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Drug discovery is a costly process which usually takes more than 10 years and billions of dollars for one successful drug to enter the
market. Despite all the safety tests, drugs may still cause adverse reactions and be restricted in use or even withdrawn from the
market. Drug-induced liver injury (DILI) is one of the major adverse drug reactions, and computational models may be used to
predict and reduce it. To assess the computational prediction performance of DILI, we curated DILI endpoints from three
databases and prepared drug features including chemical descriptors, therapeutic classifications, gene expressions, and binding
proteins. We trained machine-learning models to predict the various DILI endpoints using different drug features. Using the
optimal feature sets, the top-performing models obtained areas under the receiver operating characteristic curve (AUC) around
0.8 for some DILI endpoints. We found that some features, including therapeutic classifications and proteins, have good
prediction performance towards DILI. We also discovered that the severity of DILI endpoints as well as the selection of negative
samples may significantly affect the prediction results. Overall, our study provided a comprehensive collection, curation, and
prediction of DILI endpoints using various drug features, which may help the drug researchers to better understand and prevent
DILI during the drug discovery process.

1. Introduction

The drug discovery process is both time-consuming and
costly. It typically takes 10-17 years and costs $2.6 billion to
develop a new drug [1, 2]. Even after a drug passes all the
clinical trials and enters the market, it can still cause adverse
drug reactions, which may result in restricted uses or even
withdrawal [3, 4]. In the history of drug development,
drug-induced liver injury (DILI) is one of the major factors
to cause withdrawal of new drugs [5–7]. As an effort to
reduce DILI, researchers have developed computational
models to predict it [8, 9]. Machine learning is a method that
utilizes computing systems to learn from the data and make
predictions without the need of explicit programming [10].
Various machine-learning algorithms have been used to
predict DILI, including k-nearest neighbor (KNN) [11, 12],

Bayesian models [13, 14], linear discriminant analysis
(LDA) [15], random forest (RF) [11, 16], support vector
machine (SVM) [11], and artificial neural networks(ANN)
[15]. Since predicting DILI may help to improve drug safety
and reduce loss, this field is attracting interests from both
the academia and the pharmaceutical industry.

However, predicting DILI is a challenging task since DILI
involves different types of mechanisms such as direct hepato-
toxicity, immune reactions, and mechanisms that are not
completely understood [17, 18]. Besides, there are several
limitations regarding the current approaches of DILI predic-
tion. First, many studies focused on predicting either a single
DILI endpoint or a superset of endpoints such as liver
enzyme disorders, cytotoxic injury, cholestasis and jaundice,
bile duct disorders [19], and liver steatosis [20]. Second, many
studies focused on drug structural features [9, 12, 21, 22],

Hindawi
BioMed Research International
Volume 2020, Article ID 4795140, 10 pages
https://doi.org/10.1155/2020/4795140

https://orcid.org/0000-0002-0806-1508
https://orcid.org/0000-0001-5192-8878
https://orcid.org/0000-0002-1089-8673
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4795140


while many additional types of data, such as binding assays
[23], genomics [11], and postmarket surveillance data [19],
are available. In this study, we collected a comprehensive data-
set across different label sources (Micromedex DrugDex,
Micromedex DrugPoints, and DailyMed), different feature
types (chemical structure, protein binding, gene expression,
and therapeutic classifications), and different DILI endpoints
(such as liver failure, jaundice, biomarker increase, hepato-
megaly, and hepatitis) for oral drugs. We investigated and
evaluated model performance using different features to pre-
dict various DILI endpoints. We believe our results provide
useful insights regarding DILI prediction and may potentially
help to improve drug safety.

2. Methods

2.1. Feature Collection and Processing. The workflow of this
study is shown in Figure 1. We collected multiple types of
drug features from a variety of databases. The molecular
weights and structures (SMILES format) of the drug mole-
cules were collected from the PubChem database [24]. For
structural features, we calculated five types of molecular
descriptors including constitutional descriptors, electronic
descriptors, geometrical descriptors, hybrid descriptors, and
topological descriptors and three types of commonly used
chemical fingerprints, including ECFP6 (1024 bits), Pub-
Chem fingerprints (881 bits), and standard fingerprints
(1024 bits) using the rcdk package [25]. We collected the
Anatomical Therapeutic Chemical (ATC) classification and
Defined Daily Dose (DDD) codes from the World Health
Organization (WHO). For protein binding features, the drug
targets, enzymes, transporters, and carriers were collected
from the DrugBank database [26]. For gene expression fea-

tures, the drug-induced gene expression data for 978 land-
mark genes were collected from Wang et al. [27] based on
the NIH Library of Integrated Network-Based Cellular Signa-
tures (LINCS) database.

For feature processing, we categorized some continuous
features into bins referring previous studies [28]. For
example, the drug daily doses (DDD) were binned into
DDD < 10mg, 10mg ≤DDD < 100mg, and DDD ≥ 100mg.
The solubility AlogP values were grouped into AlogP < 1, 1 ≤
AlogP < 3, and AlogP ≥ 3.

2.2. Endpoint Data Collection. The relationship between oral
drugs and different types of DILI endpoints was extracted
and curated from three databases, DrugDex, DrugPoints,
and DailyMed, referring the extraction methods and criteria
from previous studies [28]. For DrugDex, we extracted seven
types of hepatic adverse drug reaction (hADR) endpoints
including fatal hADRs, hADRs causing acute liver failure
(liver failure), hADRs resulting in liver transplantation (liver
transplantation), jaundice, biomarker increase, hepatomeg-
aly, and hepatitis. The seven hADR endpoints were then cat-
egorized into severe hADRs (including fatal hADRs, liver
failure, liver transplantation, and hADRs complying with
Hy’s law [29]) and less severe hADRs (including the rest
hADRs). We ended up collecting 1,317 drugs from DrugDex
for the above DILI endpoints (Supplementary Table 1). For
DrugPoints, we collected endpoints including fatal hADRs,
liver failure, jaundice, liver enzymes abnormal, bilirubin,
hepatomegaly, and hepatitis for 372 drugs (Supplementary
Table 2). The seven endpoints were also categorized into
severe hADRs (including fatal hADRs and liver failure) and
less severe hADRs (including the rest hADRs). For
DailyMed, drugs were categorized into three groups: most
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Figure 1: The workflow of this study. We collected drug features from various databases including DrugBank, LINCS, and WHO’s ATC
database and curated DILI labels from DrugDex, DrugPoints, and DailyMed for oral drugs. We split 20% of the dataset as an independent
test set and used the remaining 80% for ten-fold cross-validations. We generated or collected the drug features and developed two types of
models, logistic regression (LR) and random forest (RF), using different combinations of parameters and used the best parameters for
independent tests.
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concern, less concern, and no concern regarding DILI
outcomes [30]. A drug is categorized as most concern for
DILI when it was withdrawn from the market or given a
warning, such as a black box warning or a precaution
section of DILI; a drug is considered less concern for DILI
if its label mentioned other DILI risks less severe than the
previous criteria; and a drug with no concern for DILI does
not have a DILI-related description in its label. We
collected 902 drugs and 104, 235, and 563 of these drugs
were categorized as most concern, less concern, and no
concern for DILI, respectively (Supplementary Table 3).

For each endpoint, we defined two types of negative sam-
ples, NSap1 and NSap2. For a given hADR endpoint, NSap1
is defined as drugs that have no reported hepatotoxic reaction
for the specific endpoint, while NSap2 is defined as drugs that
have no reported hepatotoxic reaction across all endpoints.
According to these definitions, NSap2 is a “cleaner” subset
of NSap1.

2.3. Model Training and Assessment. For each dataset, we
randomly held 20% as an independent test set and used the
remaining 80% for training and validation. In this study, we
trained two classifiers, logistic regression and random forest,
using the scikit-learn package in Python. To minimize the
data imbalance problem, the “class weight” parameter of each
model was set to “balanced.” For each classifier, the best
model parameters were selected by grid search based on areas
under the receiver operating characteristic curve (AUC) dur-
ing 10-fold cross-validations. Then, the model with the best
parameters was evaluated on the independent test set.

Since we have two types of negative samples, NSap1 and
NSap2, to find out whether the two types of negative samples
had an impact on the model performance, we performed
paired t-tests on the AUC scores of all features. We also ran
paired t-tests specifically for the protein and ATC code fea-
tures to find out whether they had any impact on the model
performance.

3. Results and Discussion

3.1. Different Features and Model Performance. We trained
two types of classifiers, logistic regression and random forest,
to predict different DILI endpoints using different types
of features for drugs in the DrugDex, DrugPoints, and
DailyMed databases. 10-fold cross-validations and indepen-
dent tests were conducted to estimate model performance
on the three databases. The AUC values of 10-fold cross-
validations on the datasets using best parameters were visual-
ized by heat map in Figure 2 and Supplementary Figs. 1–5.
The results of the independent tests are in Supplementary
Tables 4-6. Since some endpoints have very few or zero
positive samples during the independent test and produced
abnormally high or zero AUC values, we focused our
analysis based on the results of 10-fold cross-validations
and provided the independent test results as additional
references in Supplementary Tables 4-6.

Like the previous study [31], we used different types of
chemical fingerprints to predict DILI.While the logistic regres-
sion models showed random performance (AUC = 0:5) on

most endpoints using chemical fingerprints as features, the
models got slightly better performance for the “All hADR”
endpoint on either the NSap1 or NSap2 dataset with AUC
values mostly larger than 0.6 (Supplementary Figure 1). For
random forest models, the performance is generally better
than logistic regression models using chemical fingerprints,
especially for endpoints like fatal hADRs and severe
hADRs, which have AUC values close to 0.8 (Figure 2).
Similar results were also found for endpoints in DrugPoints
and DailyMed. Since random forest is an ensemble model
with a more complex structure, it is expected that it
exceeded the performance of logistic regression. The models
showed similar performance patterns using molecular
descriptors as features, with a few exceptions.

ATC codes are hierarchical therapeutic classifications of
drugs. A previous study has identified associations between
drug indications and side effects [32]; thus, we assumed that
the therapeutic classifications might also be helpful in pre-
dicting DILI. From the results, we can see that ATCs have
better performance for predicting most DILI endpoints com-
pared to chemical fingerprints. The logistic regression and
random forest models using the second level to fourth level
of ATC codes were able to obtain AUC values around or
larger than 0.7 in most DILI endpoints. However, the first
level of ATC codes had worse performance due to a lack of
therapeutic classification details. We also combined ATC
codes with other features, including the chemical fingerprints
and molecular descriptors. We found that the combination
generally improved the model performance than using a
single type of features, indicating the usefulness of combin-
ing various types of features (Figure 2 and Supplementary
Figs. 1-5).

According to the DILIN prospective study [33], drugs in
specific categories may have a higher association with DILI, as
the authors indicated 45% of the 899 investigated DILI cases
were caused by antimicrobials. To find out if similar patterns
can be observed in our data, we took drugs collected fromDrug-
Dex as an example and calculated the odds ratio (OR) and Fish-
er’s exact test p values between their top-level ATC codes and
different DILI endpoints. The results are shown in Supplemen-
tary Table 7. We observed that for anti-infective drugs for
systemic use, their odds ratios against all DILI endpoints are
above 2.5 with p values < 0.01, indicating a significant positive
association. We also analyzed the feature importance for
prediction (Supplementary Table 8) and found this category
was relatively important to predict various DILI endpoints,
which is consistent with the previous study. Additionally, we
observed that antineoplastic and immunomodulating agents
and drugs for the musculoskeletal system may also have a
higher association with DILI compared to drugs in other
categories. We believe such data and analysis can provide
valuable information to understand and prevent DILI.

The gene expression features used in this study [27] rep-
resent gene expression changes of the LINC L1000 978 land-
mark genes aggregated from a variety of cell lines before and
after treatment by drugs. The results showed that their AUC
values ranged mostly between 0.5 and 0.6 in all three data-
bases. This indicates that the processed dataset of LINCS
gene expression profiles may not be good enough to predict
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DILI, possibly because the immortal cell lines in which drugs
were tested may not necessarily represent the specific cell
types of hepatocytes or liver tissues. Thus, the expression
profiles aggregated from these experiments may not be pre-
dictive towards DILI endpoints.

To explore the importance of protein features in predict-
ing DILI, we trained models to predict various DILI end-
points using drug-binding proteins including targets,
carriers, transporters, and enzymes. We found that using a

single type of protein features alone, the models obtained
various results with the highest AUC value around 0.8.
Meanwhile, combining all types of protein features could
improve model performance even more. Additionally, we
found combining the protein features with the chemical
fingerprints or molecular descriptors could significantly
improve the performance of just using chemical fingerprints
or molecular descriptors in most cases of DrugDex and
DrugPoints and some cases of DailyMed (Table 1). This
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Figure 2: AUC values of different sets of features and DILI endpoints using random forest for drugs in the DrugDex database during 10-fold
cross-validations. In the table, each row represents a set of drug features, each column represents a DILI endpoint and the negative sample set
(NSap1 vs. NSap2), and each cell represents an AUC value (colored by its value). For DrugDex, there are seven DILI endpoints (fatal hADRs,
liver failure, liver transplantation, jaundice, biomarker increase, hepatomegaly, and hepatitis). They were categorized as “severe hADRs” and
“less severe hADRs.”. “All hADRs” include all DILI endpoints.
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indicates the protein-binding profiles of drugs are potentially
important indicators for DILI. Liu et al. [34] investigated the
prediction of adverse drug reactions using chemical features,
protein features, and phenotypic properties of drugs. They
also found that the combination of both protein features
and chemical features improved the prediction performance
compared to using only one of them. As one family of
adverse drug reactions, DILI has idiosyncratic and compli-
cated mechanisms [18]. Since protein features provide
important target-binding information in addition to chemi-

cal features, we believe the combination of such multidimen-
sional data can improve the model prediction performance.

3.2. Network and Pathway Analysis of Protein Features. In
this section, we did network and pathway analyses of the pro-
tein features using the DrugDex database as an example. To
find out which proteins and pathways are important to DILI
prediction, we calculated the Gini importance values for the
protein features using ExtraTrees [35]. For each endpoint,
we selected proteins with feature importance equal or larger

Table 1: Paired t-test results of AUC values during 10-fold cross-validations with or without using protein-binding features.

Logistic regression Random forest
Database Features t p t p

DrugDex

ECFP6 fingerprints -3.51 1.96E-03∗∗ -2.48 1.80E-02∗

PubChem fingerprints -3.09 5.38E-03∗∗ -2.56 1.48E-02∗

Standard fingerprints -3.32 2.86E-03∗∗ -2.26 2.94E-02∗

Constitutional descriptors -2.12 4.35E-02∗ -2.96 5.41E-03∗∗

Electronic descriptors -4.44 1.14E-04∗∗ -6.10 7.04E-07∗∗

Geometrical descriptors -5.75 4.22E-06∗∗ -8.30 6.47E-10∗∗

Hybrid descriptors -3.50 1.90E-03∗∗ -8.79 5.96E-10∗∗

Topological descriptors -2.35 2.43E-02∗ -1.93 6.11E-02

All fingerprints -2.34 2.68E-02∗ -1.94 5.95E-02

All descriptors -2.63 1.29E-02∗ -2.48 1.78E-02∗

All combined -10.25 2.76E-21∗∗ -10.56 3.79E-23∗∗

DrugPoints

ECFP6 fingerprints -2.06 5.60E-02 -2.99 8.91E-03∗∗

PubChem fingerprints -3.26 9.78E-03∗∗ 0.10 9.19E-01

Standard fingerprints -2.66 2.10E-02∗ -2.49 2.51E-02∗

Constitutional descriptors -3.20 4.97E-03∗∗ -2.18 4.28E-02∗

Electronic descriptors -3.31 5.00E-03∗∗ -3.51 2.98E-03∗∗

Geometrical descriptors -5.42 4.06E-05∗∗ -5.21 6.70E-05∗∗

Hybrid descriptors -4.80 9.79E-04∗∗ -2.31 3.55E-02∗

Topological descriptors -4.04 8.19E-04∗∗ -3.04 7.08E-03∗∗

All fingerprints -2.41 2.75E-02∗ -2.03 5.80E-02∗

All descriptors -4.61 3.56E-04∗∗ -2.35 3.08E-02∗

All combined -10.13 2.42E-19∗∗ -7.30 1.04E-11∗∗

DailyMed

ECFP6 fingerprints -0.79 4.50E-01 -0.31 7.62E-01

PubChem fingerprints -2.24 7.56E-02 -0.35 7.37E-01

Standard fingerprints 0.00 1.00E+00 -0.85 4.19E-01

Constitutional descriptors -0.94 3.80E-01 -1.56 1.53E-01

Electronic descriptors -1.25 2.58E-01 -1.65 1.30E-01

Geometrical descriptors -2.10 8.66E-02 -4.80 7.95E-04∗∗

Hybrid descriptors -2.81 3.74E-02∗ -1.49 1.79E-01

Topological descriptors -0.27 7.97E-01 -0.26 8.00E-01

All fingerprints 0.10 9.26E-01 -0.23 8.24E-01

All descriptors -0.90 3.97E-01 -0.56 5.87E-01

All combined -3.16 2.06E-03∗∗ -2.88 4.74E-03∗∗

For each t-test, the AUC score vectors of model performance on all endpoints were paired up and compared. ∗p < 0:05; ∗∗p < 0:01.
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Serotonergic synapse 31.05%⁎⁎

Neuroactive ligand-receptor interaction 10.35%⁎⁎

Aldosterone synthesis and secretion 8.62%⁎⁎

Steroid hormone biosynthesis 1.72%
Purine metabolism 1.72%⁎⁎

Malaria 1.72%⁎

Glyoxylate and dicarboxylate metabolism 1.72%

Acute myeloid leukemia 1.72%

Nitrogen metabolism 1.72%⁎⁎

Drug metabolism 1.72%
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Taste transduction 1.72%⁎⁎

Cysteine and methionine metabolism 1.72%
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Renin secretion 8.62%⁎⁎

PPAR signaling pathway 6.90%

(b)

Figure 3: For fatal hADRs as the endpoint, (a) the network of proteins according to the feature importance and (b) KEGG pathway analysis of
important protein features. In (a), each protein is represented by its gene symbol. The node size represents feature importance of protein to
DILI models. The line thickness presents the combined score made by the STRING database. In (b), the important protein features were
selected and analyzed by Cytoscape ClueGO using KEGG pathways. The stars indicate the significance levels for the enrichment tests.
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than 0.001 and queried the STRING database [36] to find
the protein-protein associations among them. The protein-
protein association networks are visualized in Figure 3(a)
and Supplementary Figure 6 indicating protein-protein
binding, coexistence in the same functional pathway/process,
or other indirect interactions. From Figure 3(a), we found
that some highlighted genes, such as PPARA, HTR2B, and
SLC22A4, were reported in the literature to be associated
with DILI or liver diseases [37–39]. We believe this feature
analysis may provide helpful insights to identify potential
DILI-related genes and generate new hypotheses to be
further tested in the wet lab.

We also used the ClueGO plugin in Cytoscape [40, 41] to
explore which pathways are enriched among the proteins
passing our feature importance criteria (Figure 3(b) and
Supplementary Figure 6). We found that the serotonergic
synapse pathway was significantly enriched for fatal hADRs
and the dopaminergic synapse pathway was significantly
enriched for a few other DILI endpoints. Studies showed
that serotonin and dopamine may have an association
with neuropsychiatric symptoms and neurobiology of liver
failure [42, 43]. From our analysis, we believe the feature
importance analysis and pathway enrichment analysis may
help to generate new hypotheses and useful insights for the
DILI mechanisms and thus aid in the understanding and
prevention of DILI.

3.3. Different Endpoints and Model Performance. We com-
pared the AUC values of all the features between the end-
points of severe hADRs and less severe hADRs and found
the models mostly performed better on severe hADRs
(Table 2). We also observed better performance on endpoints
of fatal hADRs and liver failure compared to other endpoints
(Figure 2 and Supplementary Figs. 1-5). It is suggested that
these severe DILI endpoints are more predictable than less
severe endpoints. Interestingly, as an exception, the jaundice
endpoint which belongs to less severe hADRs was found to
be predicted well using protein features. This finding is con-
sistent with a previous study which showed the importance
of transporters in the cholestasis model [44].

3.4. Negative Sample Selection and Model Performance. To
elucidate the differences of selecting negative samples in DILI
model performance, we prepared two types of negative drugs
in three databases, NSap1 and NSap2. In general, the models
performed better using NSap2 as negative samples compared
to NSap1 (Figure 2 and Supplementary Figs 1-5). Paired

t-test results of the AUC values in each endpoint between
NSap1 and NSap2 are shown in Table 3. We found that for
most endpoints in DrugDex, usingNSap2 as negative samples
had better results than using NSap1. Thus, the selection of
negative samples could make a significant difference in pre-
dicting DILI endpoints.

Defining an accurate negative set is important to study
DILI; however, different sources may lead to different nega-
tive sets. Zhu and Li [45] identified a set of 957 drugs without
hepatotoxicity report from eHealthMe websites as the nega-
tive set, which was also used in the work of Bajzelj and Drgan
[46]. DILIrank [47] contains a negative set of 312 no-DILI-
concern drugs whose labels did not contain any DILI indica-
tion, and this set was later used in the study of Shin et al. [48].
He et al. [49] collected a negative set of 709 drugs without
hepatotoxicity records from various literature sources. Note
that all the above approaches are similar to our approach,
which is to define drugs without reported hepatotoxic reac-
tion as the negative set. However, since different research
groups utilized different sources to determine their negative
sets, it can be challenging to find a consistent gold standard.
Taking DILIrank [47] as an example, while 38% of its no-
DILI-concern drugs also exist in our negative set collected
from DrugDex, a lower proportion (31%) was found in the
negative set from Zhu and Li [45].

4. Conclusions

In this study, we collected different types of drug features,
including chemical fingerprints, molecular descriptors, bind-
ing proteins, gene expression, and therapeutic classifications,
and collected the DILI endpoints from three databases,
DrugDex, DrugPoints, and DailyMed. We trained machine-
learning models to predict the DILI endpoints using the
various features. The models were assessed via 10-fold
cross-validations, and the results were analyzed by different
types of features and endpoints. We found that

(1) the features of ATC codes or binding proteins may
have significant implications for prediction perfor-
mance. Analyzing the important protein features
using networks and pathways may elicit potential
insights regarding DILI mechanisms

(2) severe liver injury, such as fetal hADRs, severe
hADRs, and liver failure, had better prediction per-
formance compared to nonsevere endpoints

Table 2: Paired t-test results of AUC values during 10-fold cross-validations between severe hADRs and less severe hADRs using NSap2 as
negative examples.

Logistic regression Random forest
Database t p t p

DrugDex 2.51 1.77E-02∗ 3.72 8.13E-04∗∗

DrugPoints 3.36 1.92E-03∗∗ 1.73 9.18E-02

DailyMed -0.07 9.45E-01 5.16 2.41E-05∗∗

For each endpoint, the AUC score vectors of model performance on all features were paired up and compared. ∗p < 0:05; ∗∗p < 0:01.
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(3) the selection of negative samples had an impact on
DILI prediction. Clean negative samples of drugs
without any DILI information in their labels may
produce better performance for DILI predictions

We also provided all the curated DILI labels from three
databases. We believe our study provides valuable informa-
tion and comprehensive evaluations for computational DILI
prediction and may help researchers to better understand
DILI and improve drug safety.
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Supplementary Figure 1: AUC values of different sets of
features and DILI endpoints using logistic regression for drugs
in the DrugDex database during 10-fold cross-validations.
Supplementary Figure 2: AUC values of different sets of fea-
tures and DILI endpoints using logistic regression for drugs
in the DrugPoints database during 10-fold cross-validations.
Supplementary Figure 3: AUC values of different sets of
features and DILI endpoints using random forest for drugs
in the DrugPoints database during 10-fold cross-validations.
Supplementary Figure 4: AUC values of different sets of fea-
tures and DILI endpoints using logistic regression for drugs
in the DailyMed database during 10-fold cross-validations.
Supplementary Figure 5: AUC values of different sets of
features and DILI endpoints using random forest for drugs
in the DailyMed database during 10-fold cross-validations.
Supplementary Figure 6: for the other DILI endpoints in
DrugDex, the network of proteins according to the feature
importance (a), and KEGG pathway analysis of important
protein features (b). Supplementary Table 1: DILI endpoints
curated from DrugDex. Supplementary Table 2: DILI end-
points curated fromDrugPoints. Supplementary Table 3: DILI

Table 3: Paired t-test results of AUC values during 10-fold cross-validations between NSap1 and NSap2 as negative examples.

Logistic regression Random forest
Database Features t p t p

DrugDex

Fatal hADRs -3.80 7.69E-04∗∗ -2.83 7.53E-03∗∗

Liver failure -3.33 2.46E-03∗∗ -1.51 1.40E-01

Liver transplantation -2.33 2.63E-02∗ -2.50 1.69E-02∗

Jaundice -3.10 4.04E-03∗∗ -3.69 1.01E-03∗∗

Biomarker increase -2.76 9.05E-03∗∗ -0.59 5.60E-01

Hepatomegaly -0.35 7.28E-01 -0.72 4.77E-01

Hepatitis -3.15 3.52E-03∗∗ -3.00 4.70E-03∗∗

All hADRs -0.12 9.02E-01 -0.03 9.78E-01

Severe hADRs -3.65 1.06E-03∗∗ -0.68 5.00E-01

Less severe hADRs -2.74 9.73E-03∗∗ -0.58 5.65E-01

DrugPoints

Liver failure -0.82 4.20E-01 0.42 6.75E-01

Jaundice -0.11 9.15E-01 1.18 2.47E-01

All hADRs -0.81 4.21E-01 0.04 9.67E-01

Severe hADRs -1.37 1.78E-01 -0.03 9.74E-01

Less severe hADRs 0.85 4.01E-01 -0.41 6.81E-01

DailyMed

All hADRs 0.00 1.00E+00 0.00 1.00E+00

Severe hADRs 5.22 6.75E-06∗∗ -0.60 5.50E-01

Less severe hADRs 1.41 1.72E-01 10.04 1.57E-10∗∗

For each endpoint, the AUC score vectors of model performance on all features were paired up and compared. ∗p < 0:05; ∗∗p < 0:01.
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endpoints curated from DailyMed. Supplementary Table 4:
AUC values of different sets of features and DILI endpoints
for drugs in the DrugDex database during an independent test.
Supplementary Table 5: AUC values of different sets of fea-
tures andDILI endpoints for drugs in the DrugPoints database
during an independent test. Supplementary Table 6: AUC
values of different sets of features and DILI endpoints for
drugs in the DailyMed database during an independent test.
Supplementary Table 7: association between DrugDex DILI
endpoints and top-level ATC codes. Supplementary Table 8:
feature importance of using top-level ATC codes to predict
DrugDex DILI endpoints. (Supplementary Materials)
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