Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(9*H*-Fluoren-9-yl)-4-(4-fluoroanilino)-4-oxobutanoic acid

Tetiana Matviiuk,^a Michel Baltas,^b Zoia Voitenko,^a Marian Gorichko^{a*} and Christian Lherbet^c

^aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kyiv, Ukraine, ^bLaboratoire de Synthese et Physico-Chimie de Molecules d'Interet Biologique, Paul Sabatier University, 118 route de Narbonne, 31062, Toulouse, France, and ^cUniversité de Toulouse, UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, LSPCMIB, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France Correspondence e-mail: 417lab@gmail.com

Received 16 April 2013; accepted 18 May 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.054; wR factor = 0.104; data-to-parameter ratio = 12.3.

In the title compound, $C_{23}H_{18}FNO_3$, the tricyclic 9-fluorenyl system is approximately planar (r.m.s. deviation = 0.0279 Å). The N-C(=O) bond length is comparatively short [1.359 (3) Å], which is typical for such conjugated systems. The N atom has a planar configuration [sum of bond angles= 359.8°] due to conjugation of its lone pair with the π -system of the carbonyl group. In the crystal, a three-dimensional network is formed through N-H···O and O-H···O hydrogen bonds between the amide and carboxylic acid groups and carbonyl O-atom acceptors.

Related literature

For the synthesis of various succinic anhydrides, see: Clar (1942). For biological studies on substituted succinimides, see: Carroll *et al.* (2007); Miller & Johns (1951); Patsalos (2005); Rankin *et al.* (1986). For the synthesis of substituted pheny-succinamic acids, see: Galustyan *et al.* (2000); Stephani *et al.* (2002).

8408 measured reflections

 $R_{\rm int} = 0.081$

refinement $\Delta \rho_{\text{max}} = 0.24 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.26$ e Å⁻³

3205 independent reflections 1744 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Experimental

Crystal data

 $C_{23}H_{18}FNO_3$ $V = 1817.07 (19) Å^3$
 $M_r = 375.38$ Z = 4

 Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation

 a = 10.2048 (6) Å
 $\mu = 0.10 \text{ mm}^{-1}$

 b = 18.5170 (11) Å T = 296 K

 c = 9.6164 (6) Å
 0.45 × 0.10 × 0.03 mm

 $\beta = 90.494$ (4)°
 M^2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: numerical (SADABS; Bruker, 2008) $T_{min} = 0.957, T_{max} = 0.997$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.104$ S = 1.003205 reflections 261 parameters

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$O1-H1O\cdots O2^{i}$ $N1-H1N\cdots O3^{ii}$	0.98 (4) 0.88 (2)	1.71 (4) 2.02 (3)	2.682 (3) 2.891 (3)	175 (3) 172 (2)
			1	

Symmetry codes: (i) -x, -y, -z + 2; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2107).

References

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carroll, I. F., Ma, W., Navarro, H. A., Abraham, P., Wolckenhauer, S. A., Damaj, M. I. & Martin, B. R. (2007). *Bioorg. Med. Chem.* 15, 678–685.
- Clar, E. (1942). Reichsamt Wirtschaftsausbau Chem. Ber., Pruf-Nr. 015(PB52017), pp. 859–878.
- Galustyan, G. G., Levkovich, M. G. & Abdullaev, N. D. (2000). Chem. Heterocycl. Compd, 36, 1402–1408.
- Miller, C. A. & Johns, I. B. (1951). J. Am. Chem. Soc. 73, 4895-4898.
- Patsalos, P. N. (2005). Epilepsia, 46(Suppl. 9), 140-148.
- Rankin, G., Cressey-Venezia, K., Wang, R. & Brown, P. J. (1986). J. Appl. Toxicol. 6, 349–356.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stephani, R., Cesare, V., Sadarangani, I. & Lengyel, I. (2002). Synthesis, pp. 47–52.

supplementary materials

Acta Cryst. (2013). E69, o963 [doi:10.1107/S1600536813013779]

2-(9H-Fluoren-9-yl)-4-(4-fluoroanilino)-4-oxobutanoic acid

Tetiana Matviiuk, Michel Baltas, Zoia Voitenko, Marian Gorichko and Christian Lherbet

Comment

Derivatives of the pyrrolidine-2,5-dione fragment are common structural motifs in medicinal chemistry (Patsalos, 2005; Rankin, *et al.*, 1986). These molecules containing succinimide as a structural fragment were employed in drug design in response to their binding efficacy and low toxicity. Some pyrrolidine-2,5-dione derivatives were synthesized *via* interaction of succinic anhydride with different amines and futher cyclization, for example the synthesis of an nicotinic acetylcholine receptor antagonist (Carroll *et al.*, 2007). Cyclic anhydrides of dicarboxylic acids react readily with amines forming dicarboxylic acid monoamides (Miller *et al.*, 1951). Reaction of unsymmetrically substituted cyclic anhydrides may occur with formation of two possible regioisomers having the substituent either α or β to the amide group. (Stephani *et al.*, 2002.; Galustyan *et al.*, 2000). Herein, we report the regioselective synthesis and crystal structure of the title compound (II). The novel 2-(9*H*-fluoren-9-yl)-4-[(4-fluoren)-9-yl)dihydrofuran-2,5-dione (I) (Clar, 1942) (see Fig. 2). The regioselectivity of the reaction depends on temperature. The reaction of anhydride (I) with *p*-F-aniline was carried out in dry THF at room temperature and a reactant ratio 1:1. Only one regioisomer (β -succinamic acid) was detected and isolated (91% yield). When the reaction was carried out at higher temperature (55 °C), a mixture of regioisomers was obtained.

In the structure of (II) (Fig. 1) the tricyclic 9-fluorenyl system C1—C13 is planar with an r.m.s. deviation of 0.0279 Å, wich is typical for this class of compounds. The N1—C17 bond distance is comparatively short (1.359 (3) Å) which is typical for such conjugated systems The N1 atom has a planar configuration, as the sum of bond angles on the N1 atom is $359.5 (17)^\circ$, due to conjugation of the lone pair of N1 atom with π -system of the carbonyl group. Molecules of compound (II) (Fig. 1) in the crystal are connected across a center of inversion by O1—H1…O2a hydrogen bonds forming dimers which are then connected into chains parallel to *c* by N1—H1N…O3b bonds (Table 1).

Experimental

The synthesis of the cyclic anhydride (I) (Fig. 2) was carried out according to the literature method (Clar, 1942). Compound (I) (92 mg, 0.35 mmol)was dissolved in dry THF, *p*-F-aniline (39 mg, 0.35 mmol) was added and the mixture was stirred overnight at room temperature. Thereafter, solvent was evaporated and the residue dissolved in a saturated solution of sodium hydrocarbonate, filtered and acidified with 1 N HCl. The resulting precipitate was filtered off and recrystalized from ethanol. White powder, yield: 113 mg, 86%; m.p.: 171-172 °C. 1H NMR (300 MHz, [D6]DMSO, δ): 1.28 (d, J = 15.6 Hz, 1 H), 2.15 (dd, J = 11.4 Hz, J = 15.9 Hz, 1 H), 3.85 (d, J = 10.5 Hz, 1 H), 4.52 (br. s, 1 H), 6.90–8.05 (m, 12 H), 9.70 (br. s, 1 H), 12.86 (br. s, 1 H); 13C{1H} NMR (75 MHz, CD₃OD, δ): 32.6, 44.3, 49.4, 115.8, 116.1, 120.9, 121.1, 122.8, 122.9, 125.4, 126.1, 128.1, 128.6, 128.8, 128.9, 136.0, 142.6, 143.1, 144.7, 146.0, 160.0 (d, J = 241.8 Hz), 172.5, 177.2. 19 F NMR (282 MHz, CD₃OD, δ): = -116.0.

Refinement

Carboxylic acid and amide H-atoms were located in a difference-Fourier synthesis and both positional and displacement parameters were allowed to refine. Other hydrogen atoms were positioned geometrically, with C—H = 0.96–0.98 Å and were allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}$ (methine or methylene C) or $1.5U_{eq}$ (methyl C). In the absence of a suitable heavy atom, the absolute configuration of the title compound could not be determined.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure and atom numbering scheme for the title compound, showing 50% probability displacement ellipsoids.

Figure 2

The synthetic route to the title compound (II).

2-(9H-Fluoren-9-yl)-4-(4-fluoroanilino)-4-oxobutanoic acid

Crystal data

 $C_{23}H_{18}FNO_3$ $M_r = 375.38$ Monoclinic, $P2_{1/c}$ a = 10.2048 (6) Å b = 18.5170 (11) Å c = 9.6164 (6) Å $\beta = 90.494$ (4)° V = 1817.07 (19) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: numerical (*SADABS*; Bruker, 2008) $T_{\min} = 0.957, T_{\max} = 0.997$

Refinement

5	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.104$	neighbouring sites
S = 1.00	H atoms treated by a mixture of independent
3205 reflections	and constrained refinement
261 parameters	$w = 1/[\sigma^2(F_o^2) + (0.027P)^2]$
0 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.24 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 784

 $\theta = 2.3 - 25.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

Plate, colourless $0.45 \times 0.10 \times 0.03$ mm

8408 measured reflections

 $\theta_{\rm max} = 25.0^{\circ}, \, \theta_{\rm min} = 2.3^{\circ}$

3205 independent reflections 1744 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.081$

 $h = -12 \rightarrow 11$

 $k = -22 \rightarrow 19$

 $l = -11 \rightarrow 11$

 $D_{\rm x} = 1.372 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 8408 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C18	0.0042 (3)	0.33919 (14)	0.9353 (3)	0.0216 (7)	
C14	0.2656 (2)	0.11015 (14)	0.9369 (3)	0.0202 (7)	
H14	0.2753	0.1104	0.8356	0.024*	
C15	0.1482 (3)	0.06320 (16)	0.9696 (3)	0.0229 (7)	

C17	0.1516 (3)	0.23277 (15)	0.8999 (3)	0.0203 (7)	
C13	0.3918 (2)	0.07796 (15)	0.9989 (3)	0.0214 (7)	
H13	0.3919	0.0254	0.9864	0.026*	
C11	0.5535 (3)	0.10772 (16)	0.7975 (3)	0.0319 (8)	
H11	0.5028	0.0842	0.7306	0.038*	
C19	-0.0347 (3)	0.35150 (16)	0.7993 (3)	0.0296 (8)	
H19	-0.0054	0.3213	0.7288	0.035*	
C7	0.5909 (3)	0.14513 (15)	1.0345 (3)	0.0259 (7)	
C20	-0.1172 (3)	0.40861 (16)	0.7674 (3)	0.0323 (8)	
H20	-0.1438	0.4170	0.6761	0.039*	
C2	0.3348 (3)	0.08065 (16)	1.2646 (3)	0.0330 (8)	
H2	0.2598	0.0526	1.2538	0.040*	
C4	0.4815 (3)	0.14928 (17)	1.4117 (3)	0.0413 (9)	
H4	0.5029	0.1676	1.4990	0.050*	
C1	0.4133 (3)	0.09618 (15)	1.1518 (3)	0.0236 (7)	
C16	0.2473 (3)	0.18896 (14)	0.9832 (3)	0.0202 (7)	
H16A	0.2193	0.1889	1.0794	0.024*	
H16B	0.3319	0.2128	0.9802	0.024*	
C12	0.5141 (3)	0.11031 (14)	0.9341 (3)	0.0231 (7)	
C23	-0.0407 (3)	0.38466 (16)	1.0388 (3)	0.0341 (8)	
H23	-0.0158	0.3766	1.1308	0.041*	
C21	-0.1584 (3)	0.45197 (17)	0.8716 (4)	0.0379 (9)	
C3	0.3702 (3)	0.10780 (17)	1.3944 (3)	0.0399 (9)	
Н3	0.3180	0.0978	1.4708	0.048*	
C8	0.7078 (3)	0.17802 (16)	0.9971 (3)	0.0346 (8)	
H8	0.7591	0.2017	1.0633	0.042*	
C9	0.7465 (3)	0.17492 (17)	0.8601 (4)	0.0403 (9)	
H9	0.8251	0.1962	0.8342	0.048*	
C6	0.5273 (3)	0.13700 (15)	1.1689 (3)	0.0280 (8)	
C22	-0.1219 (3)	0.44173 (17)	1.0068 (3)	0.0441 (10)	
H22	-0.1514	0.4727	1.0760	0.053*	
C10	0.6708 (3)	0.14094 (17)	0.7615 (3)	0.0408 (9)	
H10	0.6980	0.1401	0.6695	0.049*	
C5	0.5615 (3)	0.16381 (16)	1.2995 (3)	0.0371 (9)	
Н5	0.6373	0.1912	1.3112	0.045*	
O3	0.13680 (18)	0.22640 (10)	0.77394 (19)	0.0278 (5)	
02	0.15591 (18)	0.00507 (11)	1.0272 (2)	0.0308 (5)	
01	0.0355 (2)	0.09099 (11)	0.9269 (2)	0.0361 (6)	
N1	0.0878 (2)	0.28259 (13)	0.9779 (2)	0.0206 (6)	
F1	-0.23954 (19)	0.50859 (10)	0.83812 (19)	0.0604 (6)	
H1O	-0.038 (3)	0.0582 (18)	0.943 (3)	0.086 (13)*	
H1N	0.106 (2)	0.2840 (13)	1.067 (3)	0.025 (8)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C18	0.0223 (17)	0.0195 (18)	0.0232 (17)	0.0001 (14)	0.0031 (14)	0.0025 (14)
C14	0.0212 (17)	0.0185 (17)	0.0208 (16)	-0.0012 (13)	-0.0029 (13)	-0.0015 (13)
C15	0.0235 (18)	0.0241 (19)	0.0212 (16)	-0.0002 (15)	-0.0008 (14)	-0.0043 (15)
C17	0.0206 (17)	0.0203 (18)	0.0201 (17)	-0.0037 (14)	-0.0002 (14)	0.0041 (14)

C13	0.0202 (17)	0.0189 (17)	0.0249 (17)	-0.0007 (13)	-0.0062 (14)	0.0026 (14)
C11	0.0275 (19)	0.033 (2)	0.035 (2)	0.0073 (16)	-0.0026 (16)	0.0010 (16)
C19	0.0331 (19)	0.0319 (19)	0.0236 (18)	0.0101 (16)	-0.0028 (15)	0.0008 (15)
C7	0.0214 (17)	0.0211 (18)	0.0350 (19)	0.0025 (14)	-0.0050 (16)	0.0035 (15)
C20	0.036 (2)	0.034 (2)	0.0263 (18)	0.0095 (17)	-0.0052 (16)	0.0077 (16)
C2	0.0294 (19)	0.036 (2)	0.0334 (19)	-0.0054 (16)	-0.0049 (16)	0.0091 (16)
C4	0.052 (2)	0.043 (2)	0.028 (2)	0.0059 (19)	-0.0134 (19)	-0.0004 (17)
C1	0.0211 (17)	0.0223 (18)	0.0275 (18)	0.0015 (14)	-0.0009 (15)	0.0063 (14)
C16	0.0191 (17)	0.0213 (17)	0.0203 (16)	0.0005 (13)	-0.0008 (13)	-0.0002 (13)
C12	0.0201 (17)	0.0206 (17)	0.0285 (18)	0.0032 (13)	0.0008 (15)	0.0071 (14)
C23	0.050(2)	0.032 (2)	0.0201 (17)	0.0133 (17)	0.0068 (16)	0.0042 (15)
C21	0.035 (2)	0.030(2)	0.048 (2)	0.0173 (17)	0.0076 (18)	0.0156 (18)
C3	0.040 (2)	0.053 (2)	0.027 (2)	-0.0014 (18)	-0.0026 (17)	0.0085 (17)
C8	0.0218 (18)	0.036 (2)	0.045 (2)	-0.0044 (15)	-0.0080 (17)	0.0117 (17)
C9	0.0217 (19)	0.044 (2)	0.055 (2)	-0.0021 (16)	0.0040 (19)	0.0211 (19)
C6	0.0289 (19)	0.0236 (19)	0.0316 (19)	0.0000 (15)	-0.0056 (16)	0.0029 (15)
C22	0.066 (3)	0.036 (2)	0.031 (2)	0.0247 (19)	0.0153 (19)	0.0060 (17)
C10	0.033 (2)	0.049 (2)	0.040 (2)	0.0059 (18)	0.0094 (18)	0.0125 (19)
C5	0.033 (2)	0.038 (2)	0.040 (2)	-0.0025 (16)	-0.0096 (18)	0.0042 (17)
03	0.0411 (14)	0.0281 (12)	0.0141 (11)	0.0038 (10)	-0.0010 (10)	-0.0011 (10)
O2	0.0260 (13)	0.0231 (13)	0.0430 (13)	-0.0037 (10)	-0.0082 (10)	0.0084 (11)
01	0.0187 (12)	0.0319 (14)	0.0576 (15)	-0.0008 (11)	-0.0042 (11)	0.0148 (11)
N1	0.0266 (15)	0.0235 (15)	0.0116 (14)	0.0062 (12)	-0.0018 (12)	0.0010 (12)
F1	0.0747 (16)	0.0495 (13)	0.0572 (13)	0.0380 (11)	0.0059 (12)	0.0156 (11)

Geometric parameters (Å, °)

C18—C19	1.383 (4)	C2—C1	1.385 (4)
C18—C23	1.385 (4)	C2—C3	1.390 (4)
C18—N1	1.410 (3)	С2—Н2	0.9300
C14—C15	1.516 (3)	C4—C3	1.380 (4)
C14—C13	1.535 (3)	C4—C5	1.385 (4)
C14—C16	1.538 (3)	C4—H4	0.9300
C14—H14	0.9800	C1—C6	1.396 (4)
C15—O2	1.212 (3)	C16—H16A	0.9700
C15—O1	1.322 (3)	C16—H16B	0.9700
C17—O3	1.225 (3)	C23—C22	1.377 (4)
C17—N1	1.359 (3)	С23—Н23	0.9300
C17—C16	1.497 (4)	C21—C22	1.362 (4)
C13—C1	1.522 (4)	C21—F1	1.373 (3)
C13—C12	1.522 (3)	С3—Н3	0.9300
C13—H13	0.9800	C8—C9	1.380 (4)
C11—C12	1.378 (4)	C8—H8	0.9300
C11—C10	1.391 (4)	C9—C10	1.371 (4)
C11—H11	0.9300	С9—Н9	0.9300
C19—C20	1.384 (4)	C6—C5	1.392 (4)
С19—Н19	0.9300	C22—H22	0.9300
С7—С8	1.390 (4)	C10—H10	0.9300
C7—C12	1.396 (4)	С5—Н5	0.9300
С7—С6	1.458 (4)	O1—H1O	0.98 (4)

C20—C21	1.353 (4)	N1—H1N	0.88 (2)
C20—H20	0.9300		(_)
C19—C18—C23	119.1 (3)	C6-C1-C13	110.3 (2)
C19—C18—N1	124.5 (3)	C17—C16—C14	116.1 (2)
C23—C18—N1	116.5 (3)	С17—С16—Н16А	108.3
C_{15} C_{14} C_{13}	111.0 (2)	C14—C16—H16A	108.3
C15—C14—C16	112.7 (2)	C17—C16—H16B	108.3
C13—C14—C16	111.1 (2)	C14—C16—H16B	108.3
C15—C14—H14	107.3	H16A—C16—H16B	107.4
C13—C14—H14	107.3	$C_{11} - C_{12} - C_{7}$	120.6(3)
C16—C14—H14	107.3	$C_{11} - C_{12} - C_{13}$	128.6 (3)
02-C15-01	122.7(3)	C7-C12-C13	110.8(2)
02-C15-C14	122.7(3) 123.8(3)	C^{22} C^{23} C^{18}	120.5(3)
01 - C15 - C14	113.5(3)	$C_{22} = C_{23} = H_{23}$	119.7
03-C17-N1	123.8 (3)	$C_{12} = C_{23} = H_{23}$	119.7
03 - C17 - C16	123.5(3)	$C_{10} = C_{23} = 1123$	112.7 122.7(3)
N1 - C17 - C16	123.3(3) 112.7(2)	C_{20} C_{21} C_{22} C_{20} C_{21} C	122.7(3)
$C_1 = C_{12} = C_{12}$	112.7(2) 101.3(2)	$C_{20} = C_{21} = 11$	110.0(3)
C1 - C13 - C12	101.3(2) 113.7(2)	$C_{22} = C_{21} = C_{11}$	119.5(3)
C12 C13 C14	113.7(2) 112.1(2)	C4 = C3 = C2	121.1(3)
$C_{12} = C_{13} = C_{14}$	112.1 (2)	$C_{4} = C_{5} = H_{3}$	119.4
C12 C12 U12	109.8	$C_2 = C_3 = H_3$	119.4
C12 - C13 - H13	109.8	C_{9}	110.0 (5)
C12 - C11 - C10	109.8	C_{2}	120.0
C12 - C11 - C10	118.7 (5)	$C_{1} = C_{0} = C_{0}$	120.0
	120.7	C10 - C9 - C8	121.0 (3)
	120.7	C10—C9—H9	119.5
C18 - C19 - C20	120.3 (3)	C8—C9—H9	119.5
C18—C19—H19	119.9	C5—C6—C1	120.1(3)
C20—C19—H19	119.9	C5-C6-C7	130.7(3)
C8 - C7 - C12	120.1 (3)	CI = C6 = C7	109.2 (3)
	131.6 (3)	C21—C22—C23	118.6 (3)
C12—C7—C6	108.3 (3)	C21—C22—H22	120.7
C21—C20—C19	118.8 (3)	С23—С22—Н22	120.7
С21—С20—Н20	120.6	C9—C10—C11	120.8 (3)
С19—С20—Н20	120.6	C9—C10—H10	119.6
C1—C2—C3	118.7 (3)	С11—С10—Н10	119.6
C1—C2—H2	120.6	C4—C5—C6	119.2 (3)
C3—C2—H2	120.6	C4—C5—H5	120.4
C3—C4—C5	120.3 (3)	C6—C5—H5	120.4
C3—C4—H4	119.9	C15—O1—H1O	112 (2)
C5—C4—H4	119.9	C17—N1—C18	129.5 (2)
C2—C1—C6	120.5 (3)	C17—N1—H1N	117.8 (17)
C2C1C13	129.2 (3)	C18—N1—H1N	112.5 (17)
C13—C14—C15—O2	-5.7 (4)	C14—C13—C12—C7	119.0 (3)
C16—C14—C15—O2	-131.0 (3)	C19—C18—C23—C22	-0.6 (5)
C13—C14—C15—O1	175.6 (2)	N1-C18-C23-C22	179.5 (3)
C16—C14—C15—O1	50.3 (3)	C19—C20—C21—C22	0.0 (5)

C15—C14—C13—C1	-82.6 (3)	C19—C20—C21—F1	179.7 (3)
C16—C14—C13—C1	43.7 (3)	C5—C4—C3—C2	-0.9 (5)
C15—C14—C13—C12	163.2 (2)	C1—C2—C3—C4	-0.2 (5)
C16—C14—C13—C12	-70.6 (3)	C12—C7—C8—C9	-0.6 (4)
C23-C18-C19-C20	0.2 (4)	C6—C7—C8—C9	177.5 (3)
N1-C18-C19-C20	-180.0 (3)	C7—C8—C9—C10	0.8 (5)
C18—C19—C20—C21	0.2 (5)	C2-C1-C6-C5	-1.4 (4)
C3—C2—C1—C6	1.4 (4)	C13—C1—C6—C5	175.8 (3)
C3—C2—C1—C13	-175.2 (3)	C2-C1-C6-C7	179.9 (3)
C12—C13—C1—C2	-179.8 (3)	C13—C1—C6—C7	-2.9 (3)
C14—C13—C1—C2	59.7 (4)	C8—C7—C6—C5	4.4 (5)
C12—C13—C1—C6	3.3 (3)	C12—C7—C6—C5	-177.4 (3)
C14—C13—C1—C6	-117.1 (3)	C8—C7—C6—C1	-177.1 (3)
O3—C17—C16—C14	-36.1 (4)	C12—C7—C6—C1	1.1 (3)
N1-C17-C16-C14	147.0 (2)	C20—C21—C22—C23	-0.5 (5)
C15—C14—C16—C17	-71.6 (3)	F1-C21-C22-C23	179.9 (3)
C13—C14—C16—C17	163.1 (2)	C18—C23—C22—C21	0.8 (5)
C10-C11-C12-C7	-0.5 (4)	C8—C9—C10—C11	-0.9 (5)
C10-C11-C12-C13	-179.5 (3)	C12—C11—C10—C9	0.7 (5)
C8—C7—C12—C11	0.4 (4)	C3—C4—C5—C6	0.9 (5)
C6-C7-C12-C11	-178.1 (3)	C1—C6—C5—C4	0.2 (4)
C8—C7—C12—C13	179.6 (2)	C7—C6—C5—C4	178.6 (3)
C6—C7—C12—C13	1.1 (3)	O3—C17—N1—C18	-5.9 (5)
C1-C13-C12-C11	176.4 (3)	C16—C17—N1—C18	171.1 (3)
C14—C13—C12—C11	-61.9 (4)	C19—C18—N1—C17	4.0 (5)
<u>C1-C13-C12-C7</u>	-2.6 (3)	C23—C18—N1—C17	-176.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
01—H1 <i>O</i> …O2 ⁱ	0.98 (4)	1.71 (4)	2.682 (3)	175 (3)
N1—H1 <i>N</i> ···O3 ⁱⁱ	0.88 (2)	2.02 (3)	2.891 (3)	172 (2)

Symmetry codes: (i) -x, -y, -z+2; (ii) x, -y+1/2, z+1/2.