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Introduction
Mitochondrial DNA (mtDNA) forms nucleoprotein complexes 

(Chen and Butow, 2005). In yeast, several candidate mitochon-

drial nucleoid proteins have been identifi ed by in organello 

formaldehyde cross-linking experiments (Kaufman et al., 2000). 

Several of them associate closely with mtDNA and contribute to 

its stability (MacAlpine et al., 2000; Kaufman et al., 2003; Chen 

et al., 2005). Less is known about mammalian mitochondrial 

nucleoids; they contain Tfam, which is believed to be the major 

mtDNA packaging protein (Alam et al., 2003), and Twinkle, 

an mtDNA helicase (Spelbrink et al., 2001), mitochondrial 

 single-strand binding protein, and DNA polymerase γ (Garrido 

et al., 2003). Additional proteins copurify with frog oocyte 

mtDNA (Bogenhagen et al., 2003), although their roles in 

mtDNA maintenance are uncertain.

In mammals, many molecules of mtDNA contain a short 

triple-stranded region, or displacement loop (D-loop; Arnberg 

et al., 1971; Kasamatsu et al., 1971), located in the major non-

coding region (NCR). The third strand of the D-loop, 7S DNA, 

is �0.65 kb long in humans, spanning from approximately 

nt 16,111 to nt 191 (Andrews et al., 1999). D-loops are synthe-

sized via transcription initiating at the light strand promoter 

and transition to DNA synthesis at the origin of heavy strand 

replication (Clayton, 1982). They have been proposed to repre-

sent stalled or aborted replication intermediates (Clayton, 1982). 

Hitherto, there has been no evidence that mitochondrial D-loops 

are functional entities.

Tfam/Abf2 are members of the HMG family of DNA 

binding proteins, which bend DNA. Subunit α of bacterial HU 

is a histone-like protein, which is capable of binding to a variety 

of nucleic acid substrates (Balandina et al., 2002) and of com-

plementing Abf2-defi cient yeast (Megraw and Chae, 1993). 

 Because HU is simpler than its eukaryotic counterparts and 

more readily expressed in Escherichia coli, we used it as a bait 

to affi nity purify mammalian mtDNA with its associated 

 proteins; this strategy led to the isolation of the protein TOB3 
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(ATAD3p), found but not characterized previously in a pro-

teomic screen of rat liver mitochondria (Mootha et al., 2003) 

and, more recently, in enriched mitochondrial nucleoprotein 

preparations (Wang and Bogenhagen, 2006). Here, we show 

that ATAD3p is a DNA binding protein, which is present in 

 mitochondrial nucleoids; siRNA of ATAD3 decreased the num-

ber of mtDNA multimers, and in vitro part of the protein binds 

preferentially to D-loop–containing molecules, suggesting that 

mitochondrial D-loops play a role in mtDNA organization.

Results and discussion
Preparations of HU affi nity-purifi ed rat liver mtDNA contained 

six identifi able proteins (Table S1, available at http://www.

jcb.org/cgi/content/full/jcb.200609158/DC1): only Tfam was a 

known mitochondrial nucleoid protein. One of the six, ATAD3p, 

has an AAA+ domain (Finn et al., 2006), located toward its 

C terminus, and a conserved hydrophobic region of 20 amino 

 acids (residues 246–265 of human ATAD3B); however, it lacks 

a canonical N-terminal mitochondrial targeting signal. The se-

quence of ATAD3 is 85% identical between rat and humans, and 

homologues are spread throughout animals, plants, and protists 

(Fig. S1). The hydrophobic region is the appropriate length to 

span a lipid bilayer, but DAS-TMFilter, Phobius, and Minnou 

programs do not predict it will form a transmembrane helix; 

thus, in silico analysis suggested that ATAD3p was not an in-

tegral membrane protein. Nevertheless, the protein is tightly 

 associated with mitochondrial membranes based on alkaline 

carbonate treatment of mitochondria (Fig. S2 A).

To determine the cellular location and properties of 

ATAD3, recombinant human protein was produced. Human 

ATAD3B consists of 648 amino acids with a calculated mo-

lecular mass of 72 kD. The protein expressed poorly in E. coli 
 (unpublished data), but two fragments, ATAD3-f1 (residues 

44–247) and ATAD3-f2 (residues 264–617), were expressed 

readily as soluble GST fusion proteins (unpublished data). 

 Antibodies raised against ATAD3-f1 recognized two proteins in 

human 143B osteosarcoma cells but only one protein (ATAD3A) 

in A549 adenocarcinoma cells (Fig. S2 B). Immunocytochemis-

try with antibody to ATAD3-f1 revealed a punctate staining pat-

tern within mitochondria (Fig. S2 C), which frequently coincided 

with mtDNA (Fig. 1 A). Notwithstanding, many mitochondrial 

nucleoids appeared to lack ATAD3p (Fig. 1 A). Thus, the amount 

of ATAD3p associating with mtDNA appears to vary from 

 nucleoid to nucleoid.

Two rounds of transfection of 143B osteosarcoma cells 

with double-stranded RNA (dsRNA)–452 targeted to ATAD3 de-

creased PicoGreen staining of mitochondrial nucleoids  markedly 

(Fig. 1 B). However, the copy number of mtDNA after ATAD3 

siRNA was �88% of control values (Fig. 1 D), suggesting 

that PicoGreen staining does not provide a direct measure of 

mtDNA mass, an inference confi rmed by immunofl uorescent 

detection of DNA (Fig. 1 C). Therefore, PicoGreen staining of 

DNA must depend on the DNA’s topological state. Relaxation 

of supercoiled plasmid DNA in vitro was accompanied by 

a substantial increase in PicoGreen signal (unpublished data), 

substantiating this view. Therefore, we conclude that ATAD3p 

depletion leads to an increase in negative supercoiling and that 

the more condensed form of mtDNA largely excludes Pico-

Green. Mitochondria had an essentially normal morphology in 

ATAD3 siRNA–treated 143B cells (Fig. 1 B and not depicted), 

implying that ATAD3p has no role in mitochondrial fi ssion 

or fusion; hence, the observed change in mtDNA associated 

with gene silencing is not an indirect consequence of mito-

chondrial disorganization.

2D agarose gel electrophoresis (AGE; Brewer and Fang-

man, 1987) has been used to characterize mitochondrial rep-

lication intermediates (Yang et al., 2002; Yasukawa et al., 

2005). Here, the bulk of the protein was removed by treatment 

with detergent and phenol without the usual proteinase K  digestion. 

Under these conditions, an AccI restriction fragment (nt 15,255–

1,504) of human mtDNA did not enter the gel readily com-

pared with protease-treated samples, and there were  numerous 

Figure 1. ATAD3 colocalizes with mtDNA, and gene silencing alters Pico-
Green staining of mitochondrial nucleoids. (A) 143B osteosarcoma cells 
were incubated with primary antibodies to ATAD3 and DNA and second-
ary antibodies emitting green and red light, respectively, on confocal 
 microscopy. (B) siRNA targeted to ATAD3 led to a marked decrease in 
 PicoGreen staining of mtDNA (green), whereas mitochondrial morphol-
ogy was not visibly affected based on MitoTracker staining (red). Human 
143B osteosarcoma cells were twice mock transfected (mock) or trans-
fected with dsRNA-452 targeting ATAD3 (ATAD3 siRNA) at 72-h intervals. 
Cells were stained with MitoTracker and PicoGreen 144 h after the fi rst 
transfection and examined by confocal microscopy. MitoTracker orange 
signal was pseudocolored red to improve contrast. (C) Comparison of 
PicoGreen-stained mtDNA in living cells (top) with fi xed cells labeled 
with anti-DNA antibody (bottom). Images were acquired with a Nikon 
60×/1.40 oil-immersion objective, set at zoom 2 (B) and zoom 4 (A and C) 
at 22–24°C in Immersol (Carl Zeiss MicroImaging, Inc.). (D) qPCR esti-
mation of mtDNA copy number in control, ATAD3, Twinkle, and Tim17A 
siRNA–treated cells.
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 prominent spots on the linear duplex arc, indicating that protein 

remained associated with mtDNA (Fig. 2, A and B). In addition, 

residual protein gave rise to a series of spots resolving well 

above the linear duplex arc. The position of the fi rst of these 

(Fig. 2 A, species 4) was coincident with the apex of an X arc 

(Friedman and Brewer, 1995; Yasukawa et al., 2005); that is, its 

mobility implied it comprised two fragments of DNA joined 

near the center (Fig. 2 A [interpreted in Fig. 2, C–E]). The mass 

of the other spots (species 6, 7, and 8) is consistent with higher 

order multimers, and the increasing distance from the linear 

 duplex arc implies that these are also joined near their center 

(as interpreted in Fig. 2 C). If ATAD3p is a bona fi de component 

of mitochondrial nucleoids, its depletion via RNAi might alter 

the mobility of protein-bound mtDNA fragments. Therefore, 

total cellular DNA was extracted, without a protease step, from 

control cells and ATAD3 siRNA–transfected cells, and restric-

tion digested, and the fragments were separated by 2D-AGE. 

After Southern blotting, nylon membranes were hybridized se-

quentially to probes for three regions of mtDNA covering most 

of the human mitochondrial genome: nt 15,255–1,504 (a); 

nt 1,505–6,286 (b); and nt 8,157–15,254 (c). In ATAD3 siRNA 

samples, there was a signifi cant decrease (P = 0.00005) in sig-

nal from mtDNA trapped near the well, and at the boundary of 

the 1D and 2D gels, specifi cally for the NCR-containing frag-

ment (a; Fig. 2 F versus Fig. 2 G and Fig. S2 D). The iterated 

spots corresponding to the apex of a simple X arc, and higher 

multimers thereof, were also signifi cantly decreased (P < 

0.0065), whereas the protein-bound fragments of mtDNA re-

solving on or close to the linear duplex arc were substantially 

the same as controls (Fig. 2 F), and no signifi cant alteration was 

observed in other regions of mtDNA in controls and ATAD3 

siRNA–treated samples (Fig. 2 G and not depicted). Therefore, 

ATAD3p binds preferentially within the region defi ned by the 

AccI fragment spanning nt 15,255–1,504 of human mtDNA, 

and ATAD3 is implicated in the maintenance or formation of 

mtDNA multimers. Although the 2D-AGE data (Fig. 2) sug-

gested that ATAD3p binds to multiple molecules of mtDNA, 

other factors presumably contribute to mitochondrial nucleoid 

stability in vivo, as there was no apparent nucleoid fragmenta-

tion in ATAD3 siRNA–treated cells stained with anti-DNA anti-

body (Fig. 1 C).

Based on the analysis of AccI fragments of human 

mtDNA described above, ATAD3p might bind at any number 

of sites from nt 15,255 to nt 1,504. However, the fact that the 

depleted species were X-like structures led us to focus on the 

central  portion of the fragment, the NCR. The NCR encom-

passes the mitochondrial D-loop, a triple-stranded region of 

�600 nucleotides. Therefore, the human NCR was cloned in 

Bluescript and synthetic D-loops were produced to investigate 

whether the two recombinant fragments of ATAD3 had specifi c 

DNA binding properties. First, however, the f1 and f2 frag-

ments of human ATAD3 were incubated with random pieces 

of single-stranded and duplex DNA and analyzed by electro-

phoretic mobility shift assay (EMSA) to determine their non-

specifi c DNA binding properties. Only ATAD3-f1 was capable 

of binding to duplex DNA, whereas both fragments bound to 

single-stranded oligodeoxynucleotides (Fig. 3 and Fig. S2 E). 

In all cases, the vast majority of linear DNA remained unbound; 

therefore, neither duplex nor single-stranded DNA is a good 

substrate for ATAD3. The fi rst synthetic D-loop (C) tested used 

an oligonucleotide (oligo C) spanning 120 nucleotides, from 

nt 16,081 to nt 16,200, near the 3′ end of the native D-loop. 

D-loop C was incubated with RecA protein, or ATAD3-f1 and -f2, 

Figure 2. Multiple NCR-containing fragments of mtDNA are held together 
by detergent-resistant protein in control cells but not in ATAD3 siRNA–
treated cells. DNA was extracted from 143B cells with (B) or without the 
use of proteinase K (A, F, and G) and digested with AccI. The restriction 
fragments were separated by 2D-AGE and hybridized with probe h1, de-
tecting fragment a, nt 15,255–1,504 (A, B, and F), or probe h2 to frag-
ment c, nt 8,157–15,254 (G). AccI restriction sites and probes are shown 
on a schematic map of human mtDNA at the head of the fi gure. Sketches 
of A and B appear in C and D, respectively, and are interpreted in E, 
except for molecular species 5, which probably represents forms of species 
4 with greater amounts of associated protein. (F and G) Controls 1 and 2 
are mock-transfected 143B cells, and ATAD3 siRNA1 and -2 are 143B 
cells subjected to two rounds of transfection with dsRNA-452. There were 
many spots aligned along the linear duplex arc in the case of fragment a 
(nt 15,255–1,504; F), but not fragment c (nt 8,157–15,254; G) or frag-
ment b (1,505–6,286; not depicted), irrespective of ATAD3 RNAi. These 
spots comprise fragment a and proteins of unknown identity. ATAD3 siRNA 
led to a marked decrease in X-like species resolving well above the linear 
duplex arc (species 4, 6, and 7), suggesting that ATAD3p is specifi cally 
associated with X-like forms of fragment a.
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and subjected to 1D- AGE. ATAD3-f1 and RecA bound to 

D-loop C to a much greater extent than ATAD3-f2 (Fig. 4 A); the 

pronounced mobility shift effected by hATAD3-f1 compared 

with RecA  suggests either that the former accrues multiple 

DNA molecules or that each D-loop is bound by a large num-

ber of ATAD3p molecules.

In competition experiments, all molecules of D-loop C 

 associated with ATAD3-f1 when mixed with a >1,000-fold 

 excess of pUC19, plasmid DNA (Fig. 4 B). Plasmid including 

the NCR sequence (pNCR) was a more effective competitor, 

yet there remained a preference for D-loop structures over 

 supercoiled plasmid without a D-loop, as �80% of D-loops 

bound to protein in the presence of a 100-fold excess of pNCR 

(Fig. 4 B). The increased competition from pNCR, relative to 

pUC19,  suggested that there might be an element of sequence- 

specifi c binding to the action of ATAD3-f1. However, a second 

synthetic D-loop (A) corresponding to the other end of the 

Figure 3. ATAD3-f1 binds both single-stranded and duplex DNA weakly, 
whereas ATAD3-f2 binds only single-stranded DNA. (A) ATAD3-f2 contains 
a putative ATPase domain, so DNA binding reactions involving this protein 
fragment were performed in the presence of 3 mM ATP, 3 mM ADP, or PCP 
(2,3-Methyleneadenosine 5′-triphosphate disodium salt), a nonhydrolys-
able analogue of ATP (2 mM). Radiolabeled double-stranded oligonucle-
otides of 24 (dsDNA24) or 50 (dsDNA50) base pairs were incubated with 
0, 264, or 528 ng of ATAD3-f2 protein. In parallel, dsDNA24 or -50 were 
incubated with 0, 145, and 290 ng of ATAD3-f1 for 20 min at 37°C with 
(not depicted) or without 3 mM ATP. The reaction mixtures were fractioned 
by nondenaturing PAGE (3.5% gel) and exposed to phosphorimager 
screens. A small percentage of dsDNA24 and -50 was retarded after 
 incubation with ATAD3-f1, forming a band close to the well (arrows). 
(B) Oligo24 and -60 were incubated separately with increasing concentra-
tions of ATAD3-f1 (72.5, 145, 290, and 580 ng) or ATAD3-f2 (68, 132, 
264, and 528 ng), and the products were resolved on a 3.5% TBE poly-
acrylamide gel.

Figure 4. ATAD3-f1 binds D-loop structures. (A) A fi xed amount of 
D-loop C, comprising pNCR and oligo C (120 mer corresponding to nu-
cleotides 16,081–16,200 of the human mtDNA H-strand), was incubated 
with increasing concentrations of ATAD3-f1 (145, 290, and 580 ng), 
ATAD3-f2 (132, 264, and 528 ng), ATAD3-f1 and ATAD3-f2 (145 + 132, 
290 + 264, and 580 + 528 ng), or RecA (500, 1,000, and 2,000 ng). 
DNA–protein mixtures were fractioned on a 1% TAE agarose gel. Controls 
1–3 show synthetic D-loop C without protein (1) and with 5 μg/ml 
 ethidium bromide (2) or heated to 42°C (3). None of these treatments, 
nor incubation with protein, had an appreciable effect on the amount of 
free oligo C at the bottom of the gel (see inset). (B) ATAD3-F1 preferen-
tially binds to synthetic D-loop C. A fi xed amount of D-loop C was mixed 
with increasing amounts of competitor pUC19 (0, 50, 100, 200, and 
500 ng) or plasmid containing the NCR of human mtDNA, pNCR (0, 5, 
10, 25, 50, 100, 200, and 500 ng), and incubated with 290 ng of 
ATAD3-f1. Protein–DNA complexes were separated in a 1% TAE agarose 
gel. In the case of pNCR, the series of numbers at the base of the phos-
phorimage refers to the amount of D-loop C (B) or D-loop A (C) not bound 
by ATAD3-f1, taking the control (C), which was incubated without protein, 
as 100%. Thus, there was no appreciable (0) unbound D-loop C when the 
incubation reaction contained a 30-fold excess of pNCR (10 ng), whereas 
64% of D-loops failed to associate with ATAD3-f1 in the presence of 
500 ng of pNCR (>1,000-fold excess). A second synthetic D-loop (A), 
formed by the action of RecA on pNCR and oligoA (nucleotides 72–191), 
behaved similarly (C).



MITOCHONDRIAL D-LOOP BINDING PROTEIN • HE ET AL. 145

D-loop (nt 72–191) displayed the same competitive advantage 

in binding ATAD3-f1 as D-loop C (Fig. 4 C). The sequences of 

oligonucleotides A and C used to generate the two D-loops are 

not alike (Andrews et al., 1999); therefore, ATAD3-f1 does not 

display sequence- specifi c binding.

D-loop C occasionally formed two bands in the absence 

of protein, particularly when lower amounts of RecA were 

used to generate the synthetic D-loop (Fig. 5 A, lane 6); both 

species had greater mobility than open circular DNA (Fig. 

2 B). Differences in supercoiling are more readily apparent 

when DNA molecules are separated on chloroquine gels 

(Richardson et al., 1984); therefore, the same products were 

separated on a chloroquine gel. As expected, this amplifi ed 

the difference in mobility between forms a and b, consistent 

with band a being a less tightly supercoiled version of syn-

thetic D-loop C than band b (Fig. 5 B). ATAD3p showed a 

marked preference for the most highly supercoiled D-loop–

containing molecules (Fig. 5 A, lanes 7 and 8); this feature in-

dicates that D-loop context is crucial to ATAD3p recruitment 

or retention, which may be necessary to avoid the protein in-

terfering with the processes of replication and transcription. 

The highest concentrations of protein produced only a modest 

shift in some of the more relaxed molecules (Fig. 5 A, lanes 9 

and 10). Therefore, tightly supercoiled DNA with a D-loop is 

the strongly preferred substrate for ATAD3p, and such DNA 

molecules permit oligomerization of either the protein or 

DNA, or both.

In summary, ATAD3p frequently colocalizes with mtDNA, 

and supercoiled DNA with a D-loop is the preferred substrate of 

a recombinant fragment of ATAD3p. The pronounced prefer-

ence of ATAD3p for triple-stranded DNA predicts it will asso-

ciate with a specifi c class of mtDNA molecules, those containing 

a D-loop. Hence, the key prediction of this report is that D-loop 

(7S DNA) synthesis occurs to recruit ATAD3p to mtDNA via 

the f1 portion of the protein.

Much remains to be elucidated about the function of 

ATAD3. Several AAA family members are involved in DNA 

transactions, including the bacterial nucleoid protein FtsK, 

clamp loaders, Cdc6, and components of the origin recognition 

complex. The AAA domain of ATAD3 might well confer on the 

protein the ability to translocate DNA as elsewhere (Singleton 

and Wigley, 2003). The ATPase of ATAD3 is functional (Fig. 

S2 F), and ATP but not ADP enables ATAD3-f2 to bind single-

stranded DNA, although ATP hydrolysis is not required for 

binding, as the protein also binds to single-stranded DNA in the 

presence of PCP (Fig. S2 E). Presumably, the binding of ATP to 

ATAD3-f2 induces a conformational change that enables the 

protein to bind to single-stranded DNA.

ATAD3p is tightly associated with mitochondrial mem-

branes (Fig. S2 A) and, therefore, is likely to contribute to the 

association of mtDNA with membranes; yet, the in silico pre-

diction is that ATAD3p lacks transmembrane helices, so other 

proteins are probably required to tether mtDNA to the inner 

membrane. The amount of ATAD3p associated with mitochon-

drial nucleoids is highly variable, and some nucleoids appear to 

lack the protein entirely (Fig. 1 A), which suggests that ATAD3p 

associates only transiently with mtDNA or with a distinct 

 subpopulation of mtDNAs. The limited effect of ATAD3 gene 

 silencing on mtDNA copy number implies it is not required for 

replication. Therefore, we favor a role for ATAD3p in  nucleoid 

formation or segregation.

Materials and methods
Isolation of mitochondrial nucleoprotein complexes
Rat liver mitochondria prepared as described previously (Yang et al., 
2002) were treated with 0.2 mg/ml RNase A and DNase I for 2 h at 4°C, 
washed, and sedimented by centrifugation at 8,000 gmax for 10 min. 40 mg 
of mitochondria were disrupted by suspension in 4 ml lysis buffer (10 mM 
Hepes-NaOH, pH 7.6, 0.2 mM PMSF, 1 mM EDTA, 1 mM DTT, and 0.8% 
n-Dodecyl-β-D-maltopyranoside) and centrifuged at 1,000 gmax for 10 min, 
and the supernatant was incubated with 4 ml recombinant-HU–coated 
beads in lysis buffer supplemented with 200 mM NaCl. After washing the 
beads with lysis buffer containing 100 mM NaCl and elution with 80 mM 
glutathione, the eluate was separated on a 20–45% iodixanol gradient, 
the fractions enriched in mtDNA were pooled, and the affi liated proteins 
were analyzed by mass spectrometry.

Constructs
Fragments of ATAD3(B) corresponding to amino acids 44–247 (ATAD3-f1) 
and 264–617 (ATAD3-f2) were amplifi ed from a full-length cDNA (IMAGE 
Clone ID 3138578; Mammalian Genome Collection) and fused with a 
GST gene. Expressed protein was purifi ed by sequential chromotography 
(glutathione Sepharose, HiTrap SP FF/HiTrap Q FF, and Superose 12 gel-
fi ltration [GE Healthcare]). GST-HU protein was expressed similarly, except 
that induction was at 37°C, and purifi cation was via Ni-Sepharose HP fol-
lowed by SP Sepharose FF (GE Healthcare).

Cell culture and RNAi
Human cells were grown in DME with 10% fetal bovine serum. For RNAi, 
143B human osteosarcoma cells growing on 6-well plates at 25–30% con-
fl uency were transfected with 10 nM dsRNA and 3 μl of Lipofectamine 
2000 (Invitrogen). Cells were transfected a second time, at 72 h, and ex-
amined by confocal microscopy at 144 h or lysed for total RNA or DNA 
extraction. In preliminary tests, dsRNA-452 (5′-U C A A U G A G G A G A A U U U-
A C G G A A G C A AG-3′; 5′-UAA G U U A C U C C U C U U A A A U G C C UUCGU-3′) 
reduced mRNA levels by 65% after 72 h (based on qPCR analysis). 

Figure 5. ATAD3 binds to highly supercoiled DNA with a D-loop in prefer-
ence to relaxed molecules with a D-loop. (A) 0, 72.5, 145, 290, or 
580 ng of ATAD3-f1 was incubated with a fi xed amount of D-loop A or C. 
The DNA–protein complexes were separated from unbound DNA  molecules 
in a 1% TAE agarose gel. D-loop A formed one discrete band without 
 protein (lane 0), and almost all D-loop A was bound by 290 ng protein. In 
contrast, D-loop C alone yielded two bands, ATAD3-f1 displayed a marked 
preference for the lower band (a): 72.5 ng protein bound >95% of band a, 
whereas 580 ng produced only a modest shift in a fraction band b. The 
difference in mobility between band a and b was accentuated by separating 
the two species on chloroquine gels (B). Treatment of D-loop C with E. coli 
topoisomerase I (1, 2, or 3 units) at 37°C for 30 min resulted in smearing 
and an overall reduction in signal, suggesting that relaxation of the plas-
mid destabilizes the D-loop. Topoisomers were separated in a 1% TAE 
agarose gel containing 5 μg/ml chloroquine (B).
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Twinkle and Tim17A siRNA and qPCR were performed as described previ-
ously (Tyynismaa et al., 2004).

Confocal microscopy
143B cells were washed and live stained with 3 μl PicoGreen reagent 
 (Invitrogen) and 100 nM of MitoTracker orange (Invitrogen) as described 
previously (Tyynismaa et al., 2004; Ashley et al., 2005) or fi xed 
and stained with anti-DNA antibody (PROGEN Biotechnik) and 1:5,000 
anti–ATAD3-f1. A confocal microscopy system (Radiance 2000; Bio-Rad 
Laboratories) was used for cell imaging, and images were edited using 
Photoshop Element (Adobe).

DNA analysis and EMSA
2D-AGE of AccI-digested human DNA was done as described previously 
(Yasukawa et al., 2005). The mtDNA copy number was estimated by 
qPCR, as described previously (Tyynismaa et al., 2004). Synthetic D-loops 
were generated by incubating end-labeled oligo C nt 191–72 or A nt 
16,081–16,200 with pNCR as described previously (Shibata et al., 1980). 
pNCR comprised Bluescript plasmid (Stratagene) and a 1.2-kb fragment of 
human mtDNA encompassing the NCR (nt 16,024–576) of human mtDNA. 
Purifi ed proteins were incubated with labeled DNA substrates, the products 
were separated on 1% AGE or 3.5% native PAGE, and phosphorimages 
were produced using a Typhoon detector (GE Healthcare). The sequences 
of the oligonucleotides used in the EMSAs are listed below, except for 
 oligos A and C, which were based on the revised human mtDNA sequence 
(Andrews et al., 1999). Oligo24 top, 5′-G A T C T T G T A C A C G G C C G A C T-
A G T G -3′; Oligo24 bottom, 5′-C A T G T G C C G G C T G A T C A C C T A G -3′; 
Oligo50 top, 5′-A T C C G G A A T C T C C A C G C A A A C G G C G C C T C A T T C T T C T-
T C A T C T G T A T C T T C -3′; and Oligo50 bottom, 5′-G A A G A T A C A G A T G A A G-
A A G A A T G A G G C G C C G T T T G C G T G G A G A T T C C G G A T -3′.

Online supplemental material
Table S1 lists the six proteins identifi ed by mass spectrometry analysis 
that consistently copurifi ed with mtDNA. Fig. S1 shows that ATAD3 is 
an evolutionary conserved member of the AAA family. Fig. S2 shows 
that ATAD3p is a mitochondrial membrane–bound ATPase with two 
single-stranded DNA binding domains, which stabilizes extracted mtDNA 
 multimers. Online supplemental material is available at http://www.jcb.
org/cgi/content/full/jcb.200609158/DC1.
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