
 

Open Peer Review

F1000 Faculty Reviews are written by members of
the prestigious  . They areF1000 Faculty
commissioned and are peer reviewed before
publication to ensure that the final, published version
is comprehensive and accessible. The reviewers
who approved the final version are listed with their
names and affiliations.

Any comments on the article can be found at the
end of the article.

REVIEW

 Preconditioning strategies to prevent acute kidney injury
[version 1; peer review: 2 approved]
Martin Richard Späth ,     Felix Carlo Koehler , Karla Johanna Ruth Hoyer-Allo ,

   Franziska Grundmann , Volker Burst , Roman-Ulrich Müller 1,2

Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University
Hospital Cologne, Cologne, NRW, 50937, Germany
Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, NRW, 50931,
Germany

Abstract
Acute kidney injury is a common clinical disorder resulting in significantly
increased morbidity and mortality. However, despite extensive research,
strategies for prevention or treatment are still lacking in routine clinical
practice.
Already decades ago, several preconditioning strategies (e. g.
ischemic/hypoxic preconditioning and calorie restriction) have been
published and their extraordinary effectiveness - especially in rodents - has
raised the hope for powerful clinical tools to prevent acute kidney injury.
However, the underlying mechanisms are still not completely understood
and translation to the clinics has not been successful yet. In this review, the
most attractive strategies and the current mechanistic concepts are
introduced and discussed. Furthermore, we present clinical trials evaluating
the feasibility of preconditioning in the clinical setting.
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Introduction
Acute kidney injury (AKI) is a highly relevant problem in 
clinical practice and is associated with an increased risk of  
mortality1,2, the development of chronic kidney disease, and  
cardiovascular events3,4. The incidence of AKI has increased in  
recent years, and, in the context of the demographic change, it is 
likely that a plateau has not been reached yet5,6.

Imbalances between circulatory demands and perfusion leading 
to renal ischemia as well as toxic insults are frequent causes  
of AKI and are often observed as adverse events of medical  
interventions (for example, major surgery or chemotherapy). 
In both cases, loss of cell adhesion molecules, cell polarity, and 
death of tubular epithelial cells lead to cell detachment with  
subsequent urinary tract dysfunction7. Intensive monitoring and  
adequate fluid management at the time of diagnosis constitute 
the standard therapy. However, an effective treatment for  
established AKI is still missing. Apart from maintaining  
euvolemia, atraumatic/minimally invasive surgical techniques, 
and avoidance of potentially nephrotoxic substances, no preven-
tive measures have been proven to exert a protective benefit in  
clinical practice8.

Animal models have been established for both types of AKI 
primarily using rodents and employing ischemia-reperfusion  
injury (IRI) by transient clamping of the renal vessels9–11 or 
toxic tubular injury induced by the intraperitoneal injection of  
cisplatin12–14. In both models, various preconditioning algorithms 
have proven to be very effective. In general, the term “precon-
ditioning” describes the strategy of activating the body’s own 
stress resistance mechanisms, thereby mitigating consecutive  
harm15, and commonly exploits the concept of hormesis.

In this review article, we discuss known and effective strategies 
of preconditioning. Considering promising results from animal  
models and first results in clinical trials, we will focus on  
strategies targeting either the cellular response to hypoxia or  
nutrient availability: ischemic preconditioning (IPC)16, remote 
IPC (RIPC)17, hypoxic preconditioning (HP)18, prolyl-hydroxylase 
(PHD) inhibition (PHDi)19, and dietary interventions9.

Ischemic preconditioning
The oldest known procedure is IPC: repetitive periods of  
short-term sublethal organ ischemia enhance the resistance 
against cellular stress and mitigate the damage of subsequent  
profound ischemic injury16. The underlying mechanisms have 
not been fully deciphered yet. So far, it has been assumed that 
the repetitive stimuli lead to a release of various chemical  
messengers (for example, calcium ions, reactive oxygen species, 
and hydrogen sulfide), vasoactive substances (for example,  
adenosine, bradykinin, opioids, and urocortins), neurotransmit-
ters and hormones (for example, acetylcholine and angiotensin) 
as well as cytokines (for example, tumor necrosis factor-alpha  
[TNF-α], interleukin-6, and prostaglandins) activating  
G protein–coupled receptors20,21. A number of pathways have  
been implicated to be involved downstream of these media-
tors. First is the activation of nitric oxide (NO) and NO synthase 
(NOS) by activation of protein kinase C (PKC), phosphoinoside  
3 kinase (PI3K/Akt), and the guanylatcyclase leading to the  

activation of ATP-dependent potassium channels (K
ATP

) and 
the priming of mitochondrial permeability transition pore  
(MPTP)20,22–26. Second is the reperfusion injury salvage kinase 
(RISK) pathway by activation of PI3K/Akt, 70 ribosomal pro-
tein S6 kinase (p70S6K), glycogen synthase kinase 3b (GSK3b), 
and the inhibition of MPTP opening20,21,26–29. Third, the survival  
activating factor enhancement (SAFE) pathway gets activated 
by activation of glycoprotein 130 (gp130) or TNF-α recep-
tors, the Janus-activated kinase (JAK) signal transducer, and the  
stimulation of the activator of transcription (STAT)20,21,26,29–31. 
Furthermore, a role for SIRT1-mediated NAD+-dependent  
deacetylation32 and mitochondrial biogenesis33 has recently been 
shown.

Remote ischemic preconditioning
Although IPC shows promising results in animal models and  
clinical pilot trials, it is obvious that translation to the clinical  
setting is restricted to surgical settings and therefore is not  
easily feasible. Consequently, aiming to exploit similar mecha-
nisms, the strategy of RIPC was developed. Through RIPC, an 
organ (for example, the heart) can be protected from damage by  
applying repetitive short-term sublethal periods of ischemia 
to a remote tissue (for example, the kidney)34. This protection 
goes along with a gene regulatory effect in the target organ35.  
Several different mediators of this distant effect have been  
hypothesized in the past: on the one hand, a neuronal effect 
in which the afferent neurons of the preconditioned organ  
provide protection of the remote organ has been described36. On 
the other hand, a humoral effect by various mediators has been  
described in several publications and the actual key candi-
dates remain elusive. More recently, a very elegant study using 
the ischemia-reperfusion model of the heart could show that  
activation of hypoxia signaling in skeletal muscles increases 
the production of alpha-ketoglutarate (alphaKG). Circulating  
alphaKG induces kynurenic acid (KYNA) formation in the 
liver, and KYNA itself was sufficient to protect the heart from 
ischemic injury37. Furthermore, a humoral activation of vari-
ous cellular pathways (for example, by NO38, connexin 4339, or  
hypoxia-inducible factor 1 alpha [HIF-1α]40) has been pub-
lished. The major advantage of RIPC lies in its simple clinical  
applicability since the remote effect can also be achieved by  
repetitive inflation of a blood pressure cuff on the arm or thigh. 
In a randomized, double-blind, sham-controlled clinical trial  
investigating the effect of RIPC prior to elective coronary  
angiography, a significant reduction of the incidence of contrast 
media–induced acute injury (defined as an increment of serum 
creatinine of at least 0.5 mg/dL or a relative increase of more  
than 25% over baseline value within 48 hours) could be shown 
for the intervention group in a cohort of 100 patients with 
chronic kidney disease (that is, serum creatinine of more than  
1.4 mg/dL or estimated glomerular filtration rate [eGFR] of 
less than 60 mL/min * 1.73 m2) and at high risk of developing  
contrast medium–induced kidney injury according to the  
Mehran risk score41. In another randomized, prospective,  
multicenter, and double-blind clinical trial investigating 
222 patients with a reduced eGFR (that is, <40 mL/min per  
1.73 m2 or between 40 and 60 mL/min per 1.73 m2) and two or  
more risk factors (age ≥75 years, diabetes mellitus, or heart  
failure New York Heart Association [NYHA] III or IV) undergoing  
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elective coronary angiography or percutaneous translumial 
coronary angioplasty (or both), no significant difference for 
any study group could be shown regarding the incidence of 
contrast media–induced nephropathy (primary endpoint), 
change of serum creatinine, or change of eGFR (secondary  
endpoints)42. The comparability of both studies is limited  
because the population of the latter trial included fewer  
patients with diabetes mellitus (~50 to ~62%, respectively) and 
the Mehran score differed markedly (~8 to 13). Besides, the  
incidence of contrast media–induced nephropathy in the  
control group of the trial by Roubille et al.42 was reduced in  
comparison with their own database (4.5 to 28%) and in  
comparison with the trial by Er et al.41 (20%). Furthermore, the 
volume of contrast media used was much smaller in the trial 
by Roubille et al.42 (~75 mL) in comparison with the trial by  
Er et al.41 (~120 mL).

In addition, the clinical relevance of contrast-induced  
nephropathy (CIN) has been debated extensively in recent years, 
supporting the idea that its incidence is far overrated in clinical  
practice; this, in turn, limits the value of the used model43. The 
largest trials examining the protective potential of RIPC were  
performed in cohorts undergoing surgery on cardiopulmonary 
bypass. Unfortunately, owing to major differences in both  
outcome and patient characteristics, these studies, in line with 
the data on CIN, have not provided conclusive results. Zarbock  
et al. conducted a prospective randomized, double-blind, and  
sham-controlled multicenter trial enrolling 240 patients who 
underwent cardiac surgery with the use of cardiopulmonary  
bypass44. RIPC led to a lower incidence of AKI (primary  
endpoint), a reduced need for renal replacement therapy (RRT), 
and a shorter length of stay in the intensive care unit (ICU). 
These results were highly promising at first; however, two much  
larger randomized, double-blind trials published in 2015  
dampened the enthusiasm. The RIPHEART trial examined RIPC 
in 1403 subjects undergoing coronary artery bypass graft (CABG) 
surgery and did not detect any benefit concerning the primary  
endpoint (death, myocardial infarction, stroke, AKI, or length 
of stay in the ICU)45. The same holds true for the ERICCA  
trial46. Here, RIPC did not result in improved resistance to  
cardiovascular and cerebrovascular events within 12 months 
after surgery (primary endpoint) and perioperative myocardial  
infarction, acute myocardial infarction, AKI, length of stay on the 
ICU, ejection fraction, and quality of life (secondary endpoints) 
in 1612 patients after CABG with or without cardiac valve  
surgery (801 RIPC and 811 sham). An important aspect that 
has been discussed to explain some of the differences between  
these trials is the different mode of anesthesia that may  
interfere with the potential of RIPC. In ERICCA, the anes-
thetic procedure was not standardized46 whereas it was limited to  
inhalation anesthesia in Zarbock et al. and intravenous  
anesthesia using propofol in RIPHEART. Furthermore, 
Zarbock et al. explicitly enrolled only individuals at a high risk  
of AKI defined by a Cleveland Clinic Foundation score of  
6 or higher. In RIPHEART, there was no stratification for the  
risk of AKI and the participants showed a moderate risk for death  
30 days after surgery (mean Logistic EuroSCORE47,48 for both 
groups: 4.2). In ERICCA, patients were eligible only with a  
EuroSCORE of 5 or higher without any specific risk assessment 

for AKI. In a meta-analysis of RIPC in the prevention of 
AKI in patients undergoing CABG surgery, a benefit of this  
pre-treatment could be demonstrated only in the subgroup that 
received inhalation anesthesia. Here, it is important to note  
that volatile anesthetics themselves are being discussed as  
preconditioning agents49,50. Nonetheless, RIPC appeared to 
have a potential additive effect to this protective potential in this  
study. With regard to the development of dialysis-dependent 
kidney injury, there was no advantage in any of the subgroups  
examined51. From the perspective of the authors, owing to 
the different risk stratification in the selection of subjects and  
non-uniform operating procedures, a final assessment regarding 
the potential of RIPC in the clinical setting is currently not  
possible.

Hypoxic preconditioning and prolyl-hydroxylase 
inhibition
Although for a couple of years the field focused on driving  
RIPC toward a potential clinical use, other modes of precon-
ditioning have regained increasing attention more recently. In 
1994, a model for HP was published52. Six-day-old rats that  
were preconditioned by subjecting them to an ambient oxygen 
content of 8% for 3 hours showed significantly reduced cerebral  
infarct zones following unilateral occlusion of the carotid  
artery52. Altered HIF signaling could be identified as a media-
tor of this effect18. Even though HP, like IPC, cannot be directly  
transferred to the clinical setting, activation of HIF can be induced 
pharmacologically, allowing potential future interventions in 
the patient setting. HIFs are heterodimeric proteins consisting of 
a hypoxia-regulated HIF-α and a constitutive HIF-β subunit53.  
Under normoxia, PHDs hydroxylate specific proline residues 
of the HIF-α subunit, inducing its proteasomal degradation.  
Hypoxia inhibits PHDs and allows the nuclear accumulation of 
HIF-α where the assembly of dimers of α- and β-subunit leads 
to the transcription of numerous target genes that have been  
hypothesized to be involved in the protective effect (for example, 
erythropoietin, vascular endothelial growth factor [VEGF], and 
heme oxygenase-1)54,55. PHD inhibitors are available and have 
been shown to mediate a protective effect regarding renal IRI  
comparable to HP using a rat model19. Interestingly, in the  
meantime, a PHD inhibitor—roxadustat—has been approved 
for the treatment of anemia in patients with dialysis-dependent 
and non-dialysis-dependent chronic kidney disease in China56–58 
and Japan. More data on roxadustat were recently presented at  
Kidney Week59–61 aiming at approval for the US and Europe.  
Additionally, various other PHD-inhibiting compounds are 
being tested in clinical trials53. A double-blind, randomized,  
single-center phase II trial (ClinicalTrials.gov Identifier: 
NCT01920594) investigating a possible reduction in neuro-
logical, renal, or cardiac ischemia (or a combination of these) by  
PHDi prior to elective aortic aneurysm surgery has been  
completed but not fully published yet.

Caloric restriction
Apart from targeting the cellular response to hypoxia, dietary  
interventions have been shown to be one of the most promis-
ing strategies in organoprotection. Calorie restriction (CR) has 
long been known to mediate life-span extension, a finding that 
was first demonstrated in a rat model in 193562 and confirmed in  

Page 4 of 10

F1000Research 2020, 9(F1000 Faculty Rev):237 Last updated: 03 APR 2020



various different species, including primates63. Importantly, as 
known for many longevity-inducing interventions, CR leads to 
a profound and conserved increase in organismal and cellular  
stress resistance64,65. More recent work could show that changes 
in nucleolar biology are a shared mechanism of several life 
span–extending interventions with CR inducing a significant  
reduction in nucleolar size in Caenorhabditis elegans, fruit flies, 
mice, and humans66. Importantly, nucleolar size early in life was 
also predictive of life span in the nematode model. Regarding 
the kidney, Mitchell et al. could show that a short-term reduction  
in food intake (to 70%) protected against murine renal IRI9.  
Improved insulin sensitivity and reduced insulin/IGF-1 signal-
ing and increased expression of antioxidant defense enzymes 
were hypothesized to be among the key mechanisms for  
protection against renal and hepatic IRI as well as genotoxic or 
chemotherapeutic stress9,67–69. Recently, it was shown that the  
CR-mediated improvement of insulin sensitivity is mediated by 
mTORC2 signaling. However, disruption of mTORC2 signaling 
inducing insulin resistance in a Rictor knockout mouse model 
did not diminish the increase of fitness and life span70, indicat-
ing a potential mechanistic difference in longevity and stress  
resistance. Although the CR-mediated protective effect has  
been published in several mammals, effectiveness in humans has 
not yet been clearly demonstrated71,72. Yet there is first evidence 
of feasibility and potential efficacy in humans. The safety of a  
preoperative calorie- and protein-restricted diet in healthy  
kidney donors and obese patients undergoing bariatric surgery 
was shown by Jongbloed et al.73. Furthermore, feasibility was  
addressed in living kidney donors74. A large-scale trial investi-
gating permissive underfeeding compared with standard enteral  
feeding in critically ill patients demonstrated a significantly 
lower rate of RRT in the group with a calorie-restricted enteral  
feeding protocol71,72. Recently, we studied the effects of a 7-day 
preoperative CR on renal function in a randomized controlled  
clinical trial75. Eighty-two patients at risk for post-surgery AKI 
were randomly assigned 1:1 to receive either a formula diet  
containing 60% of their daily energy requirement or ad libitum 
food for 7 days prior to elective cardiac surgery involving car-
diopulmonary bypass. Although CR had no impact on the  
primary endpoint (the increase of serum creatinine at 24 hours 
after cardiac surgery), there was a significant between-group  
difference with a favorable effect of CR on creatinine kinetics 
at 48 hours and at discharge. Additional subgroup analyses  
suggested that the positive effect appeared to be most prominent 
in men and obese individuals with a body mass index of more  
than 25 kg/m275. In parallel, a second randomized controlled  
clinical trial for preventing AKI in patients undergoing  
percutaneous coronary intervention was performed to deter-
mine the feasibility and effectiveness of pre-interventional 
CR. As in the above-mentioned trial, patients were randomly 
assigned either to receive a formula diet containing 60% of 
their calculated daily energy expenditure or to ad libitum  
food intake. Again, beneficial effects were detected only in  
post-hoc subgroup analyses76. Although the findings of these  
clinical trials did not reflect the effects of CR seen in animal  
experiments, the studies could show that the intervention is 
safe and feasible even in a morbid patient population. The fact 
that the magnitude of the observed effects is smaller than in the  
rodent models may be due to several aspects. It is still unknown 

how long a diet must be applied in humans, how much the  
caloric content has to be restricted, and how the most potent  
dietary regimen should be designed75. Given these caveats 
of implementing CR in the clinical setting, it is extremely  
important to have a better understanding of both the molecular  
mechanisms underlying CR-mediated organoprotection and 
the ideal dietary interventions to obtain these effects. From the  
authors’ point of view, this is necessary in order to further  
develop targeted approaches (for example, by drugs or targeted 
dietary interventions) for improving feasibility and effect size  
in a clinical setting.

Protein restriction
There is ample evidence that CR does not mediate stress  
resistance through mere reduction of calories, and several other 
dietary interventions that modulate specific dietary components 
have shown beneficial effects in organ injury. Here, protein  
restriction (PR) is an important example, and PR has been 
demonstrated to confer additive effects to CR77. Interestingly,  
restriction of any single essential amino acid appears to be 
sufficient to mediate systemic adaptive responses leading to  
metabolic benefits78–80. Regarding renal organ protection, an 
important aspect was highlighted by a study published in 2015  
showing that PR (with identical calorie intake in both groups) 
prior to hepatic IRI caused strong protective effects similar to  
those of CR and that these positive effects could be reversed by 
the addition of sulfur-containing amino acids81,82. Mechanisti-
cally, restriction of sulfur-containing amino acids caused an  
increase of hydrogen sulfide (H

2
S) formation by activation of 

the transsulfuration pathway81 and addition of H
2
S induced 

cellular stress resistance83–85. Hence, both H
2
S donors (for  

example, MESNA86) and diets reduced in sulfur-containing  
amino acid intake87 may be future strategies to transfer the  
potential of CR to the patient setting. A clinical trial (Clinical-
Trials.gov Identifier: NCT03715868) investigating a non-dairy  
(significantly reduced in sulfur amino acids) formula diet prior to 
cardiac surgery was recently initiated at our center.

Fasting-mimicking and ketogenic diets
Intermittent or periodic fasting enables the activation of  
cellular signal transduction similar to that of CR with preserved  
nourishment88. Fasting-mimicking diets (FMDs) are a tool to  
reach comparable effects, and their safety and feasibility 
have been proven in several phase I and phase II studies89–91.  
Mechanistically, FMD results in cellular and metabolic effects 
similar to those of CR, including improved glucose homeostasis  
and insulin sensitivity, as well as improved cellular stress  
adaptation89,92 (for example, by modulation of the mechanistic 
target of rapamycin [mTOR] pathway93). It will be interesting 
to see whether these approaches have a role in organoprotection  
as well.

mTOR is an evolutionary conserved protein kinase orchestrat-
ing growth and metabolism. By inducing autophagy and by the  
reduction of protein translation leading to decreased proteotoxic 
and oxidative stress, mTOR inhibition results in cellular stress 
resistance94,95. mTOR is regulated through nourishment, and  
dietary inhibition of the mTOR pathway can be achieved either 
by restriction of the branched chain amino acids (BCAAs)  
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valine, leucine, and isoleucine or by changes in the ratio of  
macronutrients replacing proteins with carbohydrates96–98.  
Increased exposure to BCAA is associated with hyperphagia, 
obesity, insulin resistance, and mortality99–101. Additionally, a  
protein-to-carbohydrate ratio of 0.07 resulting in low-protein 
and high-carbohydrate diet leads to improved stress resistance,  
health, and life span82,98,102. Strikingly, low-sugar diets also  
revealed beneficial effects on health and life span in C. elegans103. 
On the other hand, glucose supplementation did not interfere 
with fasting-induced renal protection in the ischemia-reperfusion  
mouse model104. Because the optimal diet for humans in the 
context of organ protection remains unknown, there is much  
room for improvement. Here, clarification whether reduction 
of specific amino acids or the changes in ratio of the macronu-
trients are the key drivers to improve metabolism, fitness and  
health in humans will be required.

Ketogenic diets are high in fat and very low in carbohydrates and 
result in synthesis of ketone bodies and exceeding β-oxidation 
of fatty acids. Similar to CR, ketogenic diets extend the life  
span in rodents with preserved physiological functions but 
do not lead to malnourishment105. Ketone bodies, such as β  
hydroxybutyrate, suppress oxidative stress, resulting in nephro-
protection106. Owing to their additional neuroprotective effects, 
ketogenic diets have been proven to be feasible and safe in  
medical use in human pharmacoresistant epilepsy107. Given that 

CR in rodents actually does induce ketogenesis because of the  
nature of the feeding cycles108, ketogenic diets may be another 
promising strategy to ameliorate AKI in a clinical setting.

Summary
Taken together, recent experiments in animal models have 
helped to increase our understanding of preconditioning in AKI  
(see Figure 1), although clear-cut clinical effectiveness in  
humans has not been proven yet. Consequently, dietary interven-
tions that have been tested to date in humans will probably not 
solve the problem. Nonetheless, given the tremendous effects  
in animal models in combination with the unmet clinical need, 
such research is of high importance. Direct pharmacological 
or optimized tailored dietary targeting of the molecular players 
may be the more straightforward approach in humans but will 
not be possible without detailed knowledge of the molecular  
mechanisms. Given that different modes of preconditioning are 
potentially based on similar mechanisms, comparative analyses 
may have a significant added value. In a recent study on HP 
and CR in the mouse model of cisplatin-induced kidney injury  
using an integrative analysis of transcriptomics, proteomics, 
and N-degradomics, we found that mRNA expression only  
moderately predicted protein expression. But the more the 
mRNA and the proteome dissociated, the higher was the serum  
creatinine in the individual animal. N-degradomic studies 
revealed extracellular, specific proteolytic complement activation 

Figure 1. Schematic illustration of the mechanisms involved in various preconditioning strategies. The different modes of preconditioning 
have been shown, or are supposed, to alleviate acute kidney injury by production of chemokines or metabolites. AKI, acute kidney injury; 
CR, calorie restriction; FMD, fasting-mimicking diet; H2S, hydrogen sulfide; HIF, hypoxia-inducible factor; HP, hypoxic preconditioning; 
IPC, ischemic preconditioning; KYNA, kynurenic acid; PHDi, prolyl-hydroxlase inhibition; PR, protein restriction; RIPC, remote ischemic 
preconditioning; ROS, reactive oxygen species. Bar-headed lines indicate inhibition, dashed lines and question marks indicate hypotheses, 
“…” indicates that not all mediators are displayed, and ↑ indicates increase.
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that can be alleviated by these two preconditioning methods12; 
this is in line with results of other groups showing that  
protease inhibition is a potential therapeutic approach109,110.  
Further studies comparing two different modes of precondition-
ing (HP-CR and HP-PHDi) in murine renal IRI models are being 
carried out, revealing shared mechanisms reflected by overlap-
ping pathways and common regulation of target genes in asso-
ciation with the clinical outcome by integrative multi-omics 
approaches111,112. Numerous other basic scientific and clinical 
studies on these procedures are under way. This improved  
knowledge of the molecular mechanisms involved will be 
crucial to translate future protective strategies into the clini-
cal setting (for example, using targeted pharmacological  
approaches).
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