, 
we propose broadening of the plateau may distribute forces 
over a larger area, reducing pressure leading to smaller 
cartilage changes. This theory is supported by the findings 
from Clouthier et al. which showed that a knee more char-
acteristic of OA identified from mode 3 of their statistical 
shape model decreased absolute lateral tibial joint forces as 
well as lateral cartilage surface pressures during gait [21]. 
Alternatively, knees with severe OA changes may have had 
thinner cartilage in those locations and therefore had less to 
deform. At the posterior medial femoral condyle, increased 
OA severity led to greater increases in T2 after cycling. In 
this case, more severe OA knees with pathologic cartilage 
likely had greater fluid redistribution, which is congruent 
with the triphasic theory of cartilage [7, 54, 55]. Specifically, 
decreased collagen organization and proteoglycan content 
that is characteristic of OA reduces the net negative charge 
of the cartilage extracellular matrix, resulting in a smaller 
resistance to fluid flow and making cartilage more suscepti-
ble to deformation [55].

Knees more characteristic of OA had smaller joint reac-
tion forces. Previous work supports our finding, showing that 
when walking at a constant speed (1.11 m/s) individuals with 
OA have lower compressive forces during gait than their 
healthy counterparts [56]. These works highlight that joint 
reaction forces during gait change with OA progression.

Due to collection restrictions imposed by COVID-19 this 
study was under-sampled. Permutation methods ensured 
accurate p-values for these participants. Inaccurate anatomi-
cal correspondences between bone surfaces after registration 
is the greatest source of error for the statistical shape model. 

However, alignment of statistical shape model mode 1 with 
previous models indicates convergent validity.

In women with symptomatic knee OA, walking and 
cycling caused distinct patterns of cartilage deformation 
that were dependent on knee joint reaction forces and bone 
morphology. Individuals with femurs more consistent with 
OA had smaller tibiofemoral joint reaction forces. This work 
highlights that bone shape is an important factor in under-
standing mechanics at the joint surface, and in understanding 
knee OA pathophysiology.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10334- 022- 01004-8.
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