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ABSTRACT
◥

Purpose: Despite extensive genomic and transcriptomic profil-
ing, it remains unknown how signaling pathways are differentially
activated and how tumors are differentially sensitized to certain
perturbations. Here, we aim to characterize AKT signaling activity
and its association with other genomic or IHC-based PI3K/AKT
pathway biomarkers as well as the clinical activity of ipatasertib
(AKT inhibitor) in the FAIRLANE trial.

Experimental Design: In FAIRLANE, 151 patients with early
triple-negative breast cancer (TNBC) were randomized 1:1 to
receive paclitaxel with ipatasertib or placebo for 12 weeks prior to
surgery. Adding ipatasertib did not increase pathologic complete
response rate and numerically improved overall response rate by
MRI. We used reverse-phase protein microarrays (RPPA) to exam-
ine the total level and/or phosphorylation states of over 100 proteins
in various signaling or cell processes including PI3K/AKT and

mTOR signaling. One hundred and twenty-five baseline and 127
on-treatment samples were evaluable by RPPA, with 110 paired
samples at both time points.

Results: Tumors with genomic/protein alterations in PIK3CA/
AKT1/PTEN were associated with higher levels of AKT phosphor-
ylation. In addition, phosphorylated AKT (pAKT) levels exhibited a
significant association with enriched clinical benefit of ipatasertib,
and identified patients who received benefit in the absence of
PIK3CA/AKT1/PTEN alterations. Ipatasertib treatment led to a
downregulation of AKT/mTORC1 signaling, which was more
pronounced among the tumors with PIK3CA/AKT1/PTEN altera-
tions or among the responders to the treatment.

Conclusions:We showed that the high baseline pAKT levels are
associated with the alterations of PI3K/AKT pathway components
and enriched benefit of ipatasertib in TNBC.

Introduction
The PI3K/AKT signaling pathway, which regulates multiple cel-

lular processes including mRNA translation, metabolism, survival,
proliferation, and differentiation, is one of the most frequently
dysregulated pathways in many types of human cancers (1). Aberrant
activation of the PI3K/AKT signaling axis is commonly observed in
breast cancer and emerges as a potential target in triple-negative
breast cancer (TNBC; refs. 2, 3). Combined activating mutations in
PIK3CA andAKT1, with loss-of-function or low expression in PTEN,
occur in approximately 30% to 50% of TNBC (4–6).

Ipatasertib is a potent and highly selective oral small-molecule
inhibitor of all three isoforms of AKT (7, 8) and is being evaluated
in cancers with a high prevalence of genomic alterations in PI3K/AKT
pathway including breast cancer (4, 5) and prostate cancer (9, 10).
FAIRLANE is a double-blinded, placebo-controlled randomized phase
II trial of neoadjuvant ipatasertib plus paclitaxel (IPATþPAC) for
early TNBC (eTNBC; ref. 5). In this trial, pathologic complete re-
sponse (pCR) rate with IPATþPAC versus placebo plus paclitaxel
(PBOþPAC) were 17% and 13%, respectively (5). Adding ipatasertib
showed a numeric increase in overall response rate (ORR) assessed by
MRI, from 56% with PBOþPAC to 67% with IPATþPAC (5). The
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antitumor effect of ipatasertib was enriched in a subset of patients with
PIK3CA/AKT1/PTEN-altered tumors by next-generation sequencing
(NGS) or tumors with low PTEN expression assessed by IHC (5),
similarly observed in other studies (4, 9, 10). On the other hand,
although genomic/protein alteration(s) of PIK3CA/AKT1/PTEN
represents a key mechanism of PI3K/AKT pathway activation, there
is a myriad of other mechanisms with a potential to lead to signaling
activation (11). Given that the signal transduction pathway is exqui-
sitely modulated at multiple levels, it remains unclear how the PI3K
pathway genomic/protein alterations actually translate into the func-
tional PI3K/AKT signaling activity outputs in patients’ tumors. Impor-
tantly, while the known mechanism of action of ipatasertib is to
physically bind with AKT and modulate its kinase activity, it also
remains to be understood whether the pretreatment baseline state of
phosphorylation-modulated PI3K/AKT signaling activities in the
tumor might predict response to ipatasertib treatment in the clinic.

TNBC is a clinically heterogeneous subtype of breast cancer
with distinct molecular subtypes that vary in prognosis and show
differential response to targeted, immune, or chemotherapeutic
agents (12, 13). Although gene expression together with genomic
profiling has generatedmany insights in the biology of TNBC (14–16),
there remains a strong need for protein-based assays that can assess the
state of signaling networks which cannot be accurately described at the
genomic or transcriptomic level.

Here, we deployed reverse-phase protein microarray (RPPA), a
quantitative proteomics approach that allows simultaneous measure-
ment of numerous protein phosphorylation states in small quantities
of patients’ tumor samples (17–20). Using this approach, coupled with
Laser Capture Microdissection (LCM) to enrich for tumor epithelial
cells, we analyzed over 100 proteins/phosphoproteins representing a
variety of key “hubs” in important signaling pathways and cellular
processes that are commonly dysregulated in human cancers. LCM-
based cellular enrichment is key to ensure accurate measurement of
protein and protein phosphorylation in tumor cells since signaling
pathway components like AKT are ubiquitously expressed and dif-
ferentially activated in every human cell type (21, 22). Based on the
knownmechanism of action of ipatasertib as an AKT kinase inhibitor,
we first sought to assess the association of PI3K/AKT pathway

alterations and AKT or mTORC1 activities measured by protein
phosphorylation via RPPA, as well as the predictive value of AKT
and mTORC1 activities with ipatasertib treatment effect. We also
assessed the pharmacodynamic effect of ipatasertib on PI3K/AKT and
other cell signaling activities from the paired pretreatment and on-
treatment tumor biopsies.

Materials and Methods
Patients and molecular assays

The design and outcomes of the placebo-controlled double-
blind randomized phase II FAIRLANE trial (ClinicalTrials.gov:
NCT02301988) was described previously (5). The study conformed
with the International Conference onHarmonization (ICH) E6 guide-
line for Good Clinical Practice and principles of the Declaration of
Helsinki (or local laws and regulations, whichever afforded greater
protection to individuals). All study-related materials were approved
by each participating center’s Institutional Review Board or Ethics
Committee prior to study initiation. All patients provided written
informed consent. Tumor sample collections, NGS testing, IHC assay,
and RNA sequencing (RNA-seq) of tumor samples were described (5).

Microdissection and cellular lysate arraying
Enriched epithelial cell populations were isolated from 8-mm cryo-

sections (>95% purity) of tissue using an Arcturus Pixcell IIe LCM
system (Arcturus) as previously described (23). Approximately 10,000
epithelial cells were captured for each sample at the pretreatment and
C1D8 time points. Microdissected material was stored at �80�C and
samples were lysed as described (19). Cell lysates were printed in
triplicate spots (approximately 10-nL per spot) onto nitrocellulose
coated slides (Grace Biolabs) using a Quanterix 2470 Arrayer
(Quanterix). Standard curves of control cell lysates were also included
for quality assurance purposes. The proteins and phosphoproteins
measured in this study (endpoints, 110 in total) are listed in Supple-
mentary Table S1. Immunostaining and scanning of arrays was
performed as described (19).

Analysis of RPPA data
RPPA data was generated from scanned arrays as previously

described (18). For each data point, the signal intensity was normalized
first by subtraction of the negative control spot intensity and then
divided by the total protein amount. The normalized expression values
from three technical replicates were averaged using geometric mean.
Data was then log2 transformed after adding an offset of 1. Endpoints
with high variabilities [>15 out of 260 samples with coefficient of
variation (CV) greater than 5%] were filtered out. Samples with
missing values in more than 20 out of 110 endpoints were also
removed. Endpoints with zero expression were imputed with the
minimal expression of a given endpoint across all the samples and
missing values were imputed with the median expression.

Bioinformatic analysis
Differential analysis of expression of individual endpoints between

PIK3CA/AKT1/PTEN genomic/protein altered and nonaltered was
conducted using the limma package (24) with vooma observational-
level weights (25). Analysis of signaling scores [phosphorylated AKT
(pAKT) activity, AKT score, andmTORC1 score] was performed with
a standard linear model using the lm function, where P values were
computed based on the two-sided t test. Differential expression
analysis between baseline and C1D8was performed with limmamixed
model (24) for the individual endpoints, where subject IDwas used as a

Translational Relevance

Triple-negative breast cancer (TNBC) is an aggressive form of
breast cancer with poor prognosis and high recurrence and metas-
tasis rate, highlighting the need for more effective therapeutic
approaches with appropriate diagnostic biomarkers. Due to the
molecular heterogeneity of TNBC, a key aspect for targeted therapy
is identifying tumors that are most likely to be sensitive to the
specific oncogenic signaling perturbation to maximize the clinical
benefit. Here, we showed that PIK3CA/AKT1/PTEN alterations,
together withmultiple cell signaling activities, modulate the level of
phosphorylated AKT (pAKT) on Serine473 and Threonine308.
Importantly, tumors with high pAKT levels exhibited the strongest
association with enriched ipatasertib activity, suggesting that the
pAKT-high tumors aremost addicted to AKT signaling. This study
provides proof-of-concept that the baseline phosphorylation levels
of AKT, the direct target of ipatasertib, could have predictive value
and may possess an improved means of biomarker-based patient
selection for AKT inhibitors and diagnostic utility for precision
medicine.
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blocking variable to account for the paired nature of this data. P values
were adjusted using the Benjamini–Hochberg procedure for multi-
testing and results with adjusted P values were shown.

Data availability statement
Data has been deposited at the European Genome-phenome

Archive (EGA), which is hosted by the EBI and the CRG, under
accession number EGAS00001005892.

Results
Analysis of cell signaling pathways with integrated activity
scores

Among the 151 patients enrolled in the FAIRLANE study, base-
line tissue samples from 125 patients and on-treatment (C1D8)
samples from 127 patients were evaluable by RPPA, with 110 paired
samples at both time points (Fig. 1A). Baseline characteristic and
clinical outcomes in the RPPA-evaluable populations were repre-
sentative of the overall population (Supplementary Fig. S1; Supple-
mentary Table S2).

First, we analyzed the baseline samples and found that phospho-
proteins involved in the same signaling pathway tend to exhibit the
highest levels of correlations. For instance, all themajor AKT signaling
components measured in this study, including AKT and its known
kinase substrates (PRAS40, FOXO, GSK3), cluster together; likewise,
all the components of the mTORC1 kinase and its known substrates
that we measured (p70S6K, S6RP) were found in another cluster
(Fig. 1B), consistent with them being directly regulated by AKT and
mTORC1, respectively (Fig. 1C). Although AKT and mTORC1 are
often depicted in the linear PI3K-AKT-mTORC1 pathway, the activity
of mTORC1 is actually modulated by many other signaling inputs in
addition to AKT (26–28), explaining the AKT and mTORC1 sub-
strates being in two different clusters.

To describe the state of signaling networks, we calculated an
integrated pathway activation score for each of the key oncogenic
signaling pathways, including AKT, mTORC1, insulin-like growth
factor-1 receptor (IGF-1R), EGFR, HER2, HER3, MAPK, apoptosis,
cell cycle, immune, and JAK-STAT signaling (Supplementary
Table S3; ref. 29). In addition, given that AKT is a central node in
the PI3K/AKT pathway and the target of ipatasertib, we developed two
scores with one to describe the phosphorylation levels on AKT itself
and the other score for AKT activity reflected by the phosphorylation
levels of its direct substrates (Fig. 1C; Supplementary Table S3).
Signaling scores were computed as an average of z-score normalized
expression of individual endpoints included in the module definition
(Supplementary Table S3). Within each pathway, individual compo-
nents tend to exhibit positive correlations to each other (Supplemen-
tary Fig. S2).

pAKT levels are modulated by PI3K/AKT pathway alterations
and additional cell signaling activities

To identify the signaling pathways that were differentially activated
in different biomarker subgroups, we performed a differential expres-
sion analysis first comparing PIK3CA/AKT1/PTEN genomically
altered tumors versus PIK3CA/AKT1/PTEN nonaltered tumors. Of
all endpoints measured, AKT (T308 and S473) and PTEN (S380 and
total) were significantly higher or lower [P value < 0.05, log2 fold
change (FC) > 0.5 or log2FC < �0.5] in PIK3CA/AKT1/PTEN-altered
tumors (Fig. 2A; Supplementary Fig. S3A), whereas low PTEN
expression levels were observed specifically among the PTEN-altered
tumors (Supplementary Fig. S3B).While AKT phosphorylation (T308

and S473) levels were elevated at a population level, the total AKT
levels were not significantly altered in PIK3CA/AKT1/PTEN-altered
tumors (Supplementary Fig. S3B), consistent with posttranslational
modification of AKT by activating oncogenic PIK3CA/AKT1/PTEN
alterations. Consistently, AKT (T308 and S473) and PTEN (S380 and
total) also showed a similar pattern comparing PTEN lowversus PTEN
intact tumors assessed by IHC (Fig. 2B; Supplementary Fig. S3C). On
the other hand, although some AKT substrates showed a trend of
elevation, the integrated AKT pathway score was not significantly
higher in PIK3CA/AKT1/PTEN-altered (NGS) or PTEN-low (IHC)
tumors (Fig. 2A and B).

Despite the elevated pAKT levels, these tumors did not display
significantly elevated levels of downstream mTORC1 activities
(Fig. 2A and B). This is likely due to the multiple additional signaling
inputs (e.g., cellular nutrient and energy levels) that also modulate the
activity of mTORC1 (26–28), resulting in the differential activities of
AKT and mTORC1.

We then focused on the association of genomic PIK3CA/AKT1/
PTEN alterations directly with activation/phosphorylation of the
ipatasertib drug target AKT. We dichotomized pAKT levels into
pAKT-high or pAKT-low using a median cut point. Among the
pAKT-high and pAKT-low samples, 71% and 44% have alterations
in the PIK3CA/AKT1/PTEN NGS/IHC biomarkers, respectively
(Fig. 2C).

To further understand mechanisms beyond PIK3CA/AKT1/PTEN
genomic/protein alteration(s) that might impact the pAKT levels, we
examined other protein or phosphoprotein markers associated with
the pAKT levels, stratified by the status of PIK3CA/AKT1/PTENNGS/
IHC biomarkers (Fig. 2D). Among tumors without genomic/protein
alterations in PIK3CA/AKT1/PTEN (NGS/IHC biomarker negative),
we found an enrichment of multiple markers, including IRS1 total,
PDGFR bY716, CRAF S338,MEK1/2 S217/S221, ERK1/2 T202/Y204,
AKT total, and androgen receptor (AR) among pAKT-high samples
(Fig. 2D and E). The samples with high levels of these markers were
not entirely overlapping (Fig. 2E), indicating possible heterogeneous
mechanisms underlying the high levels of pAKT. For example, the high
levels of phosphorylated MEK (pMEK)/phosphorylated ERK (pERK)
may indicate a common upstream signal, possibly an RTK, that
activates both the PI3K/AKT and MAPK downstream signaling
activities. On the other hand, a subset of samples might have high
pAKT levels due to an upregulation of total AKT rather than post-
translational modification. Lastly, the high AR expression observed in
a subset of pAKT-high samples and its enrichment in the luminal AR
(LAR) subtype prompted us to assess the potential association of
TNBC subtypes (defined by RNA-seq) and pAKT levels. There was an
enrichment of LAR subtypes among the pAKT-high samples regard-
less of the status NGS/IHC biomarkers (Supplementary Fig. S4),
indicating a potential association between LAR subtype and PI3K/
AKT pathway activities beyond known enrichment of PI3KCA/AKT1
alterations among LAR subtype (30). On the other hand, among the
NGS/IHC biomarker positive samples, we found a different set of
markers, including RET Y905 (Fig. 2D and F), that were enriched
among the pAKT-high samples. This suggests that even in the tumors
with genomic/protein alterations in the PIK3CA/PTEN/AKT1 bio-
markers assessed by NGS/IHC, the pAKT levels are still impacted by
many other factors, such as activation by RTK signaling activities as an
example. Additionally, intratumor heterogeneity can also play a role:
among samples with alterations in PIK3CA/AKT1, the normalized
allele frequency of PIK3CA/AKT1 mutations appear to be lower
among the pAKT-low compared with pAKT-high tumors (Supple-
mentary Fig. S5).

pAKT Levels Are Associated with Response to Ipatasertib
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pAKT levels are associated with enriched clinical benefit of
ipatasertib

Next, to understand which protein signaling biomarker(s) were
associated with the tumor response to ipatasertib treatment, we first

focused on the several PI3K/AKT-related biomarkers measured by
RPPA.

The pCR rate with paclitaxel alone in FAIRLANE was lower than
typically observed after neoadjuvant chemotherapy in TNBC (31–33),
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Figure 1.

RPPAanalysis of cell signaling proteins from frozen tumor samples in FAIRLANE study.A,Schematic showing the collection of baseline and cycle 1 day8 (C1D8) tumor
samples for RPPA analysis. Venn diagram shows the number of the baseline and C1D8 RPPA samples. B, Correlation plot showing the pair-wise correlation between
all endpoints measured by RPPA at baseline. The AKT and mTORC1 downstream components cluster tightly together shown in the zoomed plot. C, Diagram of the
AKT/mTORC1 signaling pathway highlighting the phosphorylation sites measured by RPPA in this study. pAKT activity, AKT score, and mTORC1 score were
calculated by the phosphorylation levels of AKT itself, AKT, and mTORC1 direct substrates, respectively.
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likely due to the absence of anthracycline and cyclophosphamide.
Despite the numeric increase in pCR among the pAKT-high, AKT
score–high, and mTORC1 score–high subgroups, the difference
between the two arms was not statistically significant (Fig. 3A),

which could be at least partially due to the very low pCR rate in the
control arm.

We then examined tumor ORR by MRI and found that the pAKT-
high but not mTORC1 score–high subgroup showed a significantly
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Figure 2.

pAKT levels are modulated by PI3K/AKT pathway alterations and additional cell signaling activities. Boxplot showing the levels of pAKT activity, AKT score,
and mTORC1 scores in PIK3CA/AKT1/PTEN-nonaltered compared with -altered tumors assessed by NGS in A, and in PTEN-intact compared with PTEN-loss
tumors assessed by IHC in B. C, Tile plot showing the overlap of pAKT activity, the status of PIK3CA/AKT1/PTEN alteration by NGS, and PTEN expression by
IHC. D, Differential expression analysis between pAKT-high and pAKT-low tumors, stratified by the status of PI3K/AKT pathway biomarkers assessed by
NGS and IHC. NGS/IHC biomarker negative: PIK3CA/AKT1/PTEN nonaltered and PTEN intact; NGS/IHC biomarker positive: PIK3CA/AKT1/PTEN altered and/
or PTEN low. Heat maps showing the differentially expressed endpoints comparing pAKT-high and pAKT-low tumors (adjusted P value < 0.1), in NGS/IHC
biomarker–negative (E) and NGS/IHC biomarker–positive (F) samples, respectively. pAKT_activity_strat, stratifying pAKT activity using a median cut
point. TNBC subtypes include: basal-like 1 (BL1); basal-like 2 (BL2); immunomodulatory (IM); LAR; mesenchymal (M); mesenchymal stem–like (MSL). Adj.,
adjusted.
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higherORRwith ipatasertib (Fig. 3B). TheAKT score–high group also
exhibited a trend of higher ORR with ipatasertib, however it was not
statistically significant (Fig. 3B). In contrast, the level of total AKTwas
not associated with enriched benefit of ipatasertib (Supplementary
Fig. S6). We also examined the change in sum of the longest diameters
(SLD) of the target lesions, stratified by the levels of pAKT. Consis-

tently, only the pAKT-high but not the pAKT-low subgroup showed a
significantly deeper decrease in SLD with ipatasertib (Supplementary
Fig. S7).

We continued to ask whether the enriched benefit of ipatasertib
among pAKT-high subgroup was actually attributed to the genomic/
protein alterations in PI3K/AKT components. To this end, we
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High pAKT levels are associated with enriched benefit of ipatasertib treatment. A, Bar plot showing the pCR in the IPATþPAC versus PBOþPAC arms, among
different biomarker-selected patient subpopulations. B, Bar plot showing the ORR (MRI) in the IPATþPAC versus PBOþPAC arms, among different biomarker-
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Shi et al.

Clin Cancer Res; 28(5) March 1, 2022 CLINICAL CANCER RESEARCH998



analyzed the ORR among the four subgroups with the two biomarkers
(PIK3CA/AKT1/PTEN NGS/IHC biomarker status and pAKT level):
NGS/IHC biomarker negative, pAKT-low (n ¼ 33); NGS/IHC bio-
marker negative, pAKT-high (n ¼ 17); NGS/IHC biomarker positive,
pAKT-low (n ¼ 26); and NGS/IHC biomarker positive, pAKT-high
(n¼ 41). Remarkably, increased ORRwith ipatasertib was observed in
the two pAKT-high subgroups regardless of the NGS/IHC biomarker
status (Fig. 3C). The NGS/IHC biomarker negative, pAKT-high
subgroup had a small sample size (n¼ 17) and did not reach statistical
significance despite the clear trend. In contrast, pAKT-low subgroups
showed no difference in ORR between the two arms, even with the
NGS/IHC biomarker–positive subgroup (Fig. 3C). Taken together,
these findings suggest that high pAKT levels are ultimately associated
with the ipatasertib benefit, independently of the presence of PI3KCA/
AKT1/PTEN genomic alterations or PTEN IHC status.

Ipatasertib increases the response rate of slow-dividing tumors
To explore what additional biomarkers are associated with the

clinical benefit of ipatasertib, we asked what biomarker subgroup(s)
could have a significantly higher ORR in the IPATþPAC arm com-
pared with the PBOþPAC arm. Among all the signaling modules
evaluated, pAKT-high and cell cycle score–low subgroups showed
significantly higher ORR when ipatasertib was added to the treatment
(Fig. 4A). Of note, there was no obvious association between the cell
cycle score and pAKT levels or PIK3CA/AKT1/PTEN NGS/IHC
biomarker status, indicating that their associations with ipatasertib
treatment benefit were independent (Supplementary Fig. S8). Low
levels of Ki-67 and RB S780, two markers composed of the cell cycle
score, were both associated with lower ORR in the PBOþPAC arm
(Fig. 4B and C). Since paclitaxel can kill tumor cells as a consequence
of mitotic arrest through stabilization of microtubules, slow-dividing
tumors might be less sensitive to this mode of action. On the other
hand, the low ORR in the cell cycle–low subgroup was rescued by the
addition of ipatasertib to the treatment (Fig. 4B andC), suggesting that
at least a subset of these tumors is still vulnerable to the inhibition of
AKT signaling.

Although not statistically significant, tumors with HER2-high or
HER3-high scores also showed a trend of improved ORR in the
IPATþPAC arm compared with the PBOþPAC arm (Fig. 4A).
Activation of HER family phosphoproteins among a subset of
TNBC tumors has been reported to be associated with response
to neratinib treatment (19). These tumors might also be sensitized
to the inhibition of AKT which acts downstream of HER2 family
RTKs. Furthermore, JAK/STAT-low but not JAK/STAT-high
tumors tend to be associated with higher ORR when ipatasertib
was added to the treatment (Fig. 4A). Consistent with this obser-
vation, it has been reported that a JAK2/STAT5-evoked feedback
loop can dampen the efficacy of PI3K/mTOR inhibition (34).
Therefore, cotargeting both pathways might be a therapeutic strat-
egy to maximize the treatment efficacy.

Ipatasertib treatment leads to robust downregulation of AKT
and mTORC1 signaling activities

On-treatment changes in signaling activities were evaluated in the
110 samples with paired baseline and C1D8 samples evaluable by
RPPA (Fig. 1A). Indeed, phosphorylation levels of multiple AKT or
mTORC1 signaling components were significantly downregulated
with the ipatasertib treatment, including S6RP S235/236 and S6RP
S240/244, PRAS40 T246, and p70S6K S371 (Fig. 5A and B). Mean-
while, phosphorylation levels of AKT T308 and AKT S473 were
significantly upregulated with ipatasertib treatment (Fig. 5C), consis-

tent with the previous study showing that ipatasertib restricts phos-
phatase accessibility of AKT (35).

Besides the downregulation of the downstream AKT or mTORC1
signaling activities, we observed a significant upregulation of phos-
phorylation on the insulin receptor (IR) or IGF-1R (Fig. 5A; Supple-
mentary Fig. S9A), possibly due to the feedback reactivation of
the upstream signaling (36–38). Interestingly, robust upregulation of
IR/IGF-1R phosphorylation was observed among the responders
[patients with complete response (CR) or partial response (PR);
Supplementary Fig. S9B and S9C]. This suggests that IR/IGF-1R
phosphorylation is not simply a biomarker of resistance, and its effect
in conferring resistance could depend on the potency of the drug and
levels of pathway reactivation.

We continued to ask whether the degree of signaling inhibition
could be more profound among the patients with PIK3CA/ATK1/
PTEN NGS or IHC biomarker–positive tumors. Indeed, these bio-
marker-selected subgroups overall exhibit a more significant down-
regulation of AKT and mTORC1 activity (Fig. 5D). Furthermore,
baseline pAKT-high tumors also showed a more robust downregula-
tion of AKT and mTORC1 activity (Supplementary Fig. S10). Con-
sistently, we also observed that tumors in responders (CR or PR)
overall exhibited a stronger level of AKT and mTORC1 signaling
inhibition with ipatasertib treatment (Fig. 5E).

Discussion
Driver mutations in key signaling components have been exten-

sively studied over the past few decades, however, the actual associ-
ation of underpinning genetic alterations and signaling activities have
yet to be fully characterized in the clinic. This is partially due to the
operational and technical challenges of performing comprehensive
multi-omic analysis on small biopsy samples. In the FAIRLANE
IPATþPAC trial, we collected fresh frozen tumor biopsies pre- and
post-treatment. This allowed us to perform in-depth molecular pro-
filing at the genomic, transcriptomic, andmost importantly, proteomic
and phosphoproteomic levels in parallel. We found that tumors with
PIK3CA/AKT1/PTEN alterations either by NGS or IHC are indeed
associated with higher levels of AKT protein phosphorylation indic-
ative of AKT activation. However, PIK3CA/AKT1/PTEN alterations at
the genomic level and PTEN expression status at the protein level only
partially explain the functional protein activation/phosphorylation of
pAKT. A significant subset (34%, 17/50) of patients had tumors
without PIK3CA/AKT1/PTEN genomic/protein alterations yet exhib-
ited pAKT-high measurements and had a significantly increased
response rate associated with ipatasertib treatment (73% with
IPATþPAC vs. 50% with PBOþPAC; Fig. 3C). Conversely, another
subset (39%, 26/67) of patients had tumors with PIK3CA/AKT1/
PTEN genomic/protein alterations but had pAKT-low measurement,
and in these patients no increase in response rate was observed when
ipatasertib was added to the chemotherapy treatment (54% with
IPATþPAC vs. 54% with PBOþPAC).

We found that multiple additional factors, including the upstream
RTK activities, total AKT amount, tumor heterogeneity in the driver
mutations, as well as themolecular subtypes (e.g., LAR), all can impact
the overall pAKT levels. As a result, the “genotype” (PIK3CA/AKT1/
PTEN status) only potentiates, but imperfectly predicts the “pheno-
type” (pAKT-high), likely due to the additional layers of regulation in
AKT activities. Importantly, high pAKT levels rather than the status of
PIK3CA/AKT1/PTEN genomic/protein alterations are ultimately
associated with the ipatasertib benefit. This corroborates previous
findings with preclinical models (7, 39).
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Although AKT and mTORC1 are often depicted in the
same PI3K-AKT-mTORC1 pathway, many recent studies have
shown that this is actually not a simple linear signal trans-
duction cascade (40, 41). Here, we found that the proximal
but not the distal biomarker is associated with the alterations
in PIK3CA/AKT1/PTEN. Furthermore, the baseline levels of
pAKT, as the proximal and most direct marker of AKT itself
showed the best predictive value of ipatasertib treatment
response.

Our study has several limitations. The relatively small sample size
rendered the study underpowered to evaluate several endpoints. The
study is retrospective in nature of biomarker analysis and lacks the
long-term survival data after the surgery. To further validate the
findings from this study, additional exploratory biomarker analysis
of the randomized phase III trial IPATunity130 Cohort A
(NCT03337724) is ongoing. Additional prospective studies with
long-term survival follow-up are also needed to further validate the
predictive value of pAKT for ipatasertib treatment.
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Figure 4.

Ipatasertib increases the response rate of slow-dividing tumors. A, Forest plot showing the improvement in ORR with ipatasertib treatment among different
biomarker subgroup(s). Signaling scores calculated fromRPPAwasdichotomized into the lowandhigh subgroups using amedian cut point. Pearsonx2 testwas used
to assess the difference in ORRwith 95% confidence intervals (CI), comparing IPATþPACwith PBOþPAC. (�) P value < 0.05, (.) 0.05 < P value <0.1. Bar plot showing
the ORR (MRI) in the IPATþPAC versus PBOþPAC arms, among Ki67-low and Ki-67 subgroups (B) or RB S780-low and RB S780-high subgroups (C). Darker color
indicates CR and lighter color indicates PR. Adj., adjusted.
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In conclusion, using pAKT as a potential biomarker in this study, we
can identify patients who do not have genomic or protein alterations in
PIK3CA/AKT1/PTEN yet respond to ipatasertib, as well as patients
who have the alterations in PIK3CA/AKT1/PTEN yet do not benefit

from the ipatasertib treatment. This study provides the first proof-of-
concept evidence that the baseline functional protein phosphorylation
levels of AKT might have predictive value for ipatasertib and may
possesses utility for patient selection for AKT inhibitors like ipatasertib.
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Figure 5.

Pharmacodynamic biomarker analysis showing that ipatasertib treatment leads to downregulation of AKT and mTORC1 activities. A, Pharmacodynamic biomarker
analysis showing the endpoints with differential expressions at C1D8 compared with its baseline levels in the PBOþPAC arm, IPATþPAC arm, and the difference
between the two arms.B,Downregulation of S6RP 235/236, S6RP S240/244, PRAS40 T246, and p70S6K S371 levels from baseline to C1D8 in the IPATþPAC arm.C,
Upregulation ofAKT T308 andAKTS473 levels frombaseline toC1D8 in the IPATþPAC arm.D, The changes in phosphoproteinmarkers aremore pronounced among
the PIK3CA/AKT1/PTEN-altered (NGS) and PTEN-low (IHC) subgroups. E, The changes in phosphoprotein markers are more pronounced among responders (CR or
PR) compared with nonresponders (PD or SD). Adj., adjusted; PD, progressive disease; SD, stable disease.
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