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Abstract

Successful human colonizers such as Candida pathogens have evolved distinct strategies

to survive and proliferate within the human host. These include sophisticated mechanisms

to evade immune surveillance and adapt to constantly changing host microenvironments

where nutrient limitation, pH fluctuations, oxygen deprivation, changes in temperature, or

exposure to oxidative, nitrosative, and cationic stresses may occur. Here, we review the cur-

rent knowledge and recent findings highlighting the remarkable ability of medically important

Candida species to overcome a broad range of host-imposed constraints and how this

directly affects their physiology and pathogenicity. We also consider the impact of these

adaptation mechanisms on immune recognition, biofilm formation, and antifungal drug resis-

tance, as these pathogens often exploit specific host constraints to establish a successful

infection. Recent studies of adaptive responses to physiological niches have improved our

understanding of the mechanisms established by fungal pathogens to evade the immune

system and colonize the host, which may facilitate the design of innovative diagnostic tests

and therapeutic approaches for Candida infections.

Introduction

The human body is home to a large number of microbes that play essential roles in maintain-

ing human health. However, under particular host-compromising conditions, they can shift

from harmless commensals to opportunistic pathogens to cause inflammation and disease.

Fungal communities, which can include Candida species, constitute an integral part of the

human microbiota that, under normal conditions, asymptomatically colonize several niches,

including the skin, oral cavity, gastrointestinal, and urogenital tracts [1–3]. The remarkable

ability to alternate between local current microenvironments within internal host niches such

as blood or tissues is often linked with their pathogenic potential. Therefore, environmental

changes promoted either by alterations in host microbiota or the host immune system may
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allow these microorganisms to overgrow, cross the epithelial barriers, and cause severe, life-

threatening infections [4].

Among the Candida species that trigger human disease, Candida albicans, C. glabrata, C.

parapsilosis, C. tropicallis, and C. krusei are the most common [4–6]. Yet, other emerging spe-

cies, including C. auris, C. guilliermondii, C. lusitaniae, and C. metapsilosis, are of particular

concern because they are rapidly spreading worldwide, with several reported outbreaks [5,7,8].

Moreover, Candida infections are difficult to diagnose, commonly resulting in delayed anti-

fungal treatments that have been associated with hospital mortality [9]. The antifungal drugs

available to eradicate these fungal pathogens are also limited and often ineffective, mainly

because of the intrinsic multidrug resistance of certain Candida species and their ability to

form biofilms on implanted medical devices [10–12]. Considering that each species presents

its own distinctive features in relation to invasive potential, morphogenesis, antifungal suscep-

tibility, and biofilm formation, studies focusing on the adaptation to different hosts and envi-

ronmental factors have the potential to reveal novel molecular players of virulence pathways.

Here, we provide an overview of established and emerging strategies used by Candida to

adapt to common environmental challenges faced by these fungi during immune evasion and

human colonization (Fig 1). As we review major host-imposed constraints, we highlight the

central regulatory circuits required for fungal adaptation to these challenges. We also discuss

the impact of such physiological reprogramming on key aspects of Candida pathogenicity,

with a particular emphasis on immune evasion, biofilm formation, and antifungal drug

Fig 1. Candida biogeography and the different host-imposed constraints during human colonization. The most frequently isolated Candida species

are listed according to their principal habitat in the human body (oral cavity, lungs, gastrointestinal tract, bloodstream, urogenital tract, and skin). The

different host-imposed constraints are highlighted for several microenvironments where Candida thrives in the human body, including inside

phagocytic cells or biofilms. Key references: C. albicans [2,3], C. glabrata [3], C. parapsilosis [2], C. tropicalis [2], C. lusitaniae [13], and C. krusei [6].

ECM, extracellular matrix; NOS, nitric oxide species; ROS, reactive oxygen species; UG, urogenital.

https://doi.org/10.1371/journal.ppat.1008478.g001
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resistance. We propose that the genetic circuits governing Candida adaptation to human

niches can be exploited in search of new antifungal targets and diagnosis improvement.

Candida within the human host

The human host contains a variety of environmental niches in which Candida species can

thrive. Adaptation to these sites requires rapid and coordinated changes in Candida metabo-

lism and physiology in order to avoid or escape immune surveillance and to counteract several

host-imposed constraints (for example, nutrient limitation, oxygen deprivation, pH fluctua-

tions, changes in temperature, or oxidative, nitrosative, and cationic stresses). Moreover, Can-
dida species interact with other microbial residents, establishing either cooperative or

antagonistic relationships, which may affect their growth and influence the outcome of an

infection.

Depending on the local environmental cues, some Candida species may exhibit different

cellular morphologies. These include budding forms, which have been associated with com-

mensalism, and the filamentous forms hyphae and pseudohyphae, often related with invasive

and disseminated disease [14,15]. However, these cell types were found in infected tissues, sug-

gesting they all promote pathogenicity. C. albicans has also the ability to switch into more

functionally and genotypically distinct cell types, which may present improved fitness in spe-

cific host niches [15]. In particular, “white” yeast cells can switch to mating specialized

“opaque” cells, and a subset of these can also transit into a third, “gray” morphology [16]. An

additional distinctive group of cells, known as GUT (gastrointestinally induced transition),

seems to display enhanced fitness in the gastrointestinal tract when compared with other cell

types [17]. The morphogenic transitions depend on a highly dynamic cell wall that acts as an

environmental barrier, and it is essential for host–pathogen interactions. The core skeleton of

the cell wall is composed of the polysaccharide β-1,3-glucan, covalently linked to β-1,6-glucan

and chitin. The outer layer contains glycosylated mannoproteins cross-linked to β-1,6-glucans.

The relative amount of each component fluctuates between morphologies and in response to

external challenges, impacting immune responses [18,19].

Nutrient availability and Candida metabolic flexibility

Of the many challenges pathogens face in the human host, possibly none is more important

than nutrient availability because cells must assimilate nutrients in order to thrive. These

might include sugars, carboxylic acids, peptides, amino acids, lipids, or phospholipids. The

assimilation of glucose, lactose, and galactose is mediated via hexose transporters (HGTs), pro-

viding major sources of energy and carbon (Fig 2a). The well-studied yeast model Saccharomy-
ces cerevisiae, which is relatively closely related to some Candida species, uses glucose as a

preferred carbon source and only switches to nonfermentable nutrients when glucose becomes

depleted [20]. This hierarchical utilization requires highly evolved networks integrating several

signaling pathways in order to repress the assimilation of alternative carbon sources [21–24].

This is partly achieved by the ubiquitination of key gluconeogenic and glyoxylate cycle

enzymes following the exposure to glucose [25]. Notably, these enzymes appear to lack ubiqui-

tination sites in C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis, and consequently,

they are not subjected to glucose-induced degradation [26,27]. The evolutionary rewiring of

key metabolic ubiquitination targets has been suggested to increase the ability of C. albicans to

colonize and cause infection in the mammalian host because, unlike S. cerevisiae, this yeast is

able to assimilate sugars and alternative carbon sources simultaneously [26–28]. The availabil-

ity of glucose is thought to enhance C. albicans virulence owing to the fact that this sugar has

been reported to induce hyphal morphogenesis at low physiological concentrations [29–31]
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and promote antifungal resistance [32,33]. Moreover, rapid glucose metabolism by C. albicans
seems to be important during infection because immune cells, specifically macrophages, rely

on glucose for survival [34]. This limitation is exploited by C. albicans, which elicits rapid mac-

rophage death by depleting the available glucose [34].

In glucose-limiting conditions, other alternative carbon sources, such as N-acetylglucosa-

mine (GlcNAc) and carboxylic acids, are thought to play a critical role to sustain Candida
growth. When infecting tissues and organs, Candida up-regulates several pathways involved in

the utilization of alternative carbon sources, such as gluconeogenesis, the glyoxylate cycle, and

fatty acid β-oxidation, suggesting that glucose levels may not be sufficient to satisfy the ener-

getic requirements of the cells [28,35–37]. In C. albicans and C. tropicalis, GlcNAc, a monosac-

charide produced mainly by bacteria in the gastrointestinal tract, enters the cell through the

Ngt1 transporter, and is then sensed by the transcription factors, Ngs1 and Rep1, which con-

trol the expression of genes involved in the uptake and catabolism of GlcNAc [38–40] (Fig 2b).

Depending on the metabolic state of the cells, GlcNAc can either be converted to uridine

diphosphate-N-acetylglucosamine (UDP-GlcNAc) or to fructose-6-phosphate, which then

Fig 2. Schematic representation of the main sensing, transport, and transduction systems for the utilization of different host nutrients in

Candida species. (a) In C. albicans, glucose is sensed by Hgt4, generating an intracellular signal that induces the expression of HGTs and other

metabolic genes. (b) In C. albicans and C. tropicalis, the uptake of GlcNAc occurs through the Ngt1 transporter. (c) The uptake of carboxylic acids is

facilitated by the Jen (in C. albicans) and Ato transporters (in C. albicans and C. glabrata). In C. albicans, Gpr1 is reported to be a lactate and

methionine sensor. In the presence of lactate, Gpr1 is thought to activate Crz1 in a calcineurin-independent manner and, together with Ace2, regulates

a polygenic response that leads to β-glucan masking. (d) Peptides and amino acids are sensed by the SPS complex, which induces the expression of

Opts, Aaps, and Ato transporters, as well as SAPs and amino acid catabolic genes. Intracellular ammonia resulting from the catabolism of GlcNAc or

amino acids is exported via Ato transporters. In the presence of methionine, and in low glucose conditions, the methionine-induced morphogenesis is

activated via Gpr1 sensor and Mup1 transporter. AA, amino acid; Aap, amino acid permease; ATP, adenosine triphosphate; cAMP, cyclic adenosine

monophosphate; DcSAM, decarboxylated S-adenosylmethionine; GlcNAc, N-acetylglucosamine; GPI, glycosylphosphatidylinositol; HGT, hexose

transporter; Opt, oligopeptide transporter; SAM, S-adenosylmethionine; SAP, secretory aspartyl proteinase; SPS, Ssy1-Ptr3-SSy5; Sp2DC, Sp2

decarboxylase; TCA, tricarboxylic acid cycle; UDP, uridine diphosphate.

https://doi.org/10.1371/journal.ppat.1008478.g002
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enters the glycolytic pathway (Fig 2b). In C. albicans, GlcNAc can also be used as a signal to

induce the expression of several virulence genes involved in white-opaque switching [41],

hyphal morphogenesis [38–40,42], and cell death [43]. Additionally, GlcNAc metabolism

seems to sustain Candida survival when growing inside phagocytic cells. The export of intra-

cellular ammonia, derived from GlcNAc catabolism, has been reported to promote the alkali-

zation of the phagosome, enabling cells to survive and escape from the acidic environment of

the phagolysosome [44]. This mechanism is dependent on the transport of GlcNAc and subse-

quent catabolism through Hxk1, Nag1, and Dac1 enzymes [44]. Hence, mutants lacking the

Ngt1 transporter or GlcNAc catabolic enzymes are defective in neutralizing the phagosome

[44]. The ability to manipulate ambient pH is reported for all species of the CTG clade, a phy-

logenetic group that translates the CUG codon into serine instead of leucine [45]. This is in

contrast to what is found for the distantly related C. glabrata, whose genome does not appear

to encode homologs of GlcNAc transporters or catabolic enzymes [44].

C. albicans can also raise the extracellular pH by metabolizing carboxylic acids [46]. This

phenomenon is physiologically and genetically distinct from the GlcNAc-driven mechanism,

as the metabolism of carboxylic acids, when used as the sole carbon source, does not generate

ammonia or promote hyphal morphogenesis [44,46]. Physiologically relevant carboxylic acids

such as lactate, acetate, succinate, butyrate, and propionate are produced either by host cells or

host microbiota [47–49]. Lactate and acetate are particularly abundant in the gut and in vagi-

nal secretions [47,50] but also inside phagocytic cells [51,52]. In C. albicans, the uptake of lac-

tate is mediated by Jen transporters [51,53], while Ato transporters are potentially involved in

the transport of acetate in both C. albicans and C. glabrata [52,54] (Fig 2c). These two trans-

porter families are strongly induced after phagocytosis [51,52], and they modulate biofilm for-

mation and resistance to antifungal drugs in both C. albicans and C. glabrata [54–56]. In

particular, exposure to lactate has been shown to trigger the masking of β-glucan, a major

pathogen-associated molecular pattern (PAMP), in several Candida species [57]. This affects

the visibility of these pathogens to host immune defenses, which correlates well with the

observed decrease in C. albicans uptake by macrophages and reduced phagocytic recruitment

[57,58]. The β-glucan masking phenotype has been proposed to be dependent on Gpr1 and

the transcription factor Crz1 [57]. These proteins control the expression of genes associated

with the organization of the cell wall, ultimately contributing to the masking effect [57,59].

Therefore, the concomitant exposure of Candida cells to different carboxylic acids potentiates

immune evasion and consequently Candida persistence.

The uptake of nitrogen is also critical for Candida survival. Different in vivo studies have

demonstrated that genes involved in amino acid uptake and catabolism are strongly up-regu-

lated in C. albicans, especially when phagocytosed by neutrophils and macrophages [36,60–

62]. Indeed, several C. albicans and C. glabrata amino acid auxotrophic strains retain full viru-

lence in mice, suggesting that these nutrients are readily available during infection [63–65].

Proteolytic enzymes, namely secretory aspartyl proteinases (SAPs), are of particular impor-

tance because they allow Candida to efficiently degrade the complement proteins and host

connective tissues [66]. Once available, extracellular amino acids are then sensed by the SPS

complex (composed of Ssy1, Ptr3, and Ssy5), which in turn activates the transcription factors,

Stp1 and Stp2 (Fig 2d). While Stp1 controls the expression of extracellular proteases and pep-

tide transporters, Stp2 regulates amino acid permeases, Ato transporters, and catabolic

enzymes [67,68] (Fig 2d). Along with GlcNAc and carboxylic acids, the catabolism of amino

acids represents a third independent mechanism by which Candida rapidly neutralizes acidic

microenvironments [52,69]. Previous studies reported that C. albicans mutants lacking STP2
or ATO genes release less ammonia than wild-type controls, failing to efficiently neutralize the

acidic phagosome and undergo hyphal morphogenesis, which consequently affects their ability
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to escape phagocytic cells [52,70]. Recent data, however, suggest that the phagosomal membrane

is highly permeable to ammonia, and the observed alkalization is rather a direct consequence of

proton leakage induced by hyphal growth [71,72]. The transport of methionine via the high-

affinity permease Mup1 and its subsequent metabolism have been also shown to induce mor-

phogenesis in a process that is dependent on Gpr1 and the cAMP-PKA (cyclic Adenosine

Monophosphate-Protein Kinase A) signaling cascade [73,74]. The methionine-induced mor-

phogenesis pathway triggers the activation of adenylate cyclase by the production of increased

levels of polyamines such as spermine and spermidine. These compounds are generated by the

intracellular conversion of methionine into S-adenosylmethionine (SAM) and its decarboxyl-

ation by Spe2, which donates aminopropyl groups for polyamine synthesis [73] (Fig 2d).

Environmental pH fluctuations shape Candida physiology and

pathogenicity

Changes in ambient pH represent an additional stress that Candida and other pathogens face

in the human host. While the pH of human blood and tissues is slightly alkaline (pH 7.4), the

pH of the oral cavity and the gastrointestinal and genitourinary tracts is acidic (2 < pH< 6).

Adaptation to differing ambient pHs is critical for survival and growth in these niches. In

fungi, including Candida species, pH signaling is mediated by the Rim pathway [75]. In C.

albicans, the external pH is sensed by Rim21/Dfg16, Rim9, and an arrestin-like protein Rim8.

Under alkaline pH, Rim8 is hyperphosphorylated, a signal that triggers the endocytosis of the

plasma membrane complex and the recruitment of the signaling protease Rim13. This protease

then cleaves the C-terminal inhibitory domain of Rim101, resulting in its activation. The acti-

vation of Rim101 promotes the expression of target genes involved in morphogenesis [76–79],

growth [80], cell-wall remodeling [80], iron metabolism [81,82], adhesion [80], biofilm forma-

tion, and antifungal tolerance [75,83,84] (Fig 3).

On the other hand, the adaptation of C. albicans to acidic environments drives cell-wall

remodeling by enhancing the exposure of two key fungal PAMPs (chitin and β-glucan) at the

cell surface [85]. While pH-dependent β-glucan exposure is regulated by a noncanonical sig-

naling pathway, the remodeling of chitin is coordinated by several transcription factors,

including Rim101, Bcr1, and Efg1 (Fig 3) [85,86]. The exposure of β-glucan at the cell surface

hyperactivates the immune system largely through the recognition of the immunostimulatory

β-glucan by Dectin-1, which enhances the recruitment of neutrophils and macrophages to the

site of the infection [85]. This pH-dependent β-glucan exposure was also observed in C. dubli-
niensis and C. tropicalis, but not in C. auris or C. glabrata [85,86]. Surprisingly, adaptation to

acidic environments induces β-glucan masking in C. krusei, suggesting that the outputs of pH-

dependent signal transduction differ between these Candida species [85]. Additionally, the

pH-dependent reorganization of the cell wall fluctuates over time in C. albicans, with β-glucan

and chitin being masked after an initial period of exposure [86]. While the subsequent β-glu-

can masking is mediated by farnesol, this quorum-sensing molecule does not trigger the chitin

cloaking [86]. These temporal fluctuations suggest dynamic cell-wall responses to environ-

mental pH. Moreover, the early PAMP exposure appears to govern the outcome of the infec-

tion because subsequent remasking on the cell wall does not compensate for the initial

induction of strong proinflammatory responses [86].

Adaptation to oxygen-limiting niches is critical for Candida

virulence

Oxygen levels inside the human host can vary greatly. While some niches are rich in oxygen,

such as exposed skin or oral mucosa, others are anoxic or hypoxic, including the
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gastrointestinal tract [87]. Consequently, Candida cells must adapt to low-oxygen environ-

ments, particularly when colonizing the human gut, developing lesions or growing in biofilms

[87,88]. Analyses of gene expression profiles of C. albicans cells shifted from normoxia to hyp-

oxic growth conditions revealed the induction of several pathways, including glycolytic gene

expression via Tye7 [89–91], fatty acid metabolism [92,93], heme biosynthesis and iron metab-

olism [89,92,94], cell-wall structure [89,92,94], and sterol biosynthesis via Upc2 [95,96]. In

contrast, genes involved in the oxidative respiration were repressed [89,92,94]. Additionally,

the Sit4 phosphatase, the Ccr4 mRNA deacetylase, and the Sko1 transcription factor have been

identified as potential regulators of an early hypoxic response (10–20 min) [91,94].

Besides affecting the cellular metabolism and energy homeostasis, adaptation to hypoxia

induces hyphal growth in C. albicans [94] and promotes immune evasion by triggering β-glu-

can masking at the cell surface [97]. β-glucan masking leads to reduced phagocytosis and

attenuates local immune responses [97]. In contrast to lactate-induced β-glucan masking, hyp-

oxia-induced masking does not depend on Gpr1 and Crz1. Instead, hypoxia-induced masking

is mediated by mitochondrial and cAMP-PKA signaling [57,97]. Hypoxia induces the genera-

tion of mitochondrial superoxide [98,99], which is rapidly converted into diffusible hydrogen

peroxide by superoxide dismutase 1 (Fig 4). Hydrogen peroxide has been proposed to some-

how activate the cAMP-PKA pathway, which, in turn, triggers cell-wall remodeling and β-glu-

can masking [97]. However, the mechanism by which β-glucan masking is achieved at the cell

surface remains unclear.

Fig 3. Candida adaptation to pH fluctuations. In Candida species, pH adaptation is mediated by the Rim pathway. Under acidic

pH, the exposure of both chitin and β-glucan is enhanced and facilitates their recognition by the host innate immune system. Chitin

exposure is promoted by the repression of both Rim101 and Bcr1, resulting in reduced expression of CHT2. β-glucan exposure is

regulated by a noncanonical signaling pathway. Under alkaline pH, Rim8 is hyperphosphorylated, a signal that induces the

endocytosis of the Rim complex and the recruitment of Rim13. The C-terminal proteolysis of Rim101 by Rim13 activates it and

promotes the expression of target genes, including CHT2.

https://doi.org/10.1371/journal.ppat.1008478.g003
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Hypoxia-induced β-glucan masking has been observed for some other pathogenic Candida
species, namely C. tropicalis and C. krusei, but not in C. glabrata, C. guilliermondi, or C. para-
psilosis [97]. Therefore, during their evolution, hypoxic signaling has become integrated with

PAMP masking only in some Candida pathogens. The adaptation to hypoxic environments

enhances the ability of these Candida species to colonize the host. For example, it was shown

that the recruitment of polymorphonuclear leukocytes (PMNs) to sites of C. albicans infection

in mice was the main cause of hypoxia [88] (Fig 4). However, because of the hypoxia-induced

β-glucan masking by C. albicans cells, these PMNs are not able to efficiently phagocytose the

fungus, generate reactive oxygen species (ROS), or release extracellular DNA traps, allowing C.

albicans to survive. Continued exposure to hypoxia leads to accumulation of lactate, prolong-

ing the masking effect. Additionally, it was also observed that the antifungal activity of flucona-

zole is considerably reduced under hypoxic conditions. We speculate that the molecular

mechanism behind this observation might include Upc2, considering its dual role in activating

hypoxia-induced β-glucan masking [97] and conferring azole antifungal resistance [100]. In

contrast to C. albicans, C. tropicalis is not able to induce β-glucan masking in response to hyp-

oxia, and this species is more susceptible to PMN attack [88]. This is in agreement with the

fact that C. tropicalis mainly infects neutropenic patients [101]. The molecular mechanisms

allowing hypoxic adaptation are not completely defined. Nevertheless, it is clear that some

Candida species take advantage of low-oxygen environments, either generated during infec-

tion or imposed by the specific host niche, to thrive by avoiding immune surveillance and

escaping from antifungal therapy.

Fig 4. Candida adaptation to hypoxic host niches. During C. albicans infections, the recruitment of PMNs creates an hypoxic

environment [88]. In the fungus, this oxygen limitation triggers increased formation of ROS, such as superoxide (O2
•−), from the

electron transport chain [98,99]. Superoxide is then converted into diffusible hydrogen peroxide (H2O2) by the action of Sod1. H2O2

has been proposed to activate adenylyl cyclase (Cyr1) and cAMP-PKA (Tpk1/2) signaling, which in turn triggers cell-wall

remodeling and β-glucan masking [97]. This β-glucan masking allows the fungus to evade phagocytosis by the PMNs [88]. cAMP,

cyclic Adenosine Monophosphate; NET, neutrophil extracellular trap; PKA, Protein Kinase A; PMN, polymorphonuclear leukocyte;

ROS, reactive oxygen species; Sod1, superoxide dismutase 1.

https://doi.org/10.1371/journal.ppat.1008478.g004
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Candida adaptation to temperature shifts is essential for full

virulence

The human body temperature is considered to be a potent nonspecific defense against fungal

infection, especially in febrile patients, because high temperatures considerably restrict fungal

growth [102,103]. The human host presents fever as one of the first responses against a Can-
dida infection, thereby exposing the fungal cells to temperatures ranging from 37 ˚C to 42 ˚C.

These temperature fluctuations profoundly influence many physiological aspects of C. albi-
cans, including morphology, mating, phenotypic switching, and drug resistance [104].

Changes in ambient temperature are sensed by a broad diversity of mechanisms. One of the

most studied pathways is the evolutionarily conserved heat shock response, which mediates

thermal homeostasis by controlling the levels of heat shock proteins (HSPs) [105]. HSPs are

molecular chaperones sequestered in response to heat shock, rescuing proteins from unfolding

or targeting damaged proteins for degradation. In C. albicans, the expression of HSP genes is

activated by the heat shock transcription factor 1 (Hsf1), which becomes phosphorylated in

response to temperature elevations, including thermal transitions that mimic fever [106,107].

After adaptation to the exposed temperature, Hsf1 phosphorylation returns to basal levels and

several lines of evidence have suggested the existence of a negative feedback loop, in which

Hsp90 negatively regulates Hsf1 [107–109]. Besides Hsf1, Hsp90 also controls the activation of

other regulators that mediate long-term thermal adaptation (Fig 5). These include several

mitogen-activated protein kinase (MAPK) signaling pathways, particularly the Hog1, Mkc1,

and Cek1 pathways, which are intimately associated with cell-wall remodeling [110,111].

Other small HSPs such as Hsp12 and Hsp21 have also been identified as crucial for C. albicans

Fig 5. Molecular circuits required for thermal adaptation in C. albicans. (a) HSPs rescue proteins from unfolding or target

damaged proteins for degradation. (b) In response to temperature upshifts, Hsf1 becomes phosphorylated, inducing the expression

of HSP genes. After thermal adaptation, Hsf1 returns to basal levels through a negative feedback loop dependent on Hsp90. Long-

term adaptation is controlled by Hsp90 through Hog1, Mkc1, and Cek1. HSE, heat shock element; Hsf1, heat shock transcription

factor 1; HSP, heat shock protein; MAPK, mitogen-activated protein kinase; MAPKK/MAPKKK, MAPK kinase/ MAPKK kinase.

https://doi.org/10.1371/journal.ppat.1008478.g005
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to resist thermal stress [112,113]. HSPs and their associated signaling pathways have been

widely implicated in antifungal resistance, emerging as potential antifungal targets to treat

Candida infections [114]. Moreover, the activation of the Hsf1 transcriptional program in C.

albicans has been associated with increased host cell adhesion, damage, and virulence, rein-

forcing the importance of this regulon in thermal homeostasis [115,116].

Candida and host microbiota: Avoiding antagonistic interactions

in health and disease

The structure of human microbiota is dynamic, often defined by host and environmental fac-

tors and also by physical and metabolic interactions between species. While some of these

interactions are cooperative, others are antagonistic, and the latter may represent a major

obstacle for Candida. This concept gained experimental support through studies involving the

depletion of commensal microbiota by continued use of broad-spectrum antibiotics, which

resulted in Candida overgrowth [117,118]. This suggests that some commensal microbial colo-

nizers antagonize Candida spp. (and other exogenous pathogens) in order to maintain a

homeostatic balance in the host. Some of these interactions are driven by metabolic competi-

tion, while others are mediated by quorum-sensing molecules that influence fungal cell behav-

ior and regulate important virulence traits. Although quorum-sensing systems have been

explored in great detail for pathogenic bacteria, they are relatively poorly understood in fungi

[119]. The C. albicans molecule farnesol was the first quorum-sensing compound to be identi-

fied in an eukaryote [120] and has been the object of intense research. Yet, its precise mode of

action remains unclear.

Lactobacillus species and C. albicans are a well-documented example of infectious antago-

nism [121–123]. Lactobacilli are a dominant species of the microbiota of the gastrointestinal

and urogenital tracts, and they actively reduce the amount of fungal microbes by producing

many fungicidal compounds [121–123]. Other commensal bacteria such as Bacteroides the-
taiotamicron or Blautia producta can antagonize C. albicans by stimulating intestinal cells to

produce antimicrobial peptides [124]. The pathogenic bacterium Acinetobacter baumanii has

been also reported to interact antagonistically with C. albicans by binding to hyphae to pro-

mote apoptosis [125]. The elucidation of these types of interaction is of particular interest in

the quest for novel targets for antifungal therapy, as the inhibitory secreted factors produced

by these antagonists appear to have high fungicidal activity.

The disruption of commensal interactions through alterations in immune competence, by

changes in environmental host conditions, or via antibiotic therapy may favor the outgrowth

and overrepresentation of pathogenic microbes, with these growing at the expense of those

organisms that fail to adapt. While antagonist interactions might lower the risk of infection,

synergistic interactions during dysbiotic states are associated with increased pathogenesis

because microbes can also interact to enhance colonization and persistence. An illustrative

example is the infectious synergism established between several Candida species (including C.

albicans, C. dubliniensis, C. tropicalis, and C. krusei) and the gram-positive bacterium Staphylo-
coccus aureus [126,127]. Candida not only provides a substratum for the attachment and colo-

nization of S. aureus but also facilitates its invasion across mucosal barriers, thereby

promoting persistence and systemic infection [128].

Host immune defenses: How Candida species counteract the

immune response

Microbial pathogens are constantly surveyed by the innate immune system. Phagocytic cells

such as dendritic cells, macrophages, monocytes, and neutrophils play important roles in
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clearing fungal pathogens from the bloodstream and tissues. Loss of innate immune cells or

defects in their antifungal activities have major implications for the host. Candida cells are rec-

ognized through key PAMPs, some of which are located in the cell wall; for example, β-glu-

cans, chitin, and mannans. These components are sensed by the multiple pattern-recognition

receptors (PRRs) expressed by phagocytic cells or secreted (for example, complement compo-

nents). PPRs mediate binding of the pathogen to the phagocyte, and the PAMP–PRR interac-

tions trigger intracellular signaling pathways within the immune cells that can induce

phagocytosis and the production of proinflammatory cytokines and chemokines. In order to

attenuate recognition and escape phagocytosis, Candida cells are able to actively mask cell-wall

PAMPs [129] and secrete specific proteases that target complement opsonization [130]. Alter-

natively, some Candida species can induce their phagocytic uptake into endothelial and epithe-

lial cells and use these cells as “safe houses” by preventing maturation of the phagolysosome

and subsequent killing [131]. If none of these strategies is employed, Candida cells are likely to

be internalized and subjected to a combination of toxic oxidative and nonoxidative mecha-

nisms that attempt to kill an intra- or extracellular yeast cell. These oxidative mechanisms

include the production of reactive oxygen and nitrogen species (ROS and RNS, respectively),

while nonoxidative killing mechanisms include the release of antimicrobial peptides and the

induction of processes related to micronutrient restriction. Of note, while C. albicans is sensi-

tive to the combinatorial stresses imposed by phagocytes [132], C. glabrata has adapted to sur-

vive within the inhospitable environment of the phagosome. This pathogen mounts robust

stress responses against the ROS implemented by the phagocytic cell and neutralizes the

phagocytic environment, thereby escaping phagocytosis [133].

Oxidative, nitrosative, and osmotic/cationic stresses

Phagocytic cells attempt to kill pathogens in part by employing toxic ROS and RNS, either

intracellularly or extracellularly, as a major antimicrobial defense mechanism. ROS are pro-

duced by the NADPH oxidase complex, a process known as respiratory burst, and include

chemicals such as the superoxide anion (O2
•), hydrogen peroxide (H2O2), and the hydroxyl

radicle (•OH). Furthermore, ROS production in response to C. albicans infection has been

shown to lead to the recruitment of additional phagocytes, creating a toxic oxidative environ-

ment for the fungus [134]. Inside phagocytes, ROS can interact with nitric oxide (NO), gener-

ating toxic products such as peroxynitrite [135]. These toxic chemicals cause irreversible

damage to the pathogen by interacting with proteins, lipids, and nucleic acids.

Candida species attempt to counteract these stresses by activating cellular responses that

include the activation of genes encoding proteins involved in stress detoxification and repara-

tion. These include catalase, superoxide dismutases, glutathione peroxidases, and thioredoxins

(Fig 6a) [136–138]. In C. albicans and C. glabrata, these stress pathways are regulated largely

by the Hog1 stress-activated protein kinase [136,139], the transcription factor Cap1 [140–142],

and the Rad53 DNA damage checkpoint kinase [143]. Together with the transcription factor

Cta4, these signaling pathways play key roles in orchestrating the responses to osmotic, oxida-

tive, and nitrosative stresses in these species [144]. In this way, these regulators promote the fit-

ness of C. albicans during systemic infection. Indeed, mutants lacking these genes display

attenuated virulence in mice, as well as impaired tolerance to these stresses in vitro and phago-

cytic survival [145,146]. Curiously, the oxidative stress response is delayed if the fungus is

simultaneously exposed to cationic and oxidative stress [147]. This is thought to contribute to

the ability of phagocytic cells to efficiently kill invading pathogens (Fig 6a) [132]. Given the

importance of these stress response pathways for Candida survival, key molecular players

involved may represent attractive targets for antifungal development.
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Fig 6. Host immune defenses and adaptation mechanisms displayed by C. albicans and C. glabrata. (a) Cap1 plays a key role in

the activation of responses to ROS generated by phagocytic cells, leading to the induction of oxidative stress genes (XS genes),

including catalase, superoxide dismutases, glutathione peroxidases, and thioredoxins, among others. However, cations inhibit

catalase and Cap1, thereby delaying the induction of the oxidative stress response and leading to the death of C. albicans cells. (b)

Host-enforced micronutrient restriction results in reduced iron, copper, and zinc availability, but C. albicans responds by up-

regulating efficient metal-scavenging strategies. Host phagocytes also exploit the toxicity of copper and zinc by pumping these metals

in excess into phagosomes to intoxicate internalized pathogens. NOS, nitric oxide species; PM, plasma membrane; ROS, reactive

oxygen species; Sod, superoxide dismutase; XS, oxidative stress.

https://doi.org/10.1371/journal.ppat.1008478.g006
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Host-enforced micronutrient restriction

The limitation of micronutrients such as iron, copper, zinc, or manganese is an effective way

of controlling the outgrowth of invading microbes. These micronutrients are essential for the

survival of both host and pathogen because they function as cofactors for enzymes, transcrip-

tion factors, and other proteins that play crucial biochemical and cellular functions. However,

our immune system attempts to restrict microbial access to these essential elements via a

mechanism known as nutritional immunity [148].

Iron has well-studied implications for Candida pathogenesis, being a crucial micronutrient

for Candida growth, survival, and virulence [149]. During systemic candidiasis, the host

restricts this metal by increasing the levels of iron-binding proteins, such as ferritin and hemo-

globin alpha, and accumulating heme oxygenase (Fig 6b) [150,151]. Both C. albicans and C.

glabrata have developed efficient iron-scavenging strategies that can overcome these host

mechanisms. This contributes to their ability to survive phagocytosis and replicate inside mac-

rophages by using their intracellular storages of iron [152,153]. C. albicans and C. glabrata
cells exploit sophisticated iron-uptake systems to acquire either free iron [154,155] or iron

from host iron-binding proteins, including hemoglobin [156], ferritin [82], and transferrin

(Fig 6b). Additionally, the utilization of siderophores promotes resistance to macrophage kill-

ing: in C. glabrata, the Sit1 siderophore-iron transporter mediates iron acquisition, being criti-

cal for the survival of the yeast inside macrophages [152].

Copper is also involved in Candida virulence, both positively and negatively. The fungal

reductive iron-uptake pathway includes multicopper oxidases, and hence, iron acquisition and

mobilization depends on copper availability [157]. Interestingly, the host also uses copper as a

defense mechanism against Candida by pumping excess quantities of this metal into Candida-

containing phagosomes (Fig 6b) [158]. However, C. albicans adapts to this potential killing

mechanism by differentially modulating the expression of copper- and manganese-dependent

SODs (Sod1 and Sod3, respectively) [159]. Sod1 is expressed when copper is in excess, but

when copper levels decline, Sod3 is then expressed (Fig 6b) [159]. Thus, during infection, C.

albicans is able to adjust copper uptake and management by using it as an enzymatic cofactor

for SOD enzymes [159].

Zinc is an abundant micronutrient that has crucial roles in cellular functionality for both

host and pathogen. The host attempts to limit zinc availability for the fungus by depleting

extracellular zinc levels, mainly via calprotectin, an antimicrobial peptide expressed by neutro-

phils that binds zinc and manganese with high affinity (Fig 6b) [160]. Calprotectin promotes

the antimicrobial activity of neutrophil extracellular traps (NETs), which are released by neu-

trophils after sensing large microbes such as C. albicans hyphae [161–163]. Zinc depletion also

occurs inside immune cells as an antifungal mechanism to kill intracellular pathogens such as

C. albicans and C. glabrata [164]. During infection, macrophages deplete intracellular zinc by

pumping it into the Golgi apparatus via specific ZnT-type zinc transporters (Fig 6b) and

increasing the expression of zinc-binding metallothioneins [165]. Additionally, macrophages

up-regulate the zinc importer ZIP2 to increase the intracellular levels of zinc (Fig 6b) [166].

This combination of strategies depletes zinc from the extracellular environment while dealing

with the increased metabolic demands associated with microbial clearing [166]. To overcome

zinc depletion, C. albicans overexpresses ZRT1 and ZRT2 genes, encoding zinc uptake trans-

porter systems Zrt1 and Zrt2 (Fig 6b). Both transporters are regulated by the zinc finger tran-

scription factor Zap1 (also known as Csr1) [167,168] and by pH [79]. Zinc transporters play

important roles in Candida pathogenesis because overexpression of Zrt2 increases C. albicans
virulence [169]. In addition to functioning as a zinc transporter, Zrt1 also serves as a receptor

for the Pra1 zincophore [79,168], a secreted protein that binds and sequesters zinc from host
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cells during C. albicans invasion (Fig 6b) [170]. Similarly to copper, zinc has also been reported

to be pumped in higher amounts into the phagosome to intoxicate internalized pathogens,

constituting an important mechanism of killing (Fig 6b) [171].

Environment-triggered biofilm formation and antifungal resistance

So far, we have described major molecular circuits required by Candida species to counteract

several constraints they face in the human host. The ability of Candida to adapt to these

stresses imparts the flexibility to colonize diverse host niches. The physiological capacity to

respond efficiently to stress and survive hostile environments also endows the fungal cells with

the advantage of being better prepared for future insults [172,173]. The generation of biofilms

might represent another strategy to resist harsh conditions and persist in the human host.

The Candida species most frequently associated with the formation of biofilms, either in

host tissues or implanted medical devices, are C. albicans, C. glabrata, C. tropicalis, and C.

parapsilosis [174]. Biofilms represent three-dimensional communities of adherent cells, with

distinct biological properties, that are embedded in a self-synthesizing extracellular matrix

(ECM) composed predominantly of proteins, glycoproteins, carbohydrates, lipids, and nucleic

acids [175]. The ECM helps to maintain the overall structural integrity of the biofilm, and it

also acts as a physical barrier to drug penetration. Consequently, biofilm cells can survive drug

concentrations more than a thousand times higher than those defined for planktonic cells

[176]. This phenotype is partly associated with the sequestration of drugs by the biofilm ECM

and partly with the occurrence of a subpopulation of so-called “persister cells”. Persister cells

exhibit a dormant-like physiology that has been demonstrated to make them highly resistant

to antifungals [177]. These features contribute to the intrinsic resistance of Candida biofilms

to conventional antifungal treatments, the host immune system, and other environmental per-

turbations, making biofilm-based infections a clinical challenge.

Genome-wide transcriptional profiling and proteomic approaches have identified hundreds

of genes that are differentially expressed between C. albicans biofilm and planktonic cells. The

up-regulation of glycolytic and sulfur amino acid genes, similar to what is observed when cells

grow under hypoxia, suggests that Candida biofilms constitute a heterogeneous environment

with hypoxic niches [178]. Moreover, more than 50 transcriptional regulators and 101 other

genes have functionally validated roles in the formation of Candida biofilms [179–181]. Some

of these play important roles in hyphal formation, adhesion, drug resistance, and matrix pro-

duction (all intrinsic characteristics of biofilms), as well as in stress adaptation. It is not surpris-

ing, then, that adaptation to specific environmental niches modulates the ability of cells to

form biofilms and, consequently, to resist antifungals [54,55,58,59,182–184].

Final remarks and future perspectives

Candida cells regulate specific sets of genes, including many involved in an array of stresses

and metabolic pathways, in order to thrive and persist in the human host. In addition to con-

ferring metabolic flexibility and stress resistance, the physiological reprogramming has been

associated with enhanced virulence through impaired immune recognition, increased biofilm

formation, and/or acquired antifungal tolerance and resistance. Although remarkable progress

has been made in the last few decades in our understanding of the impact of host-derived

stresses on Candida physiology and pathogenicity, many details remain unclear. During an

infection, Candida cells are exposed to multiple environmental constraints, sometimes

imposed consecutively, and at other times imposed simultaneously. Yet, in vitro experiments

are predominantly designed to study individual environmental signals, often at single time

points, rather than combinatorial stresses over time. Much progress has been achieved using
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the first approach. While this has given us valuable insights, it rather oversimplifies biological

reality. The analysis of combinatorial stresses and of the dynamism of these inputs would

mimic host conditions more closely and reveal more detailed views of which stress or stresses

prevail and dictate the outcome of different types of infection. The same principle applies to

infection and biofilm models, in which usually interactions between only a few different

microbial populations have generally been examined. Most knowledge in the field comes from

studies of either C. albicans or C. glabrata. Yet, the regulatory circuits required to effectively

respond to each constraint, including antifungal treatments, differ considerably between the

different Candida species, illustrating how heterogeneous these pathogens are. With the

unprecedented emergence of multidrug resistant species such as C. auris, there is an urgent

need to develop new effective antifungals. The integration of omics data with in vivo models,

which mimic host conditions more closely, is now a powerful strategy to unravel molecular

processes underlying adaptive phenotypes. These platforms have already produced novel lines

of research and improved the identification of new potential therapeutic targets for vaccine

and antifungal drug development, enhancing our ability to develop novel strategies to fight

Candida infections.

References
1. Kumamoto CA. Inflammation and gastrointestinal Candida colonization. Current Opinion in Microbiol-

ogy. 2011; 14(4): 386–391. https://doi.org/10.1016/j.mib.2011.07.015 PMID: 21802979

2. Limon JJ, Skalski JH, Underhill DM. Commensal Fungi in Health and Disease. Cell Host Microbe.

2017; 22: 156–165. https://doi.org/10.1016/j.chom.2017.07.002 PMID: 28799901

3. Cauchie M, Desmet S, Lagrou K. Candida and its dual lifestyle as a commensal and a pathogen. Res

Microbiol. 2017; 168: 802–810. https://doi.org/10.1016/j.resmic.2017.02.005 PMID: 28263903

4. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat

Rev Dis Prim. 2018; 4: 18026. https://doi.org/10.1038/nrdp.2018.26 PMID: 29749387

5. Tsai M-H, Hsu J-F, Yang L-Y, Pan Y-B, Lai M-Y, Chu S-M, et al. Candidemia due to uncommon Can-

dida species in children: new threat and impacts on outcomes. Sci Rep. 2018; 8: 15239. https://doi.

org/10.1038/s41598-018-33662-x PMID: 30323257

6. Singh S, Sobel JD, Bhargava P, Boikov D, Vazquez JA. Vaginitis Due to Candida krusei: Epidemiol-

ogy, Clinical Aspects, and Therapy. Clin Infect Dis. 2002; 35(9): 1066–1070. https://doi.org/10.1086/

343826 PMID: 12384840

7. Bougnoux ME, Brun S, Zahar JR. Healthcare-associated fungal outbreaks: new and uncommon spe-

cies, new molecular tools for investigation and prevention. Antimicrobial Resistance and Infection Con-

trol. 2018; 7: 45. https://doi.org/10.1186/s13756-018-0338-9 PMID: 29599969

8. Kohlenberg A, Struelens MJ, Monnet DL, Plachouras D, Apfalter P, Lass-Flörl C, et al. Candida auris:

Epidemiological situation, laboratory capacity and preparedness in European Union and European

economic area countries, 2013 to 2017. Eurosurveillance. 2018; 23(13): 18–00136. https://doi.org/10.

2807/1560-7917.ES.2018.23.13.18-00136

9. Morrell M, Fraser VJ, Kollef MH. Delaying the empiric treatment of Candida bloodstream infection until

positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob

Agents Chemother. 2005; 49(9): 3640–3645. https://doi.org/10.1128/AAC.49.9.3640-3645.2005

PMID: 16127033

10. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resis-

tance: prevalence, mechanisms, and management. The Lancet Infectious Diseases. 2017; 17(12):

e383–e392. https://doi.org/10.1016/S1473-3099(17)30316-X PMID: 28774698

11. Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. Twenty years of the SENTRY Anti-

fungal Surveillance Program: Results for Candida species from 1997–2016. Open Forum Infect Dis.

2019; 6(Suppl. 1): S79–S94. https://doi.org/10.1093/ofid/ofy358 PMID: 30895218

12. Nobile CJ, Johnson AD. Candida albicans Biofilms and Human Disease. Annu Rev Microbiol. 2015;

69: 71–92. https://doi.org/10.1146/annurev-micro-091014-104330 PMID: 26488273

13. Demers EG, Biermann AR, Masonjones S, Crocker AW, Ashare A, Stajich JE, et al. Evolution of drug

resistance in an antifungal-naive chronic Candida lusitaniae infection. Proc Natl Acad Sci U S A. 2018;

115(47): 12040–12045. https://doi.org/10.1073/pnas.1807698115 PMID: 30389707

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008478 May 21, 2020 15 / 24

https://doi.org/10.1016/j.mib.2011.07.015
http://www.ncbi.nlm.nih.gov/pubmed/21802979
https://doi.org/10.1016/j.chom.2017.07.002
http://www.ncbi.nlm.nih.gov/pubmed/28799901
https://doi.org/10.1016/j.resmic.2017.02.005
http://www.ncbi.nlm.nih.gov/pubmed/28263903
https://doi.org/10.1038/nrdp.2018.26
http://www.ncbi.nlm.nih.gov/pubmed/29749387
https://doi.org/10.1038/s41598-018-33662-x
https://doi.org/10.1038/s41598-018-33662-x
http://www.ncbi.nlm.nih.gov/pubmed/30323257
https://doi.org/10.1086/343826
https://doi.org/10.1086/343826
http://www.ncbi.nlm.nih.gov/pubmed/12384840
https://doi.org/10.1186/s13756-018-0338-9
http://www.ncbi.nlm.nih.gov/pubmed/29599969
https://doi.org/10.2807/1560-7917.ES.2018.23.13.18-00136
https://doi.org/10.2807/1560-7917.ES.2018.23.13.18-00136
https://doi.org/10.1128/AAC.49.9.3640-3645.2005
http://www.ncbi.nlm.nih.gov/pubmed/16127033
https://doi.org/10.1016/S1473-3099(17)30316-X
http://www.ncbi.nlm.nih.gov/pubmed/28774698
https://doi.org/10.1093/ofid/ofy358
http://www.ncbi.nlm.nih.gov/pubmed/30895218
https://doi.org/10.1146/annurev-micro-091014-104330
http://www.ncbi.nlm.nih.gov/pubmed/26488273
https://doi.org/10.1073/pnas.1807698115
http://www.ncbi.nlm.nih.gov/pubmed/30389707
https://doi.org/10.1371/journal.ppat.1008478


14. Thompson DS, Carlisle PL, Kadosh D. Coevolution of morphology and virulence in Candida species.

Eukaryotic Cell. 2011; 10(9): 1173–1182. https://doi.org/10.1128/EC.05085-11 PMID: 21764907

15. Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in

the mammalian host. Nature Reviews Microbiology. 2017; 15(2): 96–108. https://doi.org/10.1038/

nrmicro.2016.157 PMID: 27867199

16. Tao L, Du H, Guan G, Dai Y, Nobile CJ, Liang W, et al. Discovery of a “White-Gray-Opaque” Tristable

Phenotypic Switching System in Candida albicans: Roles of Non-genetic Diversity in Host Adaptation.

PLoS Biol. 2014; 12(4): e1001830. https://doi.org/10.1371/journal.pbio.1001830 PMID: 24691005

17. Pande K, Chen C, Noble SM. Passage through the mammalian gut triggers a phenotypic switch that

promotes Candida albicans commensalism. Nat Genet. 2013; 45(9): 1088–1091. https://doi.org/10.

1038/ng.2710 PMID: 23892606

18. Hopke A, Brown AJP, Hall RA, Wheeler RT. Dynamic Fungal Cell Wall Architecture in Stress Adapta-

tion and Immune Evasion. Trends in Microbiology. 2018; 26(4): 284–295. https://doi.org/10.1016/j.tim.

2018.01.007 PMID: 29452950

19. Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N. The Fungal Cell Wall: Candida, Cryp-

tococcus, and Aspergillus Species. Frontiers in Microbiology. 2020; 10: 2993. https://doi.org/10.3389/

fmicb.2019.02993 PMID: 31993032

20. Johnston M. Feasting, fasting and fermenting: Glucose sensing in yeast and other cells. Trends in

Genetics. 1999; 15(1): 29–33. https://doi.org/10.1016/s0168-9525(98)01637-0 PMID: 10087931

21. Ene IV., Brunke S, Brown AJP, Hube B. Metabolism in fungal pathogenesis. Cold Spring Harb Per-

spect Med. 2014; 4(12): a019695. https://doi.org/10.1101/cshperspect.a019695 PMID: 25190251

22. Carlson M. Glucose repression in yeast. Curr Opin Microbiol. 1999; 2(2): 202–207. https://doi.org/10.

1016/S1369-5274(99)80035-6 PMID: 10322167

23. Yin Z, Smith RJ, Brown AJP. Multiple signalling pathways trigger the exquisite sensitivity of yeast glu-

coneogenic mRNAs to glucose. Mol Microbiol. 1996; 20(4): 751–764. https://doi.org/10.1111/j.1365-

2958.1996.tb02514.x PMID: 8793872
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