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Humanized mice: are we there yet?

 

Francesca Macchiarini, Markus G. Manz, A. Karolina Palucka, and Leonard D. Shultz

 

Animal models have been instrumental in increasing the understanding of 
human physiology, particularly immunity. However, these animal models have 
been limited by practical considerations and genetic diversity. The creation of 
humanized mice that carry partial or complete human physiological systems 
may help overcome these obstacles. The National Institute of Allergy and 
Infectious Diseases convened a workshop on humanized mouse models for 
immunity in Bethesda, MD, on June 13–14, 2005, during which researchers 
discussed the benefits and limitations of existing animal models and offered 
insights into the development of future humanized mouse models.

Introduction

 

Experimental therapy in humans is lim-
ited by technical and ethical consider-
ations, and studies in closely related
nonhuman primates are constrained by
high cost, limited availability, paucity
of genetic models for human diseases,
and lack of genetically inbred strains
suitable for stem cell or tissue trans-
plantation. In contrast, studies in mice
have provided proof of principle for
stem cell transplantation and other
therapies. But rodents are not humans,
and thus experiments performed solely
in mice may not accurately predict
outcomes in humans. This limitation
creates a critical need for effective small
animal models in which human hema-
tolymphoid cells and tissues can be
transplanted and studied. The develop-
ment of these humanized mouse mod-
els, their use in various areas of re-
search, and limitations of the currently
available models are discussed below.

 

Historical perspective

 

The ability to transplant human tissues
into experimental animals benefited

from early studies with fetal sheep (1)
and genetically athymic nude mice. In
fetal sheep, human hematopoietic stem
cells (HSCs) successfully colonized the
bone marrow, persisted for many years,
and retained the ability to differentiate
into multiple cell lineages. But the util-
ity of this model is hampered by cost
and time constraints. Early studies with
T cell–deficient nude mice were dis-
couraging, as these mice failed to sup-
port the growth of transferred human
hematopoietic cells (2). A few years
later, however, the ability to study hu-
man hematopoiesis in experimental
animal models was facilitated by the
discovery of the severe combined
immunodeficiency (

 

Prkdc

 

scid

 

), or SCID
mutation, which results in a lack of
both T and B cells (3). Transplantation
of human hematolymphoid cells into
SCID mice proved more successful, al-
though the number of human cells that
successfully engrafted in the mice was
very low (4). The limited engraftment
was due in part to the rejection of the
cells by the host innate immune re-
sponse. The SCID mutation occurred
on the CB17 strain, which has high
levels of innate immunity, most nota-
bly natural killer (NK) cells, which
eliminated a majority of the transferred
foreign cells. To circumvent this prob-
lem, researchers crossed the SCID mu-
tation onto various strains of inbred
mice with known defects in innate im-
munity. As described below, the trans-
fer of the SCID mutation onto the
nonobese diabetic (NOD) and other
strains has led to better engraftment of

transferred human cells and has facili-
tated studies of HSC development, au-
toimmunity, and infectious diseases in
these humanized mouse models.

 

Immune system reconstitution

 

The study of human hematopoiesis
and the development of a functional
human immune system following
HSC engraftment has benefited from
recent advances in the SCID and other
profoundly immunodeficient mouse
models. These models include mice
with targeted mutations in the recom-
bination activating gene-1 (

 

Rag1

 

) or 2
(

 

Rag2

 

), 

 

�

 

2 microglobulin (

 

B2m

 

), and
perforin (

 

Prf1

 

) genes. The 

 

Rag1

 

null

 

 and

 

Rag2

 

null

 

 mutations prevent develop-
ment of mature lymphocytes, and the

 

B2m

 

null

 

 and 

 

Prf1

 

null

 

 mutations prevent
development and functional activity
of mouse NK cells, respectively. In
NOD–

 

scid B2m

 

null

 

 and NOD–

 

Rag1

 

null

 

mice, human HSCs engraft at moder-
ate levels and differentiate into multi-
ple myeloid lineages. However, lym-
phoid reconstitution in these mice is
limited to immature B cells because
residual NK activity appears to con-
strain development and survival of ma-
ture T and B cells (5–7). The NOD–

 

scid B2m

 

null

 

 and NOD–

 

Rag1

 

null

 

 

 

Prf1

 

null

 

mice are also problematic as lympho-
mas limit their lifespan. The hurdles
of NK activity and accelerated lym-
phomagenesis were recently overcome
in three new strains: NOD/Shi–

 

scid
IL2r

 

�

 

null

 

 (8, 9), NOD-

 

scid IL2r

 

�

 

null

 

 (10,
11), and BALB/c-

 

Rag2

 

null

 

 

 

IL2r

 

�

 

null

 

(12), which all lack the IL-2 family
common cytokine receptor 

 

�

 

 chain
gene (

 

IL2rg

 

). The absence of func-
tional receptors for IL-2, IL-7, and
other cytokines may prevent the ex-
pansion of NK cells and early lym-
phoma cells in NOD–

 

scid IL2r

 

�

 

null

 

mice, resulting in better engraftment
of transferred cells and longer lifespans
of the mice. The characteristics of
these and other recently developed

 

F.M. is at Division of Allergy, Immunology, and 
Transplantation, National Institute of Allergy and 
Infectious Diseases, Bethesda, MD 20892.
M.G.M. is at Institute for Research in Biomedicine, 
CH-6500 Bellinzona, Switzerland.
A.K.P. is at Baylor Institute for Immunology 
Research, Dallas, TX 75204.
L.D.S. is at The Jackson Laboratory, Bar Harbor,
ME 04609.

CORRESPONDENCE
F.M.: fmacchiarini@niaid.nih.gov

 

20051547  Page 1307  Thursday, November 10, 2005  12:59 PM



 

NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES, BETHESDA, MD, JUNE 13–14, 2005 | Macchiarini et al.

 

1308

 

immunodeficient mouse models are
summarized in Table I.

During the meeting, Leonard Shultz
(10) (Bar Harbor, ME), Fumihiko
Ishikawa (11) (Fukuoka, Japan) and
Markus Manz (12) (Bellinzona, Swit-
zerland)

 

 

 

reported that human HSCs and
progenitor cells engraft successfully in
these mice and produce all human my-
eloid and lymphoid lineages. They
showed that T and B cells migrate into
lymphoid organs and intestinal tissues
where typical lymphoid structures are
created, mount HLA-dependent allo-
geneic responses, and generate anti-
bodies against T cell–dependent anti-
gens such as ovalbumin and tetanus
toxoid. Ishikawa and Manz also reported
that newborn NOD–

 

scid IL2r

 

�

 

null

 

 and
BALB/c–

 

Rag2

 

null

 

 

 

IL2r

 

�

 

null

 

 mice have
some advantages over adult recipients,
including no requirement for exoge-
nous human IL-7 to sustain thymo-
poiesis, better HSC bone marrow chi-
merism (50–80% versus 

 

�

 

30% in adults),
and the ability to support long-term
hematopoiesis with a self-renewing
population that engrafts in secondary
recipients.

Takeshi Watanabe (Yokohama, Ja-
pan) suggested that these mice could be
engrafted with artificial lymph nodes,
because of their capacity to develop all
the components of the human immune
system. These artificial lymph nodes,
which consist of biocompatible scaf-
folds containing human stromal cells
(13), could provide insights into hu-
man secondary lymphoid organ devel-
opment and the induction of adaptive
immune responses.

 

Infection and vaccine development

 

Humanized mice might be instrumen-
tal in developing vaccines and thera-
peutics for human pathogens. The re-
constitution of a functional human
immune system in mice would provide
an experimental system in which natu-
ral and vaccine-induced immune respon-
ses could be evaluated. The transplanted
human immune system could be tested
for its ability to protect against infection
by pathogens following immunization.
Immune responses to a variety of viral

and bacterial infections in humanized
mice are currently being studied, and
progress in some of these infectious
models was reported at the meeting.

Dengue virus is a mosquito-borne
pathogen that infects over 50 million
people annually and causes a lethal hem-
orrhagic fever syndrome in as many as
half a million. Dengue virus has been
problematic to model, as it does not in-
fect adult mice. Thus, murine models of
Dengue virus infection require the en-
graftment of human HSCs, dendritic
cells, peripheral blood monocytes, or
liver cell lines, which can support virus
infection and growth. Joseph Blaney
(Bethesda, MD) reported a large scale
screening of attenuated Dengue virus
serotypes in SCID mice engrafted with
human hepatoma cells (14). Blaney
identified several attenuated strains that
are now in clinical trials as vaccine can-
didates. NOD–

 

scid

 

 mice engrafted with
human HSCs can also provide a useful
model for Dengue infection, as infected
mice develop erythremia and throm-
bocytopenia, both characteristic symp-
toms of human Dengue fever (Garcia,
J.V., and R. Rico-Hesse, personal com-
munication). This model might thus al-
low studies of the pathogenesis of Den-
gue virus infection and the testing of
anti-Dengue therapeutics.

Influenza vaccine development might
also be aided by research in humanized
mouse models. Due to rapid antigenic
drift, influenza has eluded attempts to
create a vaccine that provides long-term
protection. Discovery of invariable in-
fluenza T cell epitopes by large-scale
screening of vaccine candidates might
now be feasible in NOD–

 

scid

 

 (15) and
NOD–

 

scid B2m

 

null

 

 mice reconstituted
with human HSCs and autologous T
cells, as described by Karolina Palucka
(Dallas, TX). Palucka showed that all
subtypes of human dendritic cells, which
orchestrate the adaptive immune re-
sponse, develop in these mice, with ap-
propriate tissue distribution and func-
tion. Deep lung viremia and production
of inflammatory cytokines result after
inhalation of influenza virus, making this
system a promising model for human
pathogenesis.

Humanized mice have also been
used to study Epstein-Barr virus (EBV),
which infects most people as a lifelong
asymptomatic infection. Although only
a low percentage of healthy carriers de-
velop EBV-associated non-Hodgkin
and Burkitt’s lymphomas, the tumor
incidence is much higher in HIV

 

�

 

 in-
dividuals. J. Victor Garcia showed that
NOD–

 

scid

 

 mice reconstituted with hu-
man HSCs are proving useful for study
of EBV infection and tumor promo-
tion, as these mice develop lympho-
proliferative tumors, such as large B
cell lymphomas, within a few weeks of
infection with EBV (16).

Diarrheal illness caused by enteric
bacteria and protozoa results in signifi-
cant morbidity and mortality world-
wide. Samuel Stanley (St. Louis, MO)
and Kim Barrett (San Diego, CA) re-
ported on SCID mice transplanted
with human fetal intestinal xenografts
to study 

 

Entamoeba histolytica

 

, 

 

Shigella
flexneri

 

, 

 

Cryptosporidium parvum

 

, and

 

Salmonella typhimurium

 

. Their work in-
dicates that the host innate immune re-
sponse contributes to the inflammatory
colitis and diarrhea that is associated
with these infections in humans (17,
18). Finally, Chella David presented
studies on toxic shock, which is caused
by interaction of HLA class II mole-
cules with staphylococcal enterotox-
ins, in mice transgenic for human HLA
class II genes. In this model, inhaled
toxins cause full-blown toxic shock
syndrome (19), thus providing a new
model to study mechanisms of bacterial
toxin pathogenesis in the lung, skin,
and gastrointestinal system. HLA-trans-
genic mice have also been used to
identify epitopes of infectious agents
for vaccine development (20).

 

Autoimmunity

 

HLA-transgenic mice are particularly
useful in modeling human autoim-
mune diseases that are associated with
specific HLA alleles. HLA-transgenic
mouse models have been established
for rheumatoid arthritis, relapsing poly-
chondritis, experimental autoimmune
encephalomyelitis, celiac disease, and
Type 1 diabetes (21). These mice offer
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Table I. 

 

Recently developed immunodeficient mouse models

 

Host mouse strain Human component Characteristics Applications References

 

NOD/Shi-

 

scid 
IL2r

 

�

 

null

 

 

 

(adult)

Cord blood HSCs B cell, T cell and NK cell development; 
structured thymus, spleen, lymph nodes; 
functional lymphocytes

Hematopoietic reconstitution; 
microbial infection; vaccine 
development

(8, 9)

NOD

 

-scid IL2r

 

�

 

null

 

 

 

(adult)
Mobilized HSCs B cell, T cell and DC development; structured 

spleen follicles, proliferative responses 
to mitogens; need for exogenous human 
IL-7 for sustained thymopoiesis

Hematopoietic reconstitution; 
microbial infection; vaccine 
development

(10)

NOD

 

-scid IL2r

 

�

 

null

 

(newborn)
Cord blood HSCs B cell, T cell and DC development; 

structured thymus, spleen; functional 
immune responses

Hematopoietic reconstitution; 
microbial infection; vaccine 
development

(11)

BALB/c

 

-Rag2

 

null 

 

IL2r

 

�

 

null

 

 

 

(newborn)

Cord blood HSCs B cell, T cell and DC development; structured 
thymus, spleen, lymph nodes; functional 
immune responses 

Hematopoietic reconstitution; 
microbial infection; vaccine 
development

(12)

NOD

 

-scid 

 

and

 

 

 

NOD

 

-scid 

 

�

 

2m

 

null

 

 

 

Cord blood or mobilized 
peripheral blood HSCs; 
autologous T cells

B cell development; reconstitution of 
functional DC subsets; no T cell 
development from HSCs; limited influenza-
specific serum IgG

Influenza infection; vaccine 
development; tumor 
therapeutics

(15; Palucka, A.K., 
personal communication) 

NOD

 

-scid

 

Cord blood HSCs B cell development; reconstitution 
of functional DC subsets; no T cell 
development from HSCs

Acute response to LPS (25)

NOD

 

-scid

 

Cord blood HSCs Key features of human Dengue infection; 
high levels of viremia; viral replication 
in the spleen, liver, and skin

Dengue pathogenesis Bente, D. (personal 
communication)

NOD

 

-scid

 

Cord blood HSCs Fulminating lymphoproliferative tumors
as observed in EBV-infected AIDS patients

EBV-related lymphomagenesis (16)

C.B.17-

 

scid

 

HuH-7 hepatoma cells Dengue viremia approximates 
human pathology

Dengue virus vaccine 
candidate screening

(14)

C.B.17-

 

scid

 

Fetal intestine Intact human intestinal tissue formation Enteric microbial 
pathogenesis; anti-diarrheal 
and anti-inflammatory 
therapies

(17)

C.B.17 

 

scid/bg

 

Vascularized skin; artery 
segments; synthetic 
vascular beds; T cells

Tissue engraftment and vascularization; 
induction of tissue injury and rejection

Immune-mediated 
vascular tissue injury and 
transplant rejection

(24)

NOD-

 

Rag1

 

null

 

Prf1

 

null

 

 

 

Pancreatic islet 

 

�

 

 cells 
from HLA-A2 
transgenic mice and 
humans; PBL

Allograft rejection by allogeneic human PBLs Transplantation tolerance (23)

BALB/c

 

-scid 

 

and

 

 

 

BALB/c

 

-scid/bg

 

Skin; T cells Key features of human psoriasis Anti-psoriatic therapeutics (22)

Various 
immunocompetent 
backgrounds

Class II HLA transgenes Key features of autoimmune pathologies Autoimmune diseases (21)

Various 
immunocompetent 
backgrounds

Class II HLA transgenes Key features of human toxic shock syndrome Toxic shock syndrome (19)

Various 
immunocompetent 
backgrounds

Class I and II HLA 
transgenes Expression of human HLA molecules Vaccine epitope screening (20)
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advantages over many other experi-
mental models as they more closely re-
flect human pathologies. For example,
HLA-DQ8 transgenic mice have rheu-
matoid factor, an antibody typically ex-
pressed only in rheumatoid arthritis pa-
tients, whereas this marker is absent in
other animal models of this disease.
And the NOD.HLA-DQ8 model of
celiac disease is unique in presenting
with dermatitis herpetiformis, a chronic
and extremely itchy rash which is a
predominant pathological feature of the
human disease.

The classical mouse models of au-
toimmune skin diseases are inadequate
because of their complex pathophysiol-
ogy and the marked differences be-
tween human and mouse skin-associ-
ated immunity, a major limitation
being that experimental mouse skin re-
actions are primarily acute, whereas the
human diseases are mostly chronic.
Thomas Zollner (Richmond, CA) pre-
sented data showing that psoriasis could
be induced by injection of bacterial su-
perantigens or autologous T cells into
nonlesional skin grafts taken from pso-
riasis patients and grafted onto SCID
mice or onto SCID mice that are also
homozygous for the beige (

 

Lyst

 

bg

 

 or 

 

bg

 

)
mutation (

 

scid/bg

 

 mice) (22), which re-
sults in lowered NK cell activity. The
ensuing dermatitis resembled human
psoriasis in key features such as exces-
sive skin growth, and thickening and
scaling of the skin accompanied by T
cell expansion, keratinocyte hyperpro-
liferation, and focal ICAM-1 expres-
sion. Furthermore, all antipsoriatic
compounds currently used to treat hu-
mans were effective in treating derma-
titis in 

 

scid

 

/

 

bg

 

 mice. Efficacy testing in
this model should allow selection of the
best new drug candidates for clinical
studies.

 

Transplantation

 

It has been recently reported that pan-
creatic islets transplanted from HLA-
A2 transgenic NOD–

 

scid

 

 mice can re-
verse chemically induced diabetes in
NOD–

 

Rag1

 

null

 

 

 

Prf1

 

null

 

 recipients en-
grafted with PBLs from an HLA-A2
donor, but such islets are rejected if the

PBLs are derived from an HLA-dispar-
ate donor (as are HLA-disparate en-
grafted human islets) (23). It has also
been shown that allogeneic human
PBLs transferred into 

 

scid

 

/

 

bg

 

 mice en-
grafted with human vascularized skin,
artery segments, or synthetic vascular
beds quickly reject these grafts, mim-
icking human immune-mediated vas-
cular tissue injury (24). Treatment of
the grafts with a variety of agents al-
lowed dissection of the molecular
events responsible for lymphocyte-
mediated vascular tissue remodeling,
dysfunction, and destruction, thus pro-
viding new therapeutic targets for the
reduction of immunological rejection.

 

Limitations and possible solutions

 

Humanized mouse models have made
tremendous progress since their incep-
tion nearly two decades ago. However,
as highlighted by Ronald Gill (Aurora,
CO), a number of practical limitations
still prevent the current models from
serving as fully faithful paradigms of
human systems. One of these limita-
tions is the lack of HLA class I and II
expression in the mouse thymus, which
is required to support the selection of T
cells following human stem cell en-
graftment. To some extent, these issues
are being addressed by expressing hu-
man HLA molecules as transgenes in
mice engrafted with human HSCs, au-
tologous marrow stroma, and thymic
tissues. Addition of human endothe-
lium, growth factors, and chemokines
might also improve these models by
promoting the appropriate trafficking
and expansion of human cells.

However, the clinical translational
capacity of even the most optimized
models may be restricted by limited di-
versity in the human major and minor
histocompatibility alleles that can be
expressed in a mouse. As discussed by
George Georges (Seattle, WA), hu-
manized mice may not replace the
need for large animal studies, but
should help limit the number of studies
that are required in large animals and
humans. Furthermore, as these models
acquire an increasing number of hu-
man physiological elements, they will

likely provide more straightforward as-
say systems for the study of the human
hematolymphoid system and function.
They will likely also provide for the
rapid preclinical evaluation of novel
vaccines and therapeutic agents.
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