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Abstract

Spatially separating speech maskers from target speech often leads to a large intelligibility improvement. Modeling this
phenomenon has long been of interest to binaural-hearing researchers for uncovering brain mechanisms and for improving
signal-processing algorithms in hearing-assistive devices. Much of the previous binaural modeling work focused on the
unmasking enabled by binaural cues at the periphery, and little quantitative modeling has been directed toward the grouping
or source-separation benefits of binaural processing. In this article, we propose a binaural model that focuses on grouping,
specifically on the selection of time-frequency units that are dominated by signals from the direction of the target. The
proposed model uses Equalization-Cancellation (EC) processing with a binary decision rule to estimate a time-frequency
binary mask. EC processing is carried out to cancel the target signal and the energy change between the EC input and output
is used as a feature that reflects target dominance in each time-frequency unit. The processing in the proposed model
requires little computational resources and is straightforward to implement. In combination with the Coherence-based
Speech Intelligibility Index, the model is applied to predict the speech intelligibility data measured by Marrone et al. The
predicted speech reception threshold matches the pattern of the measured data well, even though the predicted intelligibility
improvements relative to the colocated condition are larger than some of the measured data, which may reflect the lack of

internal noise in this initial version of the model.
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Many empirical studies have shown that speech intelligi-
bility can be improved by spatially separating the
maskers from the target (Arbogast, Mason, & Kidd,
2005; Freyman, Helfer, McCall, & Clifton, 1999; Kidd,
Mason, & Gallun, 2005). This intelligibility improvement
is called spatial release from masking or SRM (Arbogast
et al., 2005). As decreased hearing ability in multisource
environments is a frequent complaint by hearing-
impaired listeners, particularly when using hearing aids
or cochlear implants, modeling SRM in complex sound
environments is of interest to hearing researchers. Better
understanding of the psychophysical issues involved in
this process could lead to a better understanding of
neural mechanisms involved and might stimulate the
design of better sound-processing algorithms for hear-
ing-assistive devices.

Previous binaural models of SRM (Beutelmann &
Brand, 2006; Beutelmann, Brand, & Kollmeier, 2010;
Lavandier & Culling, 2010; Levitt & Rabiner, 1967;

Wan, Durlach, & Colburn, 2010, 2014; Zurek, 1992)
focused on the binaural unmasking aspects of pro-
cessing, where unmasking refers to the enhancement
of signal-to-noise ratio (SNR) by suppression of
masker components with binaural processing. The
Equalization-Cancellation (EC) model of Durlach
(1963) is the most widely used model of binaural
unmasking and has been used in several SRM modeling
efforts. Levitt and Rabiner (1967) first adapted the
EC model to predict improvement in speech intelligibility
in broadband noise by applying the EC model separ-
ately in each frequency band and calculating the
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corresponding SNR. These SNRs were then combined
across frequency with the standard band-importance
function (American National Standards Institute
[ANSI], 1997) to calculate the Speech Intelligibility
Index (SII). This band-by-band unmasking approach
with the SII frequency combination was applied by
Zurek (1992) to describe the dependence of speech intel-
ligibility on the direction of unmodulated speech-shaped
noise. This EC model was further developed to also
apply to speech masked by other masker types including
modulated noise, multiple speech, and reversed speech
maskers (Beutelmann & Brand, 2006; Lavandier &
Culling, 2010; Wan et al., 2010, 2014). These models’
predictions have shown general agreement with experi-
mental data when nonspeech maskers are involved.
When the maskers are speech, however, the predicted
SRM is much smaller than measured data and shows
little dependence on spatial separation relative to the
data (Wan et al., 2010), which is possibly due to not
considering the amplitude fluctuations of the speech
maskers. In particular, with two maskers in different pos-
itions, a dominant masker can be cancelled (approxi-
mately), but the dominant masker varies over time. To
exploit the amplitude fluctuations of speech signals,
researchers developed short-time EC (STEC) models
which perform EC calculations in short time frames
(Beutelmann et al., 2010; Wan et al., 2014). For the
speech-on-speech experiment, the dependence of speech
reception threshold (SRT) on spatial separation can
be successfully predicted by the STEC model, with
the exception of the collocated condition; thus, the
model fails to predict the large amount of SRM that
is observed when maskers change from being
collocated with to being separated from the target.
With a spatial separation as small as 15°, the measured
SRM can be as large as 10dB (Marrone, Mason, &
Kidd, 2008), while predicted SRM is no larger than
1dB (Wan et al., 2014).

This unexplained SRM for the speech maskers case has
been attributed to the existence of informational masking
(Wan et al., 2014). Informational masking (Kidd, Mason,
Richards, Gallun, & Durlach, 2008) is a broad concept
that generally refers to the confusability between target
and maskers. To avoid confusion of the target with mas-
kers in a multitalker mixture, listeners use cues like pitch
or spatial location to distinguish target speech compo-
nents from masker speech components and to group
target elements together across time and frequency. This
process is referred to by Bregman (1990) as grouping.
Unlike the abundant works on the psychoacoustic mod-
eling of binaural unmasking, relatively little work has
been done on the psychoacoustic modeling of binaural
grouping (cf., review by Bronkhorst, 2015). Most litera-
ture on grouping using binaural cues is found in the
Computational Auditory Scene Analysis (CASA)

domain (Jiang, Wang, Liu, & Feng, 2014; Lyon, 1983;
Mandel, Weiss, & Ellis, 2010; Roman, Srinivasan, &
Wang, 2006; Roman, Wang, & Brown, 2003); however,
those studies focused on engineering solutions for source
separation rather than proposing a physiologically plaus-
ible binaural grouping model. Thus, those models are
seldom applied to predict data from psychoacoustical
experiments.

The study reported here proposes a grouping model
based on binaural cues and combines the grouping
model with the coherence-based SII (CSII; Kates &
Arehart, 2005) to predict SRM measured by Marrone
et al. (2008). The model uses EC processing to estimate
the strength of the signal from the target direction.
Specifically, signals from the left and right channels are
equalized with the equalization parameters chosen to
match the known (or postulated) target direction.
Then, the equalized signals are subtracted (cancelled)
to eliminate the signal from the target direction and
the size of the residual is evaluated. If a time-frequency
(T-F) region is dominated by target, the cancellation is
likely to be successful with a small residue. In other
words, if a T-F region has much less energy after EC
processing compared with the energy before EC, that
T-F region is likely to be dominated by the target. The
output of the binaural model consists of the combined
components from these target-dominated T-F regions.
The intelligibility of the resulting output is evaluated
with the CSII measure. The proposed grouping model
predicts a 6 to 10dB larger SRM compared with the
STEC unmasking model (Wan et al., 2014) and this pre-
diction correlates well with human performance in
Marrone et al. (2008). Another significant difference
between the current model and past models is the ability
to perform the binaural processing without a priori
knowledge of the stimulus waveforms. In the STEC
model, for example, this knowledge is used to choose
the equalization parameters that could maximally
cancel the maskers in each time-frequency unit. In the
current model, the only a priori knowledge assumed is
the direction of the source of interest and the associated
head-related transfer function (HRTF).

Description of the Binaural
Grouping Model

The grouping model proposed here is fundamentally a
mechanism using binaural cues to select time-frequency
intervals of the input waveforms that are dominated by
the target. Target direction and the associated interaural
time/level differences (ITD/ILD) of target direction are
assumed to be known a priori (i.e., the HRTF is assumed
known for the target direction). A block diagram of the
proposed model is shown in Figure 1. The model consists
of the following four stages: (a) a linear filter model of
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Figure 1. Diagram of the proposed binaural grouping model. The input to the model is binaural multitalker mixtures. The model consists
of four stages: (a) peripheral processing, (b) equalization-cancellation of target, (c) estimation of ideal binary mask, and (d) target signal

reconstruction.

the auditory periphery; (b) an EC process applied to time
slices of the filtered signals to show the relative strength
of the target signal in each time-frequency unit; (c) esti-
mation of a binary mask based on reduction of the sig-
nals by the EC processing; and (d) reconstruction of the
binaural target signal by applying the binary mask to the
input signals.

The input of the model is a binaural mixture that is
generated by two or more speech sources at different
locations. If the binaural mixture is from collocated
speech sources, the model will not be able to use binaural
cues to group target elements together. So, for the col-
located case, the binaural signals will simply pass
through the linear filter stage and get reconstructed
with an all-unity binary mask, essentially skipping the
second and the third stages. The collocated stimuli still
need to go through peripheral processing because the
auditory filterbank in the peripheral processing stage
could introduce temporal distortions to the original
signal. So if a speech intelligibility metric that is sensitive
to temporal alignment is used for evaluating intelligibil-
ity of the model’s output, all the stimuli have to go
through peripheral processing stage to avoid temporal
misalignment.

The peripheral processing stage is simulated with a
bank of bandpass filters. The filterbank here includes
32 gammatone filters implemented in the MATLAB
Auditory Toolbox (Slaney, 1998). The center frequencies
of the filters range from 80 Hz to 6 kHz and are spaced
uniformly on a logarithmic scale.

The goal of the second stage is to cancel out the target
signal from the mixture. In each frequency channel, the
left-filtered waveform and right-filtered waveform are
equalized and cancelled (EC) with the ITD and inter-
aural amplitude ratio corresponding to the target

direction chosen as the EC parameters. Equation (1)
below summarizes the EC process:

Yi(t)zja_iLi(t+;> —J()T,R,-(t—%) (1)

In this equation, L) and R{f) represent the filtered
left-ear and right-ear waveforms for the ith frequency
channel before EC processing; the variables 7; and o;
stand for the intrinsic ITD and amplitude ratio between
two ears for the target direction; and Y{7) represents the
ith channel output after EC processing. In the equaliza-
tion step, the left and right signals are time aligned and
amplitude adjusted using the interaural parameters of
target direction. Then, in the cancellation step, the dif-
ference between the equalized left and right waveforms is
calculated, which represents the residual of the mixture
after cancelling the target signal. Note that by cancelling
the target signal, the masker signal might be boosted
when the target signal has a large ILD; however,
unlike classic use of the EC model, this EC processing
is only used as a method for cancelling the target in order
to estimate its relative strength compared with the mas-
kers. The EC output is not directly used as the model’s
output. The internal noise that is present (Durlach, 1963)
in classic EC implementation is not taken into consider-
ation here, primarily because this model is intended to be
a proof-of-concept model for grouping using binaural
cues. In the future, a more refined model should include
internal noise in the binaural processing. Note also that
this model can be also applied as a CASA algorithm, and
any internal noise would be omitted for that purpose.

The goal of the third stage is to estimate an ideal
binary mask (IBM) based on the target cancellation
result described previously. The IBM is an energy-based
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binary mask that preserves the time-frequency (T-F)
regions with positive SNR and that silences the T-F
regions with negative SNR. The IBM has been shown
to be a reasonable goal for source-segregation algorithms
in CASA (Wang, 2005). We adopted this concept from
CASA for psychoacoustic modeling. In the proposed
model, each filtered signal was divided into 20-ms time
slices using Hamming windowing with 50% overlap.
In each time-frequency unit, the output-to-input ratio

(OIR) 1is calculated as specified in Equation (2)
(cf., Roman et al., 20006):
OIR(i,))
2
Y (0| ds
= 10X10g10 f| Z( )i 5
0.5 x ([ L0 de+ [ |Rij(o)dr)

)

In Equation (2), Y; () represents the target-cancelled
output in the ith frequency channel and the ith time slice;
and L; (¢) and R, (¢) represent the left- and right-filtered
signals of that T-F unit before target cancellation. So,
the denominator represents the average input energy of
the EC stage and the numerator is the output energy
of the EC stage, both computed for each T-F unit. The
OIR variable is used to indicate the relative strength of
the target in a T-F unit (Roman et al., 2006). Suppose a
T-F unit consists of only target signal; the numerator will
then be approximately 0 due to the nearly perfect can-
cellation and OIR will go to minus infinity (as a decibel
measure). Otherwise, when sources from other directions
dominate a T-F unit, cancellation of target will not
effectively suppress the other sources and OIR will stay
relatively large. In other words, OIR is an indicator of
SNR in the original T-F unit. Because the IBM is gen-
erated by imposing a threshold on SNR for the binary
decision, a decision threshold D(f) is imposed on OIR to
create the OIR-based mask. The decision threshold D(f)
is a function of frequency f'due to the frequency depend-
ency of binaural cues. For the binary decision, if a T-F
unit has an OIR greater than the threshold D(f), it will be
labeled as 1 in the estimated binary mask; otherwise, it
will be labeled as 0. The setting of the threshold D(f) is
critical to the model. How the threshold is set in the
proposed model and how human listeners could poten-
tially set the threshold internally will be discussed in next
section.

The last step is the application of the estimated binary
mask to the original binaural mixture. Those T-F units
that are labeled as 1 will be preserved and the T-F units
that are labeled as 0 will be replaced by zero. The same
binary mask will be applied to the left-ear and right-ear
mixtures separately. The masked binaural signals are
summed across frequency at each ear and the summed

broadband binaural signals form the output of the
binaural model. The signal at the better ear, namely
the ear with higher SNR before processing, goes on to
be evaluated by the speech intelligibility model.

Specification of Model Parameters

To study and evaluate the proposed model, we simulate
a set of binaural stimuli using HRTFs measured in anec-
hoic conditions. In the simulation, a female target talker
was placed in the front, and two female masker talkers
were placed symmetrically at £60° to the target talker.
The Coordinate Response Measure corpus (Bolia,
Nelson, Ericson, & Simpson, 2000) was used as speech
source for all talkers; the masker talkers and the target
talkers were different female voices from the same
corpus. The simulated scenarios are designed to be simi-
lar to the experiment done by Marrone et al. (2008) for
convenient comparison purposes.

The Relationship Between SNR and OIR

Figure 2 shows a scatter plot of individual T-F units’
SNR (SNR measured before the application of
HRTFs) and OIR values for a frequency channel cen-
tered at 950 Hz with a 120-Hz bandwidth. The plotted
data are computed from 10 sets of three-talker mixtures.
Figure 2(a) shows the case when the target is in front. It
can be seen that, in the positive SNR region, OIR has an
approximately linear relationship with SNR. The more
target energy in a T-F unit, the more energy will get
cancelled in the EC step; thus, higher SNR leads to
lower OIR. In the negative SNR region, OIR does not
vary much with SNR because the proportion of can-
celled target energy over total mixture energy is becom-
ing negligible. Especially, in the very low SNR region
(SNR below —20dB), the OIR only deviates slightly
around 10dB and is not correlated with SNR.
Figure 2(b) shows the case when the target is at 60°. It
can be seen when the target is off-front, the OIR is still a
good indicator of the SNR. A similar pattern between
SNR and OIR has been observed for the other frequency
channels. Based on these observations, it can be con-
cluded that OIR is a good indicator of the polarity of
SNR in the anechoic condition.

Optimal Threshold Setting

As mentioned in the second section, a frequency-
dependent OIR threshold needs to be chosen for the esti-
mation of the IBM in the third stage of the processing.
Setting the threshold properly is crucial for the predicted
intelligibility by the model. We define the optimal thresh-
old as the threshold that leads to the most accurate esti-
mation of the IBM. The optimal threshold can be
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Figure 2. Scatterplots of the OIR to the SNR for each time slices in a frequency channel centered at 950 Hz. Circle symbol represents
the T-F unit with positive SNR and cross symbol represents the T-F unit with negative SNR. The three talkers are at 60, 0, and —60 degrees,
respectively. (a) The target talker is at front. (b) The target talker is at 60 degrees.

Note. OIR = output-to-input ratio; SNR = signal-to-noise ratio; T-F = time-frequency.

influenced by many factors, including frequency, spatial
configuration, and room characteristics. First, as men-
tioned earlier, the relationship between SNR and OIR
varies due to the frequency-dependence of binaural cues;
thus, the optimal threshold needs to be set for each fre-
quency channel individually. Second, the binaural inter-
actions of multiple sources change when the spatial
configuration change; therefore, the optimal thresholds
need to be set for each spatial configuration as well. And
last, room characteristics like reverberation have a huge
impact on the binaural properties of the sound, so the
threshold also depends on the room characteristics. The
currently proposed binaural grouping model is only
intended to model empirical data measured in anechoic
conditions and there is no further discussion here of how
optimal thresholds are affected by room acoustics. This
important question will be addressed in future work.

In the model analyzed here, the optimal threshold is
defined as the threshold that minimizes the difference
between the estimated binary mask and the IBM. To
quantify the difference, two types of error are counted:
false-positive errors and false-negative errors. A false-
positive error is made when a T-F unit is labeled as 1
in the estimated mask while it is labeled as 0 in the IBM.
That happens when a T-F unit with negative SNR has
OIR below the threshold. A false-negative error is made
when a T-F unit is labeled as 0 in the estimated mask
while it is labeled as 1 in the IBM. That happens when a
T-F unit with positive SNR has OIR above the thresh-
old. Based on the definitions of the two types of error, we
then calculate the receiver-operating characteristic
(ROC) curve by moving the OIR threshold from one
direction to the other direction. With equal weight

placed on false-positive error and false-negative error,
the point with minimal error rates is identified on the
ROC curve. We choose to give equal weights to the
two types of error, but the threshold could be easily
adjusted to accommodate different weights for different
error types. Past studies have argued that false-positive
error is more detrimental to speech intelligibility in
binary mask-processed sound (Li & Loizou, 2008; Yu,
Wojcicki, Loizou, Hansen, & Johnson, 2014); however,
there is still controversy (Kressner & Rozell, 2015) and
no definitive conclusion has been reached. So whether a
different weighing of error could lead to intelligibility
improvement of the model’s output could be a future
research direction.

Figure 3(a) shows how the error rates of different fre-
quency channels vary, assuming optimal thresholds for
the previously described simulated scenario: anechoic
room, two maskers symmetrically located, and an overall
SNR of —3dB. First, it can be observed that, especially
for frequencies above 500 Hz, the error rates are below a
level of 0.35, which is slightly worse than the state-of-art
performance of a binaural-cue-based source-segregation
algorithm (Jiang et al., 2014). Second, the particularly
high error rates below 500Hz are expected from two
factors. The first factor is the broader distribution of
energy over the time-frequency units. This is due to the
facts that speech energy is more densely distributed over
the frequency bandwidths in low-frequency auditory fil-
ters compared with in high-frequency auditory filters
(Lewicki, 2002; Mi & Colburn, 2015) and that the nar-
rower bandwidths of low-frequency auditory filters lead
to a wider spread of speech energy in time. Thus, energy
distributions from different sources tend to overlap with
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symmetrically separated from the target.
Note. OIR = output-to-input ratio.

each other in time and in frequency. Therefore, below
500 Hz, there is little chance that one T-F unit is clearly
dominated by one source. As a result, the grouping of
T-F units will not be very useful in this region. The
second factor is that the naturally occurring ITDs for
spatial separations are not strongly frequency dependent,
but the resulting IPDs depend on the center frequency.
This implies that the phase differences for different
sources are smaller at lower frequencies and would pro-
vide less cancelation in the subtraction process.
Figure 3(b) shows the optimal thresholds for two spatial
configurations: (a) target at front, two maskers separ-
ately at £15°; (b) target at front, two maskers separately
at £60 degrees. Note first that the variation of optimal
threshold can be as large as 8 dB across frequency chan-
nels and thus setting the threshold to a value independ-
ent of frequency would have adverse impact on the
performance. Note also that the change in spatial
configuration may cause a threshold change as large
as 10dB. The difference between the thresholds for
these two spatial configurations also shows frequency
dependency.

The determination of the optimal threshold in the
third stage must be specified and this may be difficult
for an unfamiliar condition. The method described in
the previous paragraphs only applies when the wave-
forms of the target and maskers are known for a
period of time to allow the estimation of the
thresholds. In real-life situations, the opportunity to
get separate estimates of target and maskers is rare;
however, there is evidence showing that binaural
speech intelligibility in a background of maskers can be
improved by preexposure to the listening environment

(Brandewie & Zahorik, 2010; Kidd, Arbogast, Mason,
& Gallun, 2005). Hence, a listening history-based solu-
tion is proposed for finding suboptimal thresholds. The
idea is that the units with OIR values at the lower end of
the OIR distribution are always desirable. Thus, a short
history of OIR could be accumulated to estimate
OIR distributions for each frequency channel. Then,
the proportion of target-dominant units over the whole
accumulation time period should be estimated. For
example, in the simulated three-speaker scenario, the
proportion of target-dominant T-F units is estimated
to be 100 = 3 ~ 33%. This estimation is made based
on the assumption that the speech signals are orthogonal
to each other in the time-frequency domain and the
speech signals are roughly equal in long-term power. In
that case, the chance of a T-F unit dominant by target
source is one third. The assumption of orthogonality is
overidealized but supported to some extent by analysis of
speech in the time-frequency domain (Yilmaz & Rickard,
2004). With the accumulated OIR distribution and the
estimated percentage, the accumulated OIR are ranked
from the lowest value to the highest value. Also, an index
is calculated by multiplying the estimated percentage
(33% 1is used here) by the total number of time units.
Finally, the indexed value of the ranked OIR distribution
is used as the threshold for the corresponding frequency
channel. Figure 4 shows how the estimated thresholds
change with increasing accumulation time for the simu-
lated scenario. As can be seen, the estimated thresholds
converge to the optimal thresholds within 1s for fre-
quency channels for most frequency region. The stron-
gest deviations are in the frequency channels below
500 Hz. However, in that frequency region, binaural
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grouping itself probably won’t be very useful in enhan-
cing intelligibility, so the threshold is not that important.
Overall, this OIR-history-based method provides a good
solution to the threshold-setting problem.

Model Predictions Compared With
Psychoacoustic Data

The model was applied to predict human performance in
the speech intelligibility tasks described in Marrone et al.
(2008). Specifically, they measured the binaural SRTs for
a target speech sentence masked by two speech maskers
that were located symmetrically with respect to the fron-
tal target. The experiments were conducted using loud-
speakers in a large sound booth (12’4 long, 13 wide,
7°6” high) with very low reverberation (6.3dB direct-
to-reverberant ratio and 0.06s reverberation time). The
target and masker sentences are from the CRM corpus
with different female talkers. The CRM sentences follow
the structure ‘Ready < call sign > go to < color > <num-
ber > now’. The < color > and < number > choices are
made randomly (without replacement for the three
speech signals) for each of the presentations. Subjects
are asked to report the color and number spoken by
the front target, which always has Baron as the call
sign. In this article, we simulated their experimental con-
dition with anechoic head-related impulse responses

from the CIPIC database. Marrone’s data were specific-
ally chosen here for modeling for two reasons: First, in
their experiments, the maskers are symmetrically distrib-
uted with respect to the target; there is no monaural
better-ear acoustical advantage to confound the analysis
of the binaural system’s role in SRM. Second, both
target and maskers are spoken by female talkers in
their study; therefore, pitch separation will play a small
role in performance. This is good for the analysis here
because pitch separation could also lead to release from
informational masking, which would be another cue
dimension in addition to the spatial cues.

For the predictions here, as is described earlier, the
binaural mixture first went through the binaural group-
ing model as described earlier and the CSII (Kates &
Arehart, 2005) of the model output was calculated.
Only the key words (color and number) portion of
output is used for CSII calculation because the other
part of the sentence has little effect on the performance.
To calculate the CSII, the first step is to calculate the
magnitude-squared coherence of output signal to target
signal in each T-F unit; then, the signal-to-distortion
ratio (SDR) is derived from the coherence value; finally,
SII was calculated by replacing the SNR with the SDR
without changing the importance weightings of fre-
quency bands (ANSI, 1997). The detailed calculation
of CSII is described in Kates and Archart (2005).
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The CSII measure was chosen because it has been shown
to be one of the best predictors for speech intelligibility
in fluctuating noise conditions (Ma, Hu, & Loizou,
2009). Although SII is the most widely used speech intel-
ligibility model (Hawley, Litovsky, & Culling, 2004; Wan
et al., 2010), it is not suitable for evaluating the intelligi-
bility of the binary mask-processed sound. For example,
suppose in a frequency channel, there is only one T-F
unit preserved and the SNR of that T-F unit is very high;
this condition would lead to a high SNR estimation (the
estimated SNR is equal to the SNR of the one preserved
T-F unit) of the output of that channel even though the
true long-term SNR of that frequency channel might be
low. Compared with SII, CSII won’t have this problem
because it is based on the coherence between the output
signal to the target signal in all time intervals. So if too
little target is preserved, the coherence of the output
signal to desired target will be low.

The CSII is based on the SII; and, like the SII, the
CSII value depends on multiple factors like speech
materials and masker types. Thus, a CSII criterion has
to be chosen for the specific experiment setting for pre-
dicting SRT. Here, the CSII criterion was chosen such
that the SRT of the collocated condition matched the
empirical data. Figure 5(a) shows two SNR-CSII
curves, one for the collocated condition and other for
the model-processed spatially separated condition. In
the measured data, the SRT for the collocated condition
(labeled in Figure 5(a) as SRTr) is around 3dB, so the
CSII criterion was set as 0.4 to match the measured data
of the collocated condition. Using this criterion, a pre-
diction for the 15° separation could be made by identify-
ing the point matching the CSII criterion on SNR-CSII
curve for the 15° separation. The predicted SRT (labeled
in Figure 5(a) as SRTp) is approximately —10dB.

Figure 5(b) shows both the measured and predicted
binaural SRTs for different angles of spatial separations.
Each prediction is the mean and standard deviation of 25
repetitions with different target and masker stimuli. The
standard deviation, represented by the shaded area, is
calculated from the standard deviation of CSII by
assuming a local linear relationship between CSII and
SRT. In both measured and predicted data, the largest
SRT change happens when maskers change from collo-
cated with the target to 15° symmetrically separated
from the target. A separation as small as 15° can lead
to a SRM as large as 10dB in the measured data and
13 dB in the predicted data. Further separations between
target and maskers only generate an additional 3dB of
SRM. In general, the predicted SRT matches the pattern
of measured SRT very closely (for convenience of seeing
the pattern, predictions with (—90,90) as reference con-
dition are plotted in Figure 5(b), represented by the
dashed curve; as can be seen, by choosing a different
CSII criterion, the predicted SRT match most of the

measured SRTs except the collocated SRT). However,
the predicted SRT for separations of 15° and more is
always 3 to 4dB lower than the measured data. This
offset could be due to multiple reasons. The first possi-
bility is that binaural noise is not considered in carrying
out the EC processing in the current implementation
(Durlach, 1963), which would reduce the benefit of
using binaural cues; second, the OIR thresholds involved
in the prediction are set optimally while it is unclear
whether listeners could operate the selection of target
components optimally; finally, the application of the
binary mask in the model only allows the selected com-
ponents to pass through while completely shutting off all
the sound in other T-F units. It’s unlikely that the brain
carries out a completely binary operation, so the
unwanted components might still be able to distract
the listeners. Whether to replace the silenced region
with appropriate noise or use a nonbinary mask could
be addressed within future versions of the model.

Discussion

This article proposes a binaural grouping model that is
straightforward in implementation and that accurately
predicts the pattern of SRM of the measured data in
Marrone et al. (2008). In the grouping model, a binary
decision is made for each individual T-F unit to deter-
mine whether it is dominated by the target-direction com-
ponent or not. The key feature for the decision making is
the amount of energy decrease after EC processing is
carried out to cancel the target. The energy decrease is
measured by the OIR. A large energy decrease is expected
only when the ITD and ILD match those for the target
direction and when the interaural coherence (IC) is rela-
tively high. Lacking any of the three conditions will not
result in a large energy decrease when the target is can-
celled using EC processing. Thus, the OIR measure can
be considered as combining the three most important bin-
aural features: ITD, ILD, and IC. This is also one par-
ticular benefit of using E-C processing rather than cross-
correlation method to calculate the measure used for
binary mask estimation. Suppose cross-correlation
method is used to calculate ITD and IC for each T-F
unit; then, combined with the high-frequency-dominant
ILD cue, the binary decision has to be made on a two- or
three-dimension feature space, namely ITD+ILD or
ITD+ILD +IC. Modeling the statistical distribution
of the multiple binaural features is not easy, which is
likely to require prelearning of the distribution (Roman
et al., 2003). Therefore, by using EC processing, the
binary decision can be made based only on a single vari-
able, OIR, which is less complex than making decision on
a multiple-dimensional feature space.

The proposed model is an initial effort for quantita-
tive modeling of the grouping stage of auditory
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Figure 5. (a) CSII-SNR curves. The CSlI values are calculated for the binaural grouping model’s output at different Target-to-Masker

(T/M) Ratio (approximately 3 dB higher than SNR in the three-talker condition). The line with open symbols is for the collocated condition
and the line with solid symbols is for 15° separation condition. (b) Simulated and measured speech reception threshold. Symbols are the
measured data replotted from Marrone et al. (2008). The horizontal axis labels the locations of maskers in degree. The solid curve is the
model prediction using the (0,0) case as reference, and the dashed curve is the prediction using the (—90,90) case as reference. The shaded

area shows one standard deviation of the predictions.

Note. CSIl = Coherence-based Speech Intelligibility Index; SNR = signal-to-noise ratio.

processing (cf., review by Bronkhorst, 2015). Although
studying binaural cue-based grouping has a long history
in CASA (Jiang et al., 2014; Lyon, 1983; Mandel et al.,
2010; Roman et al., 2006; Roman et al., 2003), the main
goal of those studies is to develop and optimize source-
separation algorithms for computing devices. Therefore,
those algorithms usually require pretraining for each
listening environment and are computationally intense.
For example, the algorithm by Mandel et al. (2010)
optimizes localization and separation of sources simul-
taneously and achieves state-of-the-art source-separation
performance. However, it is a batch-processing algorithm
and is 32 times slower than real time measured by
computational power of that time. Although not bio-
logically plausible, previous CASA studies set a good
basis for quantitative modeling of human performance.
The grouping model proposed here is inspired by the
target-cancellation idea of Roman et al. (2006). Unlike
most CASA algorithms that segregate streams from
all the sources simultancously, Roman’s algorithm only
segregates the target stream from background sources.
This is very similar to human perception of foreground
and background sound. This model proposed here
makes several improvements to Roman’s algorithm.
In Roman et al. (2006), a few seconds of clean target is
required to adaptively train a filter to cancel the target,
which might be unrealistic to operate in a real environ-
ment. To circumvent this problem, the proposed model
uses the HRTF of target direction and EC processing,
a heuristic method to cancel the target. Another prob-
lem is that the OIR thresholds are set as a constant

for all frequency channels and all conditions in
Roman et al. (2006), which could harm the separation
performance as shown in the Results section. The current
model addresses this issue by proposing a history-based
threshold-setting strategy. With these improvements, the
proposed model requires minimal amounts of pretrain-
ing and computational resources, making it biologically
plausible and computationally sensible.

Previous psychoacoustic binaural modeling that
focused on binaural-enabled unmasking failed to predict
the big improvement in speech intelligibility for even
small degrees of separation of the speech target and
maskers. Besides the failure on the modeling side, experi-
ments have also shown that the SRM in speech-
on-speech experiment does not mainly depend on an
unmasking-based mechanism (Schoenmaker, Brand, &
van de Par, 2016; Schoenmaker & van de Par, 2016).
Instead of focusing on unmasking, the proposed model
focused on grouping based on binaural cues, which rep-
resents a subsequent stage after peripheral and brainstem
levels. The SRM predicted by the proposed model fits the
measured data from the speech-on-speech experiment
well, which suggests that binaural-cue-based grouping,
rather than unmasking, contributed most to the
improved speech intelligibility when speech sources are
spatially separated. Many factors, like attention, can
actively interact with the grouping process (Best,
Ozmeral, Kopco, & Shinn-Cunningham, 2008; Kidd,
Arbogast, et al., 2005). Although attention is not expli-
citly modeled here, it could play a role at multiple stages
of this model, including which sound direction to cancel
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and determining the optimal threshold. For example,
once the target direction changes, attention resources
are possibly required to analyze the short history of
OIR to determine the optimal threshold. To combine
an attention model with the current binaural model
would be an interesting direction to pursue.

Binaural cues are the only grouping cues used in the
proposed model; however, the role of binaural cues in
grouping is controversial. Although binaural cues could
lead to large SRM, previous studies have also shown
the ITD cue plays a weak role in grouping on short-
time scales (~100ms; Culling & Summerfield, 1995;
Schwartz, McDermott, & Shinn-Cunningham, 2012).
Culling and Summerfield (1995) showed that listeners
could not identify synthetic vowel-like sounds through
across-frequency grouping based on common ITD; how-
ever, the stimuli they used are unmodulated narrowband
noises which are unlike natural sounds and Stern,
Trahiotis, and Ripepi (2006) have shown that, by
adding natural amplitude or frequency modulation in
the synthetic vowels, listeners could use common ITD
to group sound components together across frequency.
In another study of ITD’s role in grouping, Schwartz
et al. (2012) used more complex synthetic stimuli that
share similarities to natural sounds while lacking group-
ing cues like harmonicity and comodulation. Although
they pointed out that ITD plays a weak role in promot-
ing target segregation, the effect of ITD is statistically
significant in their data. Moreover, their complex stimuli
are not sparse in time-frequency domain like natural
speech. In their second experiment, they showed that
by reducing the spectral-temporal overlap between
target and masker, the effectiveness of ITD in promoting
source  segregation was improved significantly.
Therefore, some aspects of their study support the pre-
sent model’s assumption that for stimuli that are sparse
in time-frequency domain (like speech), binaural cues
can be used to distinguish target components from the
sound mixture. The proposed model only uses binaural
cues as a starting point for psychoacoustic modeling of
grouping; other grouping cues available in natural
speech, like pitch and common onsets/offsets, would
also play a role in speech-on-speech experiments.

In addition to being a psychoacoustic model of bin-
aural grouping, the model also has the potential to be a
target-enhancing algorithm in hearing-assistive devices.
Hearing-impaired listeners have difficultly picking out
the target in complex listening situations, and efforts
have been devoted to developing source-segregation algo-
rithms to alleviate users’ difficulties in noisy situations.
The model proposed here is easy to implement and does
not require many computational resources, making it
plausible as a signal processor in hearing aids.
Additionally, the parameters in the model, including
target direction and OIR thresholds, could be adjusted

intuitively, unlike the nonintuitive parameters in more
complicated algorithms. This could provide users the
benefit of adjusting the related hearing-aid settings
according to their own preferences. For example, if a
user prefers more direction-focused speech, the OIR
thresholds could be set to a lower level to allow fewer
T-F units through. In contrast, if a user prefers a more
complete sound image with a slight enhancement of the
target, the OIR threshold could be set to a higher level to
filter out fewer T-F units. Users could also adjust the OIR
thresholds according to different room acoustics, like the
adaptation to room acoustics by normal-hearing listeners
(Brandewie & Zahorik, 2010). Future work on adapting
the model into a practical algorithm could focus on iden-
tifying the optimal threshold for noise-masker case and
studying the model’s behavior in reverberant condition.

This model raises many questions. On the psychoa-
coustical modeling side, future work is needed to deter-
mine the general utility of this approach to modeling of
speech-on-speech situations. For example, binary masks
could also be derived based on pitch, common onsets/
offsets, and comodulation; how that could be done in a
straightforward way and how to combine the binary
masks derived using different cues in a probabilistic
way remain open questions. Also, the validity of using
binary masks for psychoacoustic modeling needs to be
examined. Listeners have shown the ability to listen in
gaps; however, whether the listening-in-gaps strategy
operates in the brain in a similar way to applying a
binary mask to the original mixture is not clear.
It seems likely that the human hearing system adopts
a more complex and powerful grouping mechanism
than simply applying binary masks. But for initial explor-
ation of psychoacoustic modeling of grouping, the appli-
cation of binary masks is a reasonable simplification of
the problem. On the engineering solution side, future
work on adapting the model into a practical algorithm
could focus on identifying the optimal threshold for dif-
ferent types of noise maskers and studying the model’s
behavior in reverberant conditions.
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