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Accumulating evidence has shown that the paracrine factors derived frommesenchymal stem cells (MSCs) are capable of regulating
the immune system via interaction with various immune cells. In this study, adipose-derived MSCs (AdMSCs) and human
peripheral blood monocytes (PBMCs) were isolated and cultured to examine the effects of MSC-induced macrophages (iMΦ)
on inflammation and immune modulation. Indirect coculture with MSCs increased the expression of arginase-1 and mannose
receptor (CD206), markers of activated M2 macrophages, in the PBMCs demonstrating that MSC-secreted factors promoted
M2-MΦ polarization. Additionally, iMΦ exhibited a similar higher inhibitory effect on the growth of activated T cells compared
to that in the other groups (AdMSCs only, AdMSCs plus iMΦ), implying that iMΦ can play a sufficient functional role.
Interestingly, the population of FoxP3 Treg cells significantly increased when cocultured with iMΦ, suggesting that iMΦ have an
immunomodulatory effect on the Treg cells through the modulation of the FoxP3 expression. Notably, iMΦ expressed high
levels of immunosuppressive and anti-inflammatory cytokines, namely IL-10 and TSG-6. Furthermore, we confirmed that the
AdMSC-derived exosomes modulated macrophage polarization by upregulating the expression of M2 macrophage markers.
Conclusively, our results suggest that iMΦ play a significant role in regulating the immunomodulatory- and inflammatory-
mediated responses. Thus, iMΦ may be used as a novel stem cell-based cell-free therapy for the treatment of immune-mediated
inflammatory disorders.

1. Introduction

Mesenchymal stem cells (MSCs) regulate immunomodula-
tory and anti-inflammatory effects in diverse ways in response
to the specific niche or microenvironments [1]. Numerous
studies have shown that the MSCs modulate immune
responses through a variety of mechanisms by interacting
with the immune cells [2, 3]. MSCs, therefore, have a great
therapeutic potential for the treatment of inflammatory dis-
eases. Until now, the clinical applications of MSCs derived
from various tissues, such as adipose tissue and bone mar-
row, were being aggressively examined for the treatment of
diverse disorders including intractable diseases [4]. Further,
bioactive molecules secreted by MSCs have been considered
the main treatment strategy rather than cell engraftment
and differentiation since they exhibit diverse therapeutic
effects in diseases such as arthritis and liver injury [5].

Macrophages possessing high plasticity promote tissue
regeneration, mediate immunomodulation, and regulate cell
proliferation in response to specific environments [6]. Mac-
rophages that play critical roles in immunity are usually
divided into two subtypes, the immune-reactive or proin-
flammatory M1 (classically activated macrophages) and
immune-suppressive or anti-inflammatory M2 (alternatively
activated macrophages) [7]. The alternatively activated M2
macrophages play a pivotal role in regulating the immune
system and tissue remodeling such as during wound healing
[8]. MSCs are known to stimulate macrophages to produce
anti-inflammatory and immunosuppressive cytokines such
as interleukin- (IL-) 10, and thereby induce polarization
toward an M2 subtype expressing CD206 [9]. Li et al.
revealed that the human umbilical cord-derived MSCs
induce M2 polarization of macrophages in vivo [10]. Several
studies have focused on the effects of MSCs on the immune
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cells including macrophages, T lymphocytes, dendritic cells,
and natural killer cells; however, very little is known regard-
ing the cross-talk between adipose-derived MSCs (AdMSCs)
and macrophages [11]. Therefore, it is critical to have a better
understanding of the effects of AdMSCs on macrophages for
developing effective treatment strategies in the future. Here,
we hypothesized that the interaction between macrophages
and AdMSCs induces M2 polarization.

Among the various factors responsible for the therapeutic
effects of MSCs, exosomes have been recently described as
key mediators for transferring proteins, DNAs, RNAs, and
lipids to other cells for communication [12]. Thus, we sur-
mised that AdMSC-derived exosomes are powerful players
to influence processes involved in macrophage M2 polariza-
tion. Increasing numbers of studies have shown that MSCs
affect the activation, plasticity, and functionality of macro-
phages in a cell contact-dependent or contact-independent
manner [10]. In the present study, peripheral blood mono-
nuclear cells (PBMCs) and AdMSCs were indirectly cocul-
tured using the transwell system in order to investigate the
effects of exosomes released by AdMSCs on macrophages.
In other words, we evaluated whether M2 polarization
could be induced by the secreted exosomes. Herein, we
found that the AdMSC-derived exosomes acted as media-
tors and promoted the propagation of M2 macrophages
in vitro. These findings will contribute to the generation
of anti-inflammatory M2 macrophages by exosomes for
future stem cell-based cell-free therapy against inflammation-
related diseases.

2. Materials and Methods

2.1. Culture of Adipose-Derived MSCs.Human AdMSCs were
isolated from healthy donors with approval from the research
ethics committee of Severance Hospital of Yonsei University,
Seoul, Republic of Korea, following informed consent
(approval no. 4-2019-0060). The isolated mononuclear cells
were cultured in DMEM- (Dulbecco’s Modified Eagle
Medium-) low glucose (Invitrogen, Carlsbad, CA, USA) sup-
plemented with 10% FBS (Invitrogen), 100U/ml penicillin
(Invitrogen), and 100μg/ml streptomycin (P/S, Invitrogen)
of 1 × 106 cells in a 75 cm2 tissue culture flask (Nunc,
Roskilde, Denmark) at 37°Cwith 5% humidified carbon diox-
ide. The culture medium was exchanged with a fresh medium
after 24h to remove nonadherent cells and cell debris. The
mediumwas changed every 3 or 4 days until the attached cells
exhibited the spindle-shaped morphology of MSCs. Upon
reaching approximately 90% confluence, the cells were har-
vested using 0.05% trypsin/EDTA (Invitrogen) and were sub-
cultured at a 1 : 3 or 1 : 4 ratio for cell proliferation.

2.2. Differentiation Assay. To assess whether AdMSCs have
the capacity of differentiating into osteoblasts, adipocytes,
and chondrocytes, the cultured AdMSCs were induced with
a specific differentiation media kit (Lonza, Allendale, NJ,
USA). Briefly, the culture media were replaced with an oste-
ogenic or chondrogenic medium when the cells reached 70%
confluence. To differentiate the AdMSCs into chondrocytes,
10 ng/ml of transforming growth factor-β3 was added to

the cells when media were changed. For adipogenic differen-
tiation, the cells were cultured with adipogenic differentiation
media when they reached 100% confluence. The media were
changed every 3-4 days. After 2 weeks, osteogenesis was eval-
uated by von Kossa staining. Chondrogenic differentiation
was analyzed by safranin-O staining. Adipogenesis was
determined by staining the cells with Oil red O. Images of
the stained cells were taken using an Olympus IX71 micro-
scope (Olympus, Tokyo, Japan).

2.3. FACS Analysis. To analyze surface markers, the cultured
AdMSCs were isolated and harvested at a single-cell level.
Then, the cells were stained with fluorescein isothiocyanate-
(FITC-) conjugated or phycoerythrin- (PE-) conjugated
monoclonal antibodies (BD Biosciences Pharmingen, San
Diego, CA, USA). FITC- and PE-conjugated isotype antibod-
ies were used as negative controls. The fluorescence stain-
conjugated monoclonal antibodies used in the study were
anti-CD34, anti-CD45, anti-CD73, anti-CD90, and anti-
CD105 (all from BD Biosciences). Data were obtained using
the Cytomics Flow Cytometer (Beckman Coulter, Fullerton,
CA, USA). For CD206 analysis, cells were stained with
CD206 antibody (Abcam, Cambridge, MA, USA), and rabbit
isotype IgG (Alexa Fluor 594, Invitrogen) was used as the
negative control. Acquisition was performed with BD FACS
Aria III (BD Biosciences Pharmingen).

2.4. Coculture of AdMSCs with PBMCs. For coculture,
AdMSCs were seeded at 1 × 105 cells in a 12-well plate (BD
Falcon, USA). PBMCs were obtained from three healthy
donors. Briefly, mononuclear cells from the blood were sepa-
rated by centrifugation using a Ficoll-Hypaque gradient (GE
Healthcare, Uppsala, Sweden) and suspended in the RPMI
medium containing 10% FBS and 1% P/S (all from Invitro-
gen). PBMCs were plated onto transwell cell culture inserts
(Corning, NY, USA) at an AdMSC to PBMC ratio of 1 : 20
and cocultured for 24 h. The cells were maintained with
RPMI supplemented with 10% FBS and 1% P/S during the
24 h culture period. The culture groups were as follows:
PBMCs alone, AdMSCs alone, induced macrophages (iMΦ)
alone, PBMCs+AdMSCs, and AdMSCs+iMΦ.

2.5. Quantitative PCR. Total RNA was extracted using
RiboEx reagent (GeneAll, Seoul, Korea). The RNA was
reverse transcribed into cDNA using Maxime RT PreMix
(iNtRON, Seongnam, Korea), according to the manufac-
turer’s instructions. Quantitative PCR was performed in 96-
well plates using the LightCycler 480 SYBR Green I Master
mix (Roche Molecular Systems, Pleasanton, CA, USA) on a
LightCycler 480 System (Roche) under the following condi-
tions: 95°C for 5min and 95°C for 10 s, 45 cycles of 60°C for
20 s, and 72°C for 15 s. The sequences of the primers used
are listed in Table 1. Gene expression was normalized to that
of GAPDH and analyzed using advanced relative quantifica-
tion based on the E-method provided by Roche Applied Sci-
ence. The data are expressed as the mean ± SD of three
independent experiments.

2.6. Immunostaining. Cells were fixed in 4% paraformalde-
hyde (Biosesang, Seongnam, Korea) after washing with PBS
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(Invitrogen) containing 0.1% bovine serum albumin (BSA,
Sigma Chemical Co., St. Louis, MO, USA). After 20min on
ice, the cells were washed with PBS/0.1% BSA twice for
10min. Next, permeabilization solution containing 0.3%
Triton X-100 (Sigma) was added to the cells. After 5min,
primary antibody against CD206 (Abcam) was dispensed at
dilution of 1 : 200. After incubating overnight at 4°C, the
fluorescence-labeled anti-rabbit IgG (Invitrogen) at dilution
of 1 : 400 was used as the secondary antibody for 40min at
RT. After washing twice for 10min, the cells were costained
with DAPI (Sigma) for 5min. The number of CD206-
stained cells was counted and fluorescence images were
obtained using a fluorescence microscope (Olympus IX71,
Tokyo, Japan). The data are expressed as the mean ± SD of
three independent experiments.

2.7. T Cell Proliferation Assay. To evaluate the ability of cells
to suppress activated T cell proliferation, PBMCs (2 × 106)
were cocultured with cells of each type (1 × 105) in a 12-
well plate including transwell inserts. The attached cell
groups were as follows: 1 × 105 of AdMSCs alone, 1 × 105 of
iMΦ alone, and 5 × 104 of AdMSCs plus 5 × 104 of iMΦ.
To activate the T cells, 10μg/ml of phytohemagglutinin
(Sigma) was added for 72h during the coculture. To
investigate the inhibition of T cells, proliferation assay
was performed on the harvested cells using a WST-based
proliferation assay kit (EZ-Cytox, Daeil Lab, Seoul, Korea),
according to the manufacturer’s protocols. WST produces
a water-soluble formazan dye upon reduction, in the pres-
ence of an electron carrier. WST, being nonradioactive,
can be used in sensitive colorimetric assays for the deter-
mination of the number of viable cells during cell prolifer-
ation. Activated T cells alone were used as the control.

The data are expressed as the mean ± SD of three indepen-
dent experiments.

2.8. Isolation of Exosomes from AdMSCs. To isolate the exo-
somes from cultured AdMSCs, exosomes were extracted
from AdMSC culture media using an exosome isolation kit
(System Biosciences, California, USA), according to the
manufacturer’s instructions. Briefly, 5ml culture media was
transferred to a 15ml conical tube. After centrifugation at
1500× g for 5min at RT, the media supernatant was trans-
ferred to a 15ml conical tube. Thereafter, 1ml of
ExoQuick-TC reagent was added to the supernatant and
mixed by inverting the tube four times. After incubation at
5°C overnight, the mixture was centrifuged at 1500× g for
30min at RT. After removing the supernatant, the exosomes
were resuspended in PBS. Finally, the exosomes were stored
at -80°C after quantification using the BCA protein assay
kit (Invitrogen). Then, 5μg/ml of exosomes was added to
the experimental test groups. To identify exosomes, the mor-
phology of the isolated exosomes was analyzed by transmis-
sion electron microscopy (JEM-1011, JEOL, Japan). Briefly,
a formvar-carbon-coated EM grid was placed formvar-side
down on top of an exosome drop for approximately 1min.
The grid was removed, blotted with filter paper, and placed
onto a drop of 2% uranyl acetate for 15 s. The excess uranyl
acetate was removed. One representative of three indepen-
dent experiments is shown.

2.9. Western Blot Assay. Total protein was extracted using
RIPA buffer (Biosesang). The proteins (50μg) were separated
on 12% gradient-precast gels by sodium dodecyl sulfate poly-
acrylamide gel electrophoresis and transferred onto PVDF
membranes (Bio-Rad Laboratories, Redmond, WA, USA).
After blocking with 5% BSA in TBST, the membranes were
incubated with the primary antibodies CD9 (Abcam,
1 : 500) and CD63 (Abcam, 1 : 500) at 4°C overnight. Thereaf-
ter, the membranes were incubated with HRP-conjugated
anti-mouse and anti-rabbit IgG (1 : 1000, GeneTex, CA,
USA), respectively, at room temperature for 1 h. The second-
ary antibodies were detected using the LAS 4000 mini system
(GE Healthcare, Uppsala, Sweden).

2.10. Statistical Analysis. All data are expressed as the
mean ± SD. Statistical comparisons were performed by
one-way ANOVA with post hoc Bonferroni’s correction
and by Student’s t test. A P value < 0.05 was considered to
indicate a statistically significant difference. All statistical
analyses were performed using SPSS software 18 (SPSS
Inc., Chicago, IL, USA).

3. Results

3.1. AdMSCs Increased the Expression of M2 Macrophage
Markers. PBMCs (2 × 106) were cocultured with AdMSCs
(1 × 105) using a transwell system with the RPMI medium
supplemented with 10% FBS and 1% P/S. After overnight
incubation, the expression of macrophage markers was
analyzed. The coculture group showed that the expres-
sion of M2 macrophage marker Arg1 increased signifi-
cantly. However, the expression of TNF-α (M1 marker)

Table 1: Primer sequences.

Gene Primer sequence (5′-3′)

TNF-α
Forward: TTGAGGGTTTGCTACAACATGGG

Reverse: GCTGCACTTTGGAGTGATCG

CD163
Forward: CGGCTGCCTCCACCTCTAAGT
Reverse: ATGAAGATGCTGGCGTGACA

Arg1
Forward: ACAGTTTGGCAATTGGAAGCA
Reverse: CACCCAGATGACTCCAAGATCAG

FoxP3
Forward: TCATCCGCTGGGCCATCCTG
Reverse: GTGGAAACCTCACTTCTTGGTC

IL-10
Forward: ACCTGGTAGAAGTGATGCCCCAGGCA
Reverse: CTATGCAGTTGATGAAGATGTCAA

TSG-6
Forward: GGTGTGTACCACAGAGAAGCA
Reverse: GGGTTGTAGCAATAGGCATCC

Stat6
Forward: CCTTGGAGAACAGCATTCCTGG
Reverse: GCACTTCTCCTCTGTGACAGAC

MafB
Forward: GACGCAGCTCATTCAGCAG
Reverse: CCGGAGTTGGCGAGTTTCT

Klf4
Forward: ACCAGGCACTACCGTAAACACA
Reverse: GGTCCGACCTGGAAAATGCT

GAPDH
Forward: ACCCACTCCTCCACCTTTGA

Reverse: CTGTTGCTGTAGCCAAATTCGT
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and CD163 (M2 marker) did not change significantly
(Figure 1(a)).

To confirm whether AdMSCs induce M2 phenotype in
PBMCs, we evaluated the expression rate of CD206 (mannose
receptor), a specific marker of M2 macrophages, using flow
cytometry and immunofluorescence staining. The coculture
slightly promoted the CD206 expression of M2 macrophages
(control: 13.8%; coculture: 15.9%) (Figure 1(b)). Further-
more, the results of immunostaining showed that coculture
with AdMSCs increased the percentage of CD206-positive
cells (Figure 1(c)). Thus, these results demonstrated that
AdMSCs induce M2 phenotype in PBMCs.

3.2. AdMSC-Induced Macrophages Have Immunosuppressive
and Anti-inflammatory Effects. The purpose of this experi-
ment was to examine whether iMΦ induced by AdMSCs
are effective as AdMSCs. To assess the immunosuppressive
effects, activated T cells were cocultured with AdMSCs,

iMΦ (AdMSC-induced MΦ), and AdMSCs plus iMΦ.
PBMCs were used as the control to evaluate immunosup-
pressive activity. The proliferation activity of T cells was
determined using the WST-based EZ-Cytox assay after
72 h. T cell proliferation was inhibited by all the cell groups.
Importantly, iMΦ strongly suppressed cell proliferation
(Figure 2(a)).

Immunosuppression is mediated by various immune
cells, including regulatory T cells. The expression of FoxP3,
an immune-modulating gene, greatly increased in iMΦ, sup-
porting the observation of the inhibition of T cell prolifera-
tion (Figure 2(b)). We next analyzed the gene expression
of IL-10 and TSG-6, molecules associated with anti-inflam-
mation, by qPCR. Notably, the expression of IL-10 and
TSG-6 was higher in the iMΦ than in the AdMSCs and
AdMSCs plus iMΦ, indicating that iMΦ alone could exert
powerful immunosuppressive and anti-inflammatory activ-
ity (Figure 2(c)).
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Figure 1: AdMSCs induce macrophage M2 polarization. (a) qPCR analysis of coculture of AdMSCs with PBMCs for 24 h revealed increased
gene expression of Arg1 (M2 macrophage marker). (b) Expression of CD206 in PBMCs after coculture as assessed by flow cytometry. (c)
PBMCs were cocultured with AdMSCs for 24 h, then stained with CD206 (M2 macrophage marker) antibody by immunofluorescent
staining (scale bar = 100 μm). The percentage of CD206-positive cells was determined by counting the number of stained cells. The data
are expressed as the mean ± SD of three independent experiments. ∗P < 0:05, ∗∗P < 0:01.
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3.3. Characterization of AdMSC-Derived Exosomes.After pri-
mary isolation, AdMSCs were cultured to obtain the exo-
somes. Cultured AdMSCs exhibited a typical spindle-shaped
morphology anddifferentiation capacity for osteogenesis, adi-
pogenesis, and chondrogenesis (Figure 3(a)). The AdMSCs
expressed the MSC markers, namely CD73, CD90, and
CD105, as assessed by flow cytometry (Figure 3(b)). Exo-
somes isolated from AdMSCs were analyzed by TEM. The
results showed that exosomes were cup-shaped, membrane-
bound vesicles with a diameter of 67 nm (Figure 3(c)). CD9
and CD63, the specific marker proteins for exosomes, were
strongly detected in the isolated AdMSC exosomes as dem-
onstrated by western blot assay, whereas these markers were
not detected in AdMSCs (Figure 3(d)).

3.4. AdMSC-Derived Exosomes Increased M2 Macrophage
Marker Expression by Activating M2 Macrophage
Transcription Factors. We investigated M2 polarization by
flow cytometry analysis. The mean value of CD206-
positive cells in cocultured and exosome-treated groups
was higher than that in the control (Figure 4(a)). The results
suggest that AdMSC-derived exosomes could successfully
induce M2 macrophages.

In order to further assess whether AdMSC-derived exo-
somes induce M2 macrophages, 1μg/ml and 5μg/ml exo-
somes were added to the PBMCs for 24h. As shown in

Figure 4(b), the mRNA expression levels of CD163 and
Arg1 (M2 macrophage markers) significantly increased in
the 5μg/ml exosome-treated PBMCs. To confirm the pres-
ence ofM2phenotype, the cells treatedwith 5μg/ml exosomes
were evaluated for CD206, an M2 macrophage-specific
marker, by immunofluorescence staining. Taken together,
these results showed that the percentage of CD206-positive
cells was increased in 5μg/ml exosome-treated PBMCs
(Figure 4(c)).

We next examined the effects of AdMSC-derived exo-
somes on inducing M2 macrophage phenotype by analyzing
the expression of M2 macrophage-specific transcription fac-
tors, namely Klf4, Stat6, and MafB. Figure 5 reveals signifi-
cant activation of Stat6 and MafB in the exosome treatment
group, although the expression level of Klf4 did not show a
significant increase. Collectively, these data suggest that
AdMSC-derived exosomes sufficiently induce M2 phenotype
in PBMCs.

4. Discussion

Transplantation using MSCs for cell therapy shows positive
effects in various diseases such as myocardial infarction and
multiple system atrophy; however, no transdifferentiation
to tissue-specific cells was observed in vivo [13, 14]. This
means that the beneficial effects of MSCs occur via paracrine
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Figure 2: Immunomodulatory effects on activated T cells cocultured with AdMSCs, iMΦ, and AdMSCs+iMΦ. (a) Proliferation of PBMCs
cocultured with various cells for 72 h was analyzed by a WST-based proliferation assay kit to examine suppression of PBMCs by the
different cells. (b) Relative gene expression of FoxP3 was significantly increased in iMΦ-alone culture condition. (c) The relative gene
expression levels of IL-10 and TSG-6, immunomodulatory- and anti-inflammatory-related factors, were evaluated by qPCR. The data are
expressed as the mean ± SD of three independent experiments. ∗P < 0:05, ∗∗P < 0:01.
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factors, including exosomes and secreted molecules. Accu-
mulating evidence has supported that MSCs promote tissue
repair by reducing inflammation via their paracrine effects
[15]. In terms of safety, tumor formation and chromosomal
abnormalities have been reported after transplantation of
MSCs in experimental models in vivo [16]. Based on the
abovementioned studies, recent efforts have shown an
increasing number of positive outcomes employing the para-
crine activity of MSCs without cell engraftment [17].

Recently, Ulivi et al. showed that the MSCs are able to
shift the polarization of proinflammatory M1 macrophages
toward an anti-inflammatory M2 phenotype, by secreting
cytokines and soluble factors [18]. Additionally, Naoki
Takizawa et al. showed that cell-to-cell direct coculture of

MSCs and blood cells promoted M2 macrophage polariza-
tion [19]. We herein examined the propagation of M2
macrophages from PBMCs, in an indirect coculture system.
Quantitative PCR analysis revealed that the monocytes
cocultured with AdMSCs significantly expressed Arg1,
which is a known M2 macrophage marker. Moreover,
immunofluorescence staining analysis at the protein level
confirmed that most of the AdMSC-induced macrophages
(iMΦ) were positive for CD206, which in turn implied that
the molecules secreted by AdMSCs by indirect contact play
an important role in the expansion of M2 markers in the
polarized macrophages. However, we not only failed to
reduce the expression of TNF-α on the surface of M1 mac-
rophages but also promoted the expression of CD163 on the
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Figure 3: Isolation and characterization of AdMSCs and AdMSC-derived exosomes. (a) Morphology of cultured AdMSCs displayed the
typical spindle shape of MSCs (magnification, 100x). Under specific differentiation conditions, AdMSCs were differentiated into
osteoblasts (magnification, 200x), adipocytes (magnification, 400x), and chondrocytes (magnification, 200x). (b) Flow cytometry
histograms show the positive or negative immunophenotype of cultured AdMSCs. The cells expressed CD73, CD90, and CD105, known
as MSC markers. (c) Morphology of exosomes was identified by transmission electron micrograph (TEM). Scale bar = 200 nm. (d) Protein
expression of CD9 and CD63, the exosomes markers, was analyzed by western blot assay.
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surface of M2 macrophages. Soluble factors secreted by
MSCs promote the early expression of CD163 on M2 mac-
rophages, which indicates that the interaction time and pro-
portion of cells are critical factors in the expression of
macrophage markers [20]. These results are consistent with
the conclusion of Chen et al. that molecules produced by
MSCs had no significant effect on the levels of TNF-α
[20]. The reason behind this may be that there are intercel-
lular interactions of unknown factors between AdMSCs and
macrophages. Additionally, another possibility is that mole-
cules secreted by AdMSCs may not induce complete macro-
phage polarization. Thus, cell populations affected by
AdMSCs were expressed as induced macrophages (iMΦ)
in our study.

To investigate the effects of iMΦ on immunomodulation
and anti-inflammation, an activated T cell coculture system
was employed. All the cell groups including AdMSCs, iMΦ,
and AdMSCs plus iMΦ inhibited T cell proliferation. Nota-
bly, out of all of the cells, iMΦ strongly suppressed T cell
proliferation, revealing that iMΦ alone has the greatest
immunosuppressive potency. In other words, exosomes from
AdMSCs could be applicable for use as immunosuppressive
agents by inducing M2 macrophage phenotype in vivo. Reg-
ulatory T cells expressing FoxP3 gene are generally immuno-
suppressive and inhibit the proliferation of T cells [21].
Results of qPCR showed that the expression of FoxP3 greatly
increased in PBMCs cocultured with iMΦ, indicating that
iMΦ have a powerful modulatory effect on FoxP3-positive
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Figure 4: AdMSC-derived exosomes induce macrophage M2 polarization. (a) Expression of CD206 in PBMCs as assessed by flow cytometry.
(b) qPCR analysis of PBMCs treated with 5 μg/ml exosomes for 24 h showed increased gene expression of CD163 and Arg1 (M2 macrophage
markers). (c) M2 macrophage polarization by exosomes was confirmed by determining the percentage of CD206-stained cells
(scale bar = 100μm). The data are expressed as the mean ± SD of three independent experiments. ∗P < 0:05, ∗∗P < 0:01.
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T cells. However, in terms of immunosuppression, the inter-
active possibility of other immune cells cannot be excluded.
IL-10 and TSG-6 are the main anti-inflammatory factors
expressed in M2 macrophages [22]. In the present study,
iMΦ exhibited the highest increase in the expression levels
of IL-10 and TSG-6 as compared to those in other AdMSCs
and AdMSCs plus iMΦ. Taken together, iMΦ has greater
immunomodulatory and anti-inflammatory potential as
compared to the AdMSCs.

We next explored the molecules through which AdMSCs
mediated the induction of M2 macrophages. More recently,
Zhao et al. reported that the exosomes from AdMSCs atten-
uate inflammation and obesity via M2 macrophages in adi-
pose tissue [23]. Exosomes are the key players that are
capable of communicating with other cells and modulate
characteristics through various signaling pathways by trans-
ferring intercellular information, including RNAs, proteins,
and DNAs [24]. Therefore, recently, exosomes have been
applied in diverse biological fields, such as stem cell biology,
cancer biology, regenerative medicine, and immunology. In
this study, we explored whether the AdMSC-derived exo-
somes might affect M2 macrophages induction. The ultimate
goal of this study was to determine whether M2macrophages
were induced by AdMSC-derived exosomes. Further, we
have tried to confirm the possibility of stem cell-based
cell-free therapy using our results. Interestingly, AdMSC-
derived exosomes significantly induced M2 macrophage
phenotype in PBMCs by upregulating CD163, Arg1, and
CD206, suggesting that the exosomes indeed have the poten-
tial to act as a next-generation therapeutic tool in the field of
stem cells.

Wnt/β-catenin and notch signaling are known to pro-
mote M2 macrophage polarization and signaling through

IL-4 and IL-13 [25–27]. Yang et al. reported that the testes-
specific protease 50 modulates macrophages and induces
M2 polarization via TNF-α, IL-1β, and NF-κB signaling
pathways [28]. Recently, the transcription factors MafB,
Klf4, and Stat6 have been reported to promote M2 polariza-
tion by inducing the genes related to anti-inflammatory
functions [29–31]. Our data show that the AdMSC-derived
exosomes induce M2 polarization in macrophages by activat-
ing MafB and Stat6. However, a significant change in Klf4
gene expression was not observed, indicating that Klf4 may
not be a key transcription factor in stimulating M2 macro-
phages, and interaction with other factors may play definitive
roles. Additional detailed studies are necessary to assess the
functions of secreted exosomes. In addition, the signaling
pathways and/or mechanisms activating the transcription
factors for M2 macrophage polarization remain to be eluci-
dated. Furthermore, a comparative analysis of various mole-
cules, including exosomes and microvesicles secreted by the
AdMSCs, needs to be performed by using RNA arrays and
bioinformatics. We cannot exclude the effects of considerable
donor variations because we observed variation within the
same type of PBMCs.

5. Conclusions

In summary, this study reveals that AdMSCs could induce
M2 macrophages through exosomes, and these effects might
be through the activation of Stat6 and MafB transcription
factors, although the effects were not confirmed at protein
levels. Our results support two conclusions. Firstly, AdMSCs
induce monocytes toward an M2 phenotype possessing
immunomodulatory and anti-inflammatory functions, in a
cell contact-independent manner. Secondly, the AdMSC-
derived exosomes inducing M2 polarization could be safely
used as a useful stem cell-based cell-free tool for the clinical
treatment against inflammatory diseases. Furthermore, ther-
apies using exosomes could overcome the regulatory hurdles
and clinical risks such as tumor formation by transplanta-
tion of stem cells. Future research will determine whether
exosomes secreted by AdMSCs have anti-inflammatory
functions in inflammation-related disease models such as
wound healing.
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Figure 5: AdMSC-derived exosomes activate macrophage M2
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