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The prognosis of advanced malignant tumors is very poor, and effective treatment is
limited. Radioimmunotherapy (RIT) is a novel treatment method. However, its anti-tumor
effect is relatively low in solid tumors, which is mainly due to the blood-tumor barrier
preventing RIT from penetrating the tumor, resulting in an insufficient dose. Low-intensity
ultrasound with microbubbles (USMB) has proven capable of opening the blood-tumor
barrier. The combination of the two technologies may overcome the poor anti-tumor effect
of RIT and promote the clinical application of RIT in solid tumors. In this article, we
reviewed the current research status of RIT in the treatment of solid tumors and the
opportunities and challenges of USMB combined with RIT.
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INTRODUCTION

Cancer is the leading cause of human death (1). Currently, surgery, radiotherapy, chemotherapy,
targeted treatment, immunotherapy, and other therapeutic modalities are the main treatment
methods for patients with cancer. Although comprehensive treatment can effectively control cancer
and prolong patients’ survival, approximately 70% of patients still have disease recurrence and
progression (2). Therefore, new treatments are urgently needed. Radioimmunotherapy (RIT) is a
promising novel anti-tumor therapy that utilizes the combination of monoclonal antibodies with
radionuclides. Monoclonal antibodies combined with tumor-specific antigens can kill tumor cells
through antibody-dependent cell-mediated cytotoxicity (3). Moreover, radionuclides can self-decay,
inducing ionizing radiation, which in turn potentiates the anti-tumor effect. The advantage of RIT is
that it retains the targeting and inherent anti-tumor effect of monoclonal antibodies. In addition,
monoclonal antibodies transport radionuclides to the tumor site, which allows the ionizing
radiation to target and kill the tumor cells. Presently, a-rays (helium nuclear rays) and b-rays
(electron rays) produced by nuclide decay are the main rays used in anti-tumor therapy (4). As high
linear energy transfer (LET) particles, a-rays transfer higher energy along the particle track, have a
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higher probability of causing irreparable DNA damage than b-
rays (low LET particles) (5). Moreover, the radionuclides used
for antibody labeling are characterized by the ability to emit
short-range rays (b and a rays), such as 177Lu, 131I, 223Ra, and
the maximum radiation radius of the rays ranges from 50 mm to
2.3 mm (6). Therefore, the normal tissues around the cancer are
left almost unirradiated, making the toxicities related to
radionuclide radiation extremely low. RITs, such as 131I
tositumomab (7), 131I rituximab (8), and 90Y teimozumab (9)
have been approved by the United States Food and Drug
Administration for the treatment of hematological tumors.
However, the application of RIT in solid tumor therapy
remains a challenge. Solid tumors, which are different from
hematological tumors, have blood-tumor barriers (BTBs).
BTBs are composed of proliferating tumor cells, tumor stroma,
and angiogenic vessels (10), and BTB could limit the penetration
of RIT into the tumor (11, 12). Besides, solid tumors are more
insensitive to radiation compared to hematological tumors (13).
Even when RIT reaches the maximum tolerated dose (MTD), the
RIT dose in the tumor is insufficient. As a result, the RIT cannot
effectively kill the solid tumor cells.

Low-intensity ultrasound with microbubbles (USMB) is a
drug delivery technology often used in anti-tumor treatment
with cytotoxic and monoclonal antibody drugs. Low-intensity
ultrasound sonicates the local tumor, acts on the endogenous and
exogenous microbubbles in tumor blood vessels, produces a
cavitation effect, and increases the permeability of solid tumor
tissue at the sonication site (10, 14). Some preclinical studies have
confirmed that USMB can increase the concentration of anti-
tumor drugs in the sonication tumor area, and does not affect
normal tissues without sonication; thus, improving the
therapeutic ratio of anti-tumor drugs (15–21). Recently, Marie
et al. (22) reported that USMB can promote the uptake of
antibodies by the tumor tissue in subcutaneous breast cancer
models in mice, and speculated that antibody-based therapies
combined with USMB may be therapeutically beneficial. Studies
have also shown that ultrasound can enhance the radiosensitivity
of tumor cells (23, 24). Therefore, USMB combined with RIT
may overcome the limitations of RIT alone in the treatment of
solid tumors and promote the clinical transformation of RIT in
the management of solid tumors. RIT coupled with high LET
radionuclides have a stronger anti-tumor effect, which is
discussed in detail in another review (4). This review mainly
discusses the feasibility of USMB combined with RIT, the
existing problems, and a novel combination strategy to
improve the anti-tumor effect of RIT in the treatment of solid
tumors, and provides a theoretical basis and new ideas for
follow-up studies.
CLINICAL RESEARCH STATUS OF RIT IN
SOLID TUMORS

The concentration of RIT in solid tumors compared to that in
blood tumors is insufficient due to the BTB. Moreover, solid
tumors are relatively insensitive to radiation and require higher
Frontiers in Oncology | www.frontiersin.org 2
drug doses to effectively kill tumors. As a result, tumor regression
is not apparent even if RIT reaches the MTD.

We searched PubMed, Cochrane Central Register of
Controlled Trials (CENTRAL), ClinicalTrials.gov, and Embase
databases for clinical studies on RIT that were published in the
past 15 years, and found that 39 such studies used RIT in the
treatment of solid tumors. The main cancer types treated were
colorectal cancer, pancreatic cancer, breast cancer, gastric cancer,
and liver cancer. However, these clinical studies are mainly phase
I/II studies, with 19 phase I studies and 19 phase II studies. There
was only one phase III study, which involved patients with
postoperative ovarian cancer and which utilized an
intraperitoneal administration of RIT (25). In this phase III
study, a total of 447 patients were randomly divided into an
experimental group (intraperitoneal injection of RIT combined
with standard adjuvant treatment group) and a control group
(standard adjuvant treatment group). The result showed that the
recurrence rate of the experimental group was significantly lower
than that of the control group. However, it should be noted that
in this phase III study, since the tumor was removed as much as
possible, and the route of administration of RIT is intraperitoneal
perfusion, there was no BTB in the route of transportation of
RIT (25).

In the presence of the BTB, the anti-tumor effect of RIT is
insufficient. Street et al. reported the results of a phase I clinical
study on RIT in patients with advanced colorectal cancer. The
selected target was the carcinoembryonic antigen, and the RIT
used was 131I-chTNT-1/B. The MTD was 58.09 MBq/kg, and
the main dose-limiting toxicity (DLT) was myelosuppression.
When the MTD was reached, the objective remission rate (ORR)
was 0% (26). Giraudet et al. reported a phase I study on the anti-
tumor effect of 90Y-OTSA-101 on patients with advanced
sarcoma. A total of eight patients were included, and the target
was FZD10. The study found that hematotoxicity was the main
treatment-related toxicity of grade 3 and higher grades. The
follow-up results showed that no patient achieved objective
remission. The authors believe that even if an additional phase
II study is needed, radionuclides need to be replaced to overcome
the problem of treatment insensitivity (27). Stillbroer et al.
enrolled 23 patients with advanced renal cell carcinoma and
used 177Lu-girentuximab to target carbonic anhydrase IX.
The MTD was 2,405 MBq/m2, and the main DLT was
myelosuppression. Unfortunately, the therapeutic effect was
still unsatisfactory, and only one patient achieved partial
remission (PR) (28). Regarding the patients with BTB, the
anti-tumor effect was poor (Table 1). The main reason may be
that the RIT dose that reaches the tumor is insufficient. Even
when the dose reaches the MTD, RIT cannot kill the tumor
tissue effectively.

To improve the anti-tumor effect of RIT in solid tumors, the
current strategies are as follows: (1) select RIT that can radiate a-
rays; (2) RIT combined with a radiosensitizer, such as
gemcitabine; (3) intratumoral injection of RIT; and (4) intra-
arterial injection of RIT.

Allen BJ et al. reported the results of a phase I study on (213)
Bi-cDTPA-9.2.27 in the treatment of 38 patients with advanced
October 2021 | Volume 11 | Article 750741
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melanoma. The dose range of RIT was 46–925 MBq, and the
MTD was not reached. Of the enrolled patients, 10% achieved
PR, 40% had a stable disease condition, and the median overall
survival (OS) time was 8.9 months (36). (213)Bi can emit a-rays,
which have a strong tumor-killing ability and short radiation
radius. (213)Bi can kill tumor cells more effectively when
compared with low LET rays. Simultaneously, normal tissues
outside the radiation radius can be protected from radiation.
However, further phase II study was not conducted. The main
reason may be that the production of nuclides emitting a-rays is
difficult and expensive. In addition, because the radiation radius
of a-rays is only 50–100 nm (6), to kill tumor cells, RIT needs to
penetrate the tumor cells. This requires RIT to be internalized by
tumor cells after binding with tumor surface antigens, rather
than be lysosomally cleaved inside the tumor; that is, it requires
that the connection between the nucleon and antibody is
extremely stable. The complex production process and high
stability requirements of this kind of RIT may be the key
factors limiting its clinical application. Picozzi et al. reported a
study comparing RIT combined with gemcitabine and RIT alone.
A total of 58 patients with pancreatic cancer who failed second-
line treatment were included and assigned to two groups with a
ratio of 1:1. The results showed that two patients in the combined
treatment group and none of the patients in the control group
achieved PR. The median OS in the combined group was
significantly longer than that in the RIT alone group (7.9
months vs . 3.4 months). However, the incidence of
hematotoxicity among the ≥ grade 3 patients in the combined
treatment group was significantly higher than that in the RIT
group alone (29). The intratumoral injection of RIT is an
effective way to avoid the hindered penetration into the tumor
due to the BTB. Although the intratumoral injection of RIT can
improve the therapeutic effect on the tumor (37), this is an
Frontiers in Oncology | www.frontiersin.org 3
invasive treatment strategy and may cause tumor spread. Chen
et al. reported a phase I/II clinical study that included 134
patients with hepatocellular carcinoma who were treated with
hepatic arterial infusion of RIT to evaluate the safety and
effectiveness of RIT. The results showed that the maximum
safe dose of RIT was 27.75 MBq/kg, six patients (8.22%)
achieved local remission, and that the 21-month survival rate
was 44.54% (38). The advantage of the intra-arterial injection of
RIT is that the drug is targeted into the tumor, which avoids the
process of re-aggregation after systemic circulation and reduces
the concentration of RIT in non-tumor tissues. Therefore, the
concentration ratio of RIT in the tumor and blood increases.
However, this treatment can only be applied to patients with a
limited number of metastases and definite blood supply arteries.

The distribution of RIT in tumor and normal tissues is mainly
determined by antibodies. Understanding the metabolic process of
antibodies in vivo is very important to improve the concentration
ratio of RIT in tumor and normal tissues. The distribution of
antibodies in tumor tissue is related to the presence of the BTB,
antigen concentration, binding affinity, antigen internalization,
and systemic clearance. The BTB is an important factor that affects
the entry of RIT into the tumor, including tumoral vascular
endothelial cells and the extracellular matrix. Antigen
concentration is another factor affecting the distribution of RIT
in the tumor. Ideally, the optimal antigen for RIT should be highly
expressed in tumor cells (usually >100,000 sites per cell) and is not
expressed in normal tissues (4). The affinity of antigens for RIT
and the internalization ability of the antigen-antibody complex
also needs to be considered. The strong binding ability of antigens
to RIT and the rapid internalization after binding are not
conducive for RIT to reach tumor cells far away from blood
vessels (39). Finally, RIT with a high systemic clearance rate is not
conducive to the uptake of RIT by tumor cells (40). Generally,
TABLE 1 | Summary of the clinical research on RIT in the treatment of solid tumors in the presence of the BTB.

Author Disease Number of
participants

Study
phase

RIT Primary endpoint Secondary endpoint(s)

Street et al.
(26)

colorectal
cancer

21 I 131I-chTNT-1/B MTD:58.09 MBq/kg CR:0%, PR:0%

Giraudet
et al. (27)

synovial
sarcoma

8 I 90Y-OTSA-101 haematological disorders were most
common Grade ≥ 3 AEs

objective response:0%; SD: 3/8
(37.5%)

Stillebroeret
al. (28)

renalcell
carcinoma

23 I 177Lu-girentuximab MTD:2405 MBq/m(2) PR:1/23 (4.3%), SD:17 (73.9%)

Picozzi et al.
(29)

pancreatic
carcinoma

29 vs 29 Ib 90Y-clivatuzumab+
gemcitabine vs 90Y-
clivatuzuma

Cytopaenias were the significant
toxicities.

PR: 2/29 (6.9%) VS 0/29 (0%),
mOS:7.9 months vs 3.4 months

Meyer et al.
(30)

Gastrointestinal
carcinomas

12 I 131I-A5B7 dose-limiting AE:myelosuppression PR:0%, SD:3/10 (30%)

Gulec et al.
(31)

pancreatic
carcinoma

20 I 90Y-hPAM4 MTD:20 mCi/m(2) PR:3/20 (15%)

Sultana
et al. (32)

pancreatic
carcinoma

25 I/II 131I-KAb201 MTD:50 mCi Overall response rate: 1/18 (6%),
mOS:5.2 months

Muselaers
et al. (33)

renal Cell
Carcinoma

14 II 177Lu-girentuximab SD: 57%, PR: 7% grade 3-4 myelotoxicity in most
patients

Tagawa
et al. (34)

prostate cancer 49 I/II 177Lu-J591 recommended phase 2 doseswere 40
mCi/m2 and 45 mCi/m2 ×2

PR:0, SD:14/22 (60.8%)
mOS: 42.3 months

Molina et al.
(35)

prostate cancer 6 I 177Lu-J591 grade 4 neutropenia:2(3%), grade 4
thrombocytopenia:3(50%)

177 Lu-J591 targeted all tumor sites
Octobe
BTB, blood tumor barrier; CR, complete response; PR, partial response; SD, stable disease; mOS, median overall survival; MTD, maximum tolerance dose; AE, adverse event.
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antibodies with small molecular weights are more capable to break
through the BTB. However, due to faster systemic clearance, the
actual effective uptake by the tumor is reduced, which is not
conducive to anti-tumor treatment (4). In addition, tumor-
stromal pressure is also an important factor that prevents RIT
from penetrating the tumor. Tumor growth needs an abundant
blood supply, but because the endolymphatic drainage is relatively
insufficient, there is high stromal pressure, which limits the
penetration of RIT into the tumor (10).
USMB CAN PENETRATE THE BTB AND
INCREASE THE CONCENTRATION OF RIT
IN SOLID TUMORS

As a noninvasive, convenient, and economical method, USMB
can open the BTB by sonicating the tumor (12). Studies have
confirmed that it can promote the deposition of anti-tumor-
targeted drugs in tumors, improve the drug concentration in
local tumors, and enhance the anti-tumor effect (22, 41).

The first barrier to prevent RIT from penetrating the tumor is
blood vessels. When ultrasound acts on the blood, it can produce
a cavitation effect, which is required to reach the cavitation
threshold. Research shows that the cavitation threshold is
inversely proportional to the square root of ultrasound
frequency, and low-frequency ultrasound is more likely to
induce a cavitation effect (42). Ultrasound can produce air
bubbles by changing the internal pressure of blood. There are
two forms of air bubbles under the mechanical action of
ultrasound. One is stable cavitation, wherein the size of air
bubbles changes with the change in pressure, forming local
traction on the vascular wall. The other is inertial cavitation,
wherein bubbles rupture, which produces shock waves around
the bubbles that damage the blood vessel wall (43). These two
forms of cavitation affect the connection of vascular endothelial
cells, increasing the gap between these cells and the reversible or
irreversible damage of some endothelial cell membranes,
providing an effective channel for RIT to cross blood vessels.
Microbubbles are a kind of air particle with a diameter of 1–4
mm. Due to the presence of microbubbles in the blood, the
cavitation threshold is reduced (12). Therefore, USMB can
enhance the cavitation effect based on ultrasound and further
promote the crossing of tumor vessels by RIT. Similarly, after
RIT crosses the blood vessels, it also needs to pass through the
interstitial tissue (such as proteoglycans and collagen) between
tumor cells and blood vessels and infiltrate inflammatory cells
and other structures to produce local pressure changes via the
cavitation effect, to increase the internal permeability of the
tumor and promote the uptake of RIT by the tumor (44).

Recently, Marie et al. studied the effect of USMB on the tumor
uptake of monoclonal antibodies using bilateral subcutaneous
implanted tumor mice models. Antibody and microbubbles were
injected from the tail vein before ultrasound sonication, and the
only unilateral tumor was sonicated. They found that the
concentration of antibodies on the ultrasound sonication side
was significantly higher than that on the contralateral tumor
Frontiers in Oncology | www.frontiersin.org 4
without ultrasound sonication (22). Brighi et al. used focused
ultrasound guided by magnetic resonance imaging to open the
blood-brain barrier (BBB) and promote the uptake of RIT in
tumor tissue of glioma models in situ and found that the
concentration of RIT in tumor tissue at the ultrasound
sonication site was significantly increased (45). Tran et al. also
explored whether USMB can enhance the permeability of the
BBB and promote the penetration ability of RIT through the
BBB. The results showed that RIT in the ultrasound sonication
area of the mouse brain was significantly increased (46).
OTHER POTENTIAL ADVANTAGES OF
USMB COMBINED WITH RIT: INCREASED
RADIOSENSITIVITY

Since the important mechanism of RIT in killing tumor cells is to
use the radiation produced by decay to kill the tumors, the
radiosensitivity of tumor tissue is one of the key factors that affect
the anti-tumor effect. Some preclinical studies have confirmed
that USMB can improve the radiosensitivity of prostate cancer
(47), bladder cancer (48), nasopharyngeal carcinoma (49),
fibrosarcoma (50), and breast cancer (51). This means that
only a low RIT dose is needed to achieve the ideal anti-tumor
effect after USMB treatment. Since the apoptosis of endothelial
cells is related to tumor radiosensitivity (52), the apoptosis of
vascular endothelial cells and interruption of tumor blood vessels
induced by USMB are considered to be the possible mechanisms
for enhancing tumor radiosensitivity (53). The up-regulation
of ceramide expression induced by USMB enhances the
radiosensitivity of prostate tumors after USMB treatment,
which may make it an important factor in inducing the
apoptosis of vascular endothelial cells (54, 55). In addition,
the up-regulation of angiotensin II and its receptor, AT1R,
after USMB treatment may be related to the increase of
radiosensitivity (49).
PROBLEMS TO BE SOLVED BEFORE
COMBINING RIT AND USMB

Although studies have confirmed that USMB can enhance the
permeability of tumor tissue and increase the concentration of
RIT in the tumor (45, 46), there are still many problems that
need to be solved.

Ultrasonic Parameters
Marie et al. explored the effect of ultrasound with different pulse
lengths on RIT uptake and found that the promotion effect of
long pulse ultrasound with 5000 cycles was the weakest. At 4 h
after sonication, the promotion effect of ultrasound on tumor
uptake of RIT disappeared, while the promotion effect of
medium pulse ultrasound with 125 × 40 cycles and short pulse
ultrasound with 500 × 10 cycles disappeared until 24 h (22). Qin J
et al. summarized the ultrasonic parameters and recommended
ranges affecting drug delivery efficiency, including ultrasonic
October 2021 | Volume 11 | Article 750741
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frequency (0.4–3 MHz), ultrasonic intensity (0.3–3 W/cm2),
mechanical index (0.2–1.9), duty cycle (<1–90%), and
sonication time (10 s–30 min). These data were derived from
the ultrasonic parameters used in published experiments (10).

Theoptimalultrasoundparametersmaymaximize the efficiency
of drug delivery. Sorace et al. explored the optimal ultrasound
parameters and the effect of different ultrasound parameters on the
uptake of paclitaxel by breast cancer cells (56). The default
ultrasonic parameters were as follows: frequency of 1 MHz,
sonication time of 300 s, mechanical index of 0.5, pulse repetition
period of 0.01 s, duty cycle of 20%, microbubble concentration of
14 million MBS/mL, and total amount of 50 µL. Other parameters
were changed under the default conditions, and a single variable
was used for the experiment. Different frequencies (0.5, 1.0, and
2.25 MHz), sonication times (15, 60, 300, and 600 s), mechanical
indices (0.1, 0.5, 1.0, and 2.0), pulse repetition periods (0.01, 0.1,
and 1.0 s), and microbubble quantities (10, 50, and 250 µL) were
selected. The results showed that optimal ultrasound frequency is 1
MHz, mechanical index is 1, pulse repetition period is 0.01 s, and
sonication time is 5 min. At the same time, with the increase of
microbubbles, the drug uptake of breast cancer cells also increased
(56). However, the aforementioned parameters may only provide a
reference for USMB to open cell membrane permeability, and the
optimal ultrasound parameters for opening BTB need further
study. Sorace et al. found in subsequent animal experiments that
2 min after injection of paclitaxel and microbubbles into breast
cancer animal models, different mechanical indices (0.1, 0.5, 1.0,
and 2.0) had a significant impact on the treatment effect, and the
mechanical indexof 0.5 had the best anti-tumor effect (56). Liu et al.
explored the effects of different ultrasound intensities on the
transmission of 1,3-bis (2-chloroethyl) - 1-nitrosourea. Glioma
in situmice models were used. The ultrasound parameters were a
frequency of 400 kHz, pulse length of 10 ms, pulse frequency of 1
Hz, and sonication time of 30 s. Different ultrasound intensities
(0.45, 0.62, 0.98, and 1.35 MPa) were selected. The results showed
that 0.62 MPa was the most effective in opening the BBB (57).

However, the drugs delivered by these experiments were
mainly chemotherapeutic drugs and genes (10) which have
different physical and chemical properties from RIT. Since the
Frontiers in Oncology | www.frontiersin.org 5
biodistribution of RIT is mainly determined by antibodies,
Table 2 summarizes the relevant parameters of USMB that
promote tumor antibody uptake, which may be more useful
for USMB combined with RIT. Future experiments are required
to determine the optimal ultrasound parameters to ensure that
RIT used in conjunction with USMB can penetrate tumor tissue
more effectively under specific ultrasound parameters.

Selection of Antibodies
Some types of antibodiesmay not be effectively delivered byUSMB.
Goutal et al. found that while USMB can open the BBB, it cannot
enhance the uptake of erlotinib in brain tissue. The authors inferred
that this may be due to erlotinib utilizing the active transport mode
and ABC transporters playing a key role in the transport process.
When ABC transporters were fully inhibited, the concentration of
11C-labeled erlotinib in brain tissue increased significantly (61).
Although USMB opened the BBB, erlotinib did not penetrate the
brain tissue through these new channels. Therefore, whenUSMB is
used to promote the uptake of RIT by tumor tissue, the type of
antibodies is very important. However, for the selection of
antibodies, the focus of attention is on whether they can
specifically bind to tumor-specific antigens. Active research on
the transfer pathwayof antibodies in vivomaybe the key to realizing
the optimal parameters in the combination of USMB and RIT.

Others
Tumor heterogeneity may be another important factor, whichmay
lead to an uneven uptake of RIT by the tumor after ultrasound
sonication. Brighi et al. found that the increase of RIT uptake after
ultrasoundmainly appeared in theT1-enhanced area,meaning that
the uptake of RIT could be enhanced by ultrasound sonication only
when the BBBwas damaged (45). Low-dose RIT areasmay become
the center of tumor recurrence. The flow of antibodies across blood
vessels is mainly through convective transport, and the level of
blood perfusion in tumors is an important factor that affects
convective transport (62). Ultrasound-enhanced antibody uptake
wasmainly in the high perfusion area (62). The size of tumor blood
vessels is also an important factor that affects the flow of antibodies
across blood vessels. With the increase in the diameter of blood
TABLE 2 | Summary of ultrasound parameters related to USMB promoting antibody delivery.

Author Model Antibody Ultrasonic parameters Effect

Frequency Intensity Mechanical
index

Pulse parameters Duty
cycle

Sonication
time

Marie et al.
(22)

subcutaneous/mice anti-CD73 mAb 1 MHz 850 kPa unknown 5000 cycle pulses given
every 5 s

unknown 5min enhanced

Caterina et al.
(45)

glioma in situ/mice EphA2-4B3
antibody

1.1 MHz 0.85
Mpa

unknown 10 ms focused ultrasonic
bursts

unknown 2min enhanced

Centelleset al.
(58)

subcutaneous/mice Trastuzumab 1.0 MHz unknown unknown unknown 99.90% 3-5min enhanced

Park et al. (59) Brain metastasis in
situ/mice

Trastuzumab 690 kHz 0.69
MPa

unknown unknown unknown – enhanced

Heath et al.
(60)

subcutaneous/mice Cetuximab 1.0 MHz unknown 0.5 pulse repetition period: 5s 20% 5min enhanced

Vu et al. (46) Normal brain/mice Cetuximab 1.5 MHz 520 kPa unknown unknown 69% 127 s enhanced
Goutal et al.
(61)

Normal brain/mice erlotinib 1.5 MHz 0.6 MPa unknown continuous waves unknown 5 min not
enhanced
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vessels, the flow ability of antibodies across blood vessels increased
and reached saturation when the diameter of blood vessels exceeds
200 nm (62). Improving the uptake of RIT in tumor areas
insensitive to ultrasound to reduce the recurrence rate after RIT
treatment is another challenge we need to pay close attention to.
HOW TO IMPLEMENT USMB

The routine steps used in preclinical studies of USMB to promote
drug delivery are as follows: 1. intravascular injection of drugs
and microbubbles; 2. ultrasound sonication; and 3. ultrasound-
induced sonoporation and localized drug uptake (Figure 1). It
should be noted that the drugs delivered in the aforementioned
steps are chemical drugs [paclitaxel (56, 63) and doxorubicin (64,
65)] and genes [such as DNA (66, 67) and RNA (68)]. Compared
to these drugs, RIT consists of antibodies, linkers, and
radionuclides. The combined stability of RIT may be destroyed
by USMB, and radionuclides may not be targeted to the tumor
site, resulting in the decrease of the anti-tumor effect and the
Frontiers in Oncology | www.frontiersin.org 6
increase of the incidence of toxicity. To enhance the drug
delivery of RIT using the conventional method, it needs to be
confirmed that the stability of RIT will not be damaged by
USMB. Since it is considered that ultrasound can reversibly open
the BTB, and current studies show that the reversible BTB
opening time is at least 24 h (22, 45, 69), a feasible
implementation process of USMB is as follows: 1. intravenous
injection of microbubbles; 2. ultrasound sonication; 3.
intravascular injection of RIT; and 4. opening the BTB and
promoting RIT targeting into tumor tissue (Figure 1). Injection
of RIT immediately after ultrasound can prevent the effect of
USMB on RIT. Simultaneously, since the BTB is left open after
USMB, it does not affect the drug deposition of RIT. However,
some problems also need to be solved before this improved
implementation can be utilized. First, it is unclear whether
USMB affects tumor cell antigens and subsequently affects
antigen-antibody binding. Second, studies have shown that
USMB can change Ca2+ distribution (70) and temperature (71)
in the tumor microenvironment, which may affect the affinity of
antigens and antibodies. Finally, after RIT binds to cell
FIGURE 1 | Implementation steps of USMB and RIT. USMB, ultrasound with microbubbles; RIT, radioimmunotherapy.
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membrane antigens, part of RIT is internalized by cells before the
antibodies are degraded in lysosomes. The radionuclides carried
by RIT will convert to a free state and may flow out of tumor cells
through exocytosis (72). The ideal situation is that radionuclides
in a free state will not be released by tumor cells. Radionuclides
can continuously target and kill tumor cells. At the same time,
radionuclides can be restricted in tumor cells to avoid normal
tissue damage. However, the effects of USMB on the
internalization of RIT and the re-efflux of radionuclides
remain unclear.
CONCLUSION

In summary, USMB combined with RIT may be a promising
combination strategy. Opening the BTB through USMB can
Frontiers in Oncology | www.frontiersin.org 7
effectively solve the problem of insufficient RIT dose in tumors
and improve the prognosis of patients. However, there are still
some problems that need to be solved before this technology can
be clinically applied, such as the selection of ultrasound
parameters and antibodies and the exploration of tumor
heterogeneity. These problems will become prominent topics
of research in the future.
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