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Background. Transient ischemic attack (TIA) is a known risk factor for stroke. Abnormal alterations in the low-frequency range of
the gray matter (GM) of the brain have been studied in patients with TIA. However, whether there are abnormal neural activities
in the low-frequency range of the white matter (WM) in patients with TIA remains unknown. The current study applied two
resting-state metrics to explore functional abnormalities in the low-frequency range of WM in patients with TIA. Furthermore,
a reinforcement learning method was used to investigate whether altered WM function could be a diagnostic indicator of TIA.
Methods. We enrolled 48 patients with TIA and 41 age- and sex-matched healthy controls (HCs). Resting-state functional
magnetic resonance imaging (rs-fMRI) and clinical/physiological/biochemical data were collected from each participant. We
compared the group differences between patients with TIA and HCs in the low-frequency range of WM using two resting-state
metrics: amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF). The altered ALFF and fALFF values
were defined as features of the reinforcement learning method involving a Q-learning algorithm. Results. Compared with HCs,
patients with TIA showed decreased ALFF in the right cingulate gyrus/right superior longitudinal fasciculus/left superior
corona radiata and decreased fALFF in the right cerebral peduncle/right cingulate gyrus/middle cerebellar peduncle. Based on
these two rs-fMRI metrics, an optimal Q-learning model was obtained with an accuracy of 82.02%, sensitivity of 85.42%,
specificity of 78.05%, precision of 82.00%, and area under the curve (AUC) of 0.87. Conclusion. The present study revealed
abnormal WM functional alterations in the low-frequency range in patients with TTIA. These results support the role of WM
functional neural activity as a potential neuromarker in classifying patients with TIA and offer novel insights into the
underlying mechanisms in patients with TIA from the perspective of WM function.

1. Introduction

Stroke is one of the leading causes of morbidity, mortality, and
loss of function worldwide [1, 2]. The increasing prevalence of
stroke places a tremendous economic burden on individuals
and society [3]. Transient ischemic attack (TIA), also known

as “ministroke,” is a serious, reversible, temporary neurologi-
cal condition caused by focal cerebral nervous system hypo-
perfusion [4]. It is acknowledged that TIA is a continuum
with stoke in the presentation of acute cerebrovascular events
[5]. Therefore, precise diagnosis and effective treatment of
TIA are paramount to reducing the risk of subsequent stroke
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[6-8]. To promote targeted treatment and precise identifica-
tion of TIA, advanced imaging techniques have been applied
to explore the underlying mechanism.

In recent years, resting-state functional magnetic reso-
nance imaging (rs-fMRI) has been considered a promising
imaging technique for studying gray matter (GM) alter-
ations based on blood oxygen level-dependent (BOLD) sig-
nals [9-13]. However, the signals in white matter (WM)
were often neglected as noise, because it was previously
thought that WM could not generate BOLD signals due to
few postsynaptic potentials [14-17]. Therefore, previous
studies of WM in patients with TIA were mainly structural.
For instance, structural abnormalities have been found in
the superior longitudinal fasciculus in the WM, implying
impaired sensorimotor function in patients with TIA [18,
19]. Increasing evidence indicates the existence of functional
information in WM that can be reliably detected by BOLD
fMRI [20-24], which might open new avenues for studying
WM in health and disease. By combining fMRI and dynamic
positron emission tomography (PET), BOLD fluctuations in
WM have been found to correlate with neural activity
through local variations in glucose metabolism, suggesting
a possible physiological basis for WM function [25]. Partic-
ularly, it has been demonstrated in healthy participants that
spontaneous low-frequency BOLD fluctuations in WM can
be robustly detected and reflect specific neural activities
[26, 27]. During the resting state, Peer et al. [28] applied
the Fourier transform of WM functional network signals
obtained from healthy participants, and greater neural activ-
ity at low frequencies was found to exist in WM networks. A
similar feature of neural activity at low-frequency bands in
WM has been detected in several neurological or mental dis-
eases, such as schizophrenia [29, 30] and epilepsy [31].
Besides, the WM function estimated by low-frequency
BOLD signals can also be modulated by different tasks, sug-
gesting the possibility of estimating the dynamic function of
WM fiber bundles using low-frequency BOLD fluctuations
[27, 32, 33]. Considered together, these studies provide
strong evidence that meaningful signals exist in WM and
that low-frequency fluctuations in WM could be effectively
detected by BOLD fMRI. Nevertheless, it remains unknown
whether there are abnormal functional alterations in low-
frequency bands of the WM in patients with TIA. Thus,
we expected that unveiling the low-frequency BOLD fluctu-
ation characteristics in the WM of patients with TIA may
provide additional information about WM dysfunction in
TIA and help better understand the underlying pathological
mechanisms of TIA.

Two effective resting-state methods have been raised to
characterize the features of low-frequency BOLD fluctua-
tions: amplitude of low-frequency fluctuation (ALFF) and
fractional ALFF (fALFF). The ALFF measures the signal
intensity in low-frequency oscillations (LFOs) of local spon-
taneous neural activity of the brain [34] and has been proven
to exhibit outstanding test-retest reliability [35]. Previous
studies have investigated spontaneous neural activities in
the GM and found decreased ALFF in patients with TIA
[11, 36], providing evidence of brain dysfunction in TIA.
Moreover, based on ALFF, fALFF was raised to characterize
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the relative contribution of a specific LFO to the whole fre-
quency range, effectively reducing physiological noise and
suppressing artifacts in nonspecific brain regions [35, 37].
According to previous studies, the ALFF method has been
used to explore WM functional abnormalities in various dis-
eases, such as Parkinson’s disease (PD) [38], autism spec-
trum disorder (ASD) [2], and schizophrenia [39]. Although
the fALFF method has not been used in conjunction with the
ALFF method to assess the neural activity in the low-
frequency range of WM, it is suggested that the combination
of these two metrics can help obtain detailed information
about brain activity in the low-frequency range than using
individual method alone [40-42].

Machine learning algorithms have been widely used for
diagnosing neuropsychiatric diseases and are powerful tools
for classifying patients and healthy controls (HCs), which
show great potential in clinical practice [43-47]. Among
the numerous machine learning methods, the reinforcement
learning approach is a promising method for addressing the
diversity and complexity of the clinical conditions of the
disease [48]. Learning through continuous trial-and-error
in the interaction between agent and environment, rein-
forcement learning can adjust its actions according to the
environmental feedback signal and arrive at the optimal
decision [49-51]. In previous studies, reinforcement learn-
ing has been combined with rs-fMRI to recognize patients
with early mild cognitive impairment (eMCI) by learning
discriminative feature presentations from temporally
embedded BOLD signals [52]. Based on probabilistic rein-
forcement learning tasks, it has been found that patients
with treatment-resistant schizophrenia (TRS) and patients
with non-treatment-resistant schizophrenia (NTR) can be
separated by different neural mechanisms [53]. Additionally,
when diagnosing myocarditis, an automatic classification
model based on the deep reinforcement learning method
can help effectively promote the automatic screening of non-
invasive cardiac magnetic resonance (CMR) images [54]. In
summary, reinforcement learning can be combined with dif-
ferent methods to distinguish patients from healthy individ-
uals. Hence, we applied the reinforcement learning method
to examine whether WM functional abnormalities could
effectively differentiate patients with TIA from HCs.

In this study, functional alterations in the WM of
patients with TIA were explored using two resting-state
metrics (ALFF and fALFF) to determine whether there
was WM functional damage in patients with TIA. Further-
more, a reinforcement learning approach was adopted to
investigate whether the altered WM function of ALFF and
fALFF could serve as effective neuromarkers for identifying
patients with TIA.

2. Materials and Methods

2.1. Participants. Data were acquired from 51 patients with
suspected TIA in the Department of Neurology at the
Anshan Changda Hospital, Liaoning, China. Patients with
transient neurological symptoms may have a vascular etiol-
ogy, according to the assessment of clinical psychiatrists
[11, 36]. Blood pressure, clinical features, symptom duration,
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and history of diabetes symptoms were assessed for each
patient. In addition, ABCD2 scores (a simple score to identify
individuals at high early risk of stroke after a TIA) were gen-
erated for each patient’s risk of secondary stroke [55]. All
patients underwent electrocardiography (ECG), carotid
duplex ultrasound (CDU), and magnetic resonance imaging
(MRI). The information of each patient was recorded as fol-
lows: history of TIA and stroke; current smoking and drink-
ing behavior; previous risk factors such as hypertension,
diabetes, and coronary artery disease [56]; medications used
before MRI scan [57]; in-hospital assessment of arterial ste-
nosis on CDU and magnetic resonance angiography (MR
angiography); atrial fibrillation on ECG; brain infarction on
diffusion-weighted imaging (DWI) and T2 fluid-attenuated
inversion recovery (T2-FLAIR) [58]; and 1-year telephone
follow-up for stroke and/or TIA episodes [59]. Participants
with migraine, epilepsy, hemorrhage, leukoaraiosis, or psy-
chiatric history were excluded from this study [60].

The 41 HCs matched for age and sex to the TIA group
were recruited through an advertising campaign. None of
the HCs had a history of physical illnesses, psychiatric disor-
ders, or neurological disorders. This study was approved by
the Ethics Committee of the Center for Cognition and Brain
Disorders, Hangzhou Normal University. All participants
provided written informed consent.

2.2. Physiological and Biochemical Tests. All participants
underwent a series of physiological and biochemical tests
within 24h before scanning, which included systolic blood
pressure, diastolic blood pressure, blood sugar level, total cho-
lesterol, triglycerides, high-density lipoprotein cholesterol
(HDL-C), and low-density lipoprotein cholesterol (LDL-C).

2.3. Data Acquisition. Neuroimaging data were acquired
using a GE MR-750 3.0T scanner (GE Medical Systems,
Inc., Waukesha, WI, United States). The parameters for
acquiring 3D high resolution TI1-weighted anatomical
images were as follows: time of repetition (TR) = 8100 ms,
time of echo (TE)=3.1ms, matrix size =256 X 256, voxel
size=1mm x I mm x 1 mm, thickness/gap =1/0 mm, field
of view (FOV) = 256 mm?, and scanning time = 5 min. Gra-
dient echo-planar imaging (EPI) images were captured with
TR =2000ms, TE=30ms, flip angle (FA)=60°, matrix
size = 64 x 64, thickness/gap =3.2/0 mm, slices=43, and
scanning time = 8 min. During resting-state fMRI scanning,
all participants were required to remain still with their eyes
closed, remain awake, and not think of anything systemati-
cally. All participants reported that they were not asleep dur-
ing the scanning. The interval between the latest TIA attack
time of patients with TIA and the MRI scan time was 6
hours-16 days.

2.4. Data Preprocessing. Preprocessing of rs-fMRI data was
performed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm)
and RESTplus v1.24 [61] (http://www.restfmri.net/forum/
REST) on Matlab 2017b (https://ww2.mathworks.cn/
products/matlab.html), which consists of the following steps:
(1) removal of the first 10 time points to stabilize magnetiza-
tion and allow participants to acclimate to the scanning

environment, keeping the remaining 230 volumes for further
analysis. (2) Slice-time correction to adjust the data scanned
simultaneously. (3) Realignment to correct slight head
movements during scanning. (4) T1 image segmentation.
The T1 images were coregistered with functional images
and then segmented into GM, WM, and cerebrospinal fluid
(CSF) using the New Segment algorithm [62]. (5) Removal
of the linear trend to correct the signal drift. (6) Regression
of the noise signals. To avoid eliminating signals of interest,
we regressed only head motion (Friston-24 motion parame-
ters [63]) and mean CSF, leaving WM and global signal out
[28]. (7) Temporal scrubbing to censor the data at the spike
without changing the correlation values by using the motion
“spike” as a separate regressor [64, 65]. (8) Spatial smooth-
ing (FWHM =4 mm) was performed on the WM and GM
images separately of each subject, as suggested in previous
studies [28, 31]. (9) Normalization to the standard EPI tem-
plate and resampling to 3mm’ voxels using the DARTEL
algorithm. (10) Extraction of individual-level WM 4D
images. For each participant, we defined each voxel as GM,
WM, and CSF based on its maximum probability from the
T1 image segmentation results. This resulted in the
individual-level WM 4D images. (11) Creation of group-
level WM masks based on individual-level WM 4D images
for follow-up statistical analysis. Voxels identified as WM
in >60% of participants were adopted to create the WM
mask [28]. The subcortical regions were then removed from
the WM mask based on the Harvard-Oxford Atlas. The
WM mask was also coregistered to the functional space
and resampled to process the functional image [66]. A flow-
chart of the study is presented in Figure 1.

2.5. Metric Calculation. Metric calculations were conducted
using the RESTplus software [61]. To avoid the mixture of
WM and GM signals and reduce the interference of other
noises on WM signals as much as possible, all calculations
of these metrics were conducted on individual-level WM
4D images (Figure 1).

2.5.1. ALFF Calculation. ALFF was calculated based on a fast
Fourier transform (FFT). The time series of each voxel was
transformed into the frequency domain, and the power spec-
trum was obtained. The square root of each power spectrum
frequency was then calculated, and the mean square root
was obtained for each voxel. Notably, according to Peer
et al’s research, the energy distribution in the frequency
domain differs between WM and GM [28]. Additionally,
previous studies demonstrated that 0.15Hz was the highest
expected frequency of hemodynamic signals generated by
neurons [67, 68]. Therefore, to reduce the contributions of
nonneuronal on BOLD fluctuations, the mean square root
was calculated in the frequency band of 0.01-0.15Hz [2,
16, 29, 30, 69]. Finally, the ALFF value for each voxel was
divided by the average ALFF value (mALFF). In addition,
the results of different frequency bands of 0.01-0.08 Hz
[39], 0.01-0.10 Hz [24], and 0.01-0.15Hz were compared
in the case of other parameters that remained constant.
The results are provided in detail in Supplementary Mate-
rials (Figure S1).
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FiGure 1: Flow chart of preprocessing, metric calculation, and
statistical analysis in this study.

2.5.2. fALFF Calculation. As for fALFF, identical to ALFF,
0.01-0.15Hz was chosen as the frequency band. The ratio
of the amplitude in the low-frequency range to the total
amplitude in the entire frequency range (0-0.25 Hz) was cal-
culated, representing the relative contribution of the oscilla-
tions in the low-frequency range to the signal variation in
the entire frequency range. Finally, z-transformation was
performed on the ALFF and fALFF maps of each partici-
pant. The comparison of different frequency bands is shown
in the Supplementary Materials (Figure S2).

2.6. Statistical Analysis. Statistical analysis was performed
using the Statistical Package for Social Sciences (SPSS) 26
(IBM Corp., Armonk, N.Y., USA) to examine the differences
in demographic and clinical characteristics between patients
with TIA and HCs. Age and clinical/physiological/biochem-
ical characteristics were compared between the two groups
using Student’s t-test, and sex differences were compared
using Pearson’s chi-squared test. To examine the differences
in neural activities in low-frequency bands of WM in
patients with TIA and HCs, statistical significance was
assessed at voxel-level P <0.05 and cluster-level P <0.05,
corrected by Gaussian random fields (GRF) using RESTplus
software [61]. In addition, a more rigorous threshold (voxel-
level P<0.01, GRF correction) was used to examine the
results of the metric calculation and reinforcement learning
(see Supplementary Materials Figure S3-S5). Considering
the rigor of the statistical analysis, the group-level mask
(>60%) obtained in the preprocessing stage was used for
statistical analysis to reduce the interference of non-WM
signals. To support the future meta-analysis, we shared the
original uncorrected t-maps (http://www.restfmri.net/TTA
.tar). Finally, Pearson’s correlation analysis was conducted
to determine the correlation between resting-state metrics
and  clinical/physiological/biochemical ~ characteristics.
Specifically, the ALFF and fALFF values in WM regions
showing group differences between the two groups were
extracted and correlated with systolic blood pressure,
diastolic blood pressure, blood sugar level, total cholesterol,
triglycerides, HDL-C, and LDL-C. Statistical significance
was set at P < 0.05.
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2.7. Feature Extraction and Q-Learning Model Training. To
evaluate whether alterations in ALFF and fALFF could serve
as potential neuromarkers to distinguish patients with TIA
from HCs, we performed a reinforcement learning analysis
using the Q-learning algorithm [70, 71]. The steps were as
follows: (1) the mean ALFF and fALFF values in WM
regions showing significant differences between the two
groups were used together to serve as features and were nor-
malized from -1 to 1. According to previous studies on sup-
port vector machines (SVM), the combination of features of
multiple metrics has a better classification effect than using
single metric as the feature [36, 72-74]. (2) The parametric
Q-learning method [75] was used to train the approximate
Qvalue function with the linear model and obtain reward
feedback by interacting with the environment to find the
optimal Qvalue function and obtain the final classification.
In this study, the discount factor y was 0.9, and the learning
rate & was 0.001. Finally, leave-one-out cross-validation
(LOOCYV) was performed to conduct cross-validation, which
could help prevent overfitting [76, 77]. (3) The process
described above was applied to each participant to evaluate
the overall accuracy of parametric Q-learning. Accuracy,
sensitivity, and specificity have been reported to quantify
the performance of classification methods. The results of
using the ALFF and fALFF features are presented in the Sup-
plementary Materials (Figure S6-S7).

3. Results

3.1. Clinical Data. The final sample size was 89 participants
(TIA, n=48; HCs, n=41). Three patients were excluded
from further analysis owing to the unsatisfactory quality of
multimodal MRI data, including incomplete coverage of
the whole brain in the rs-fMRI scan and missing 3D T1
images. Of the 48 patients with TIA, 25 experienced TIA
(not a first-time attack), 4 experienced a stroke, and 23 expe-
rienced the first episode. Detailed demographic and clinical
information of all participants are summarized in Table 1.

As shown in Table 1, the TIA and HC groups were
matched for age (P =0.182) and gender (P = 0.640). Systolic
blood pressure (P <0.001), diastolic blood pressure
(P =0.007), blood sugar level (P=0.001), total cholesterol
(P =0.045), and LDL-C (P = 0.004) were significantly higher
in patients with TIA compared to HCs. The median ABCD2
score of patients with TIA was 4.

3.2. Between-Group Differences Results. Brain regions show-
ing differences between groups in the metric analysis were
reported based on the ICBM-DTI-81 white-matter label
atlas (JHU DTI-based WM atlases, provided by Dr. Susumu
Mori, Laboratory of Brain Anatomical MRI, Johns Hopkins
University [78, 79]). For the ALFF calculations, patients with
TIA showed decreased ALFF in the right cingulate gyrus,
right superior longitudinal fasciculus, and left superior
corona radiata compared with HCs (Table 2, Figure 2).
The right cerebral peduncle, right cingulate gyrus, and mid-
dle cerebellar peduncle showed decreased fALFF in patients
with TIA (Table 2, Figure 2). Among these brain regions,
one cluster with a significant fALFF difference between
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TaBLE 1: Demographic and clinical information of all participants.

Variables TIA (n=48) HCs (n=41) P value
Age (year, mean + SD) 57.60 +9.78 55.02 +8.03 0.182°
Sex (male/female) 37/11 30/11 0.670%
Systolic blood pressure (mmHg, mean + SD) 145.54 £20.75 127.55 +19.53" <0.001°
Diastolic blood pressure (mmHg, mean + SD) 86.67 £ 10.38 80.03 +10.90% 0.007"
Blood sugar level (mmol/L, mean + SD) 6.30+£2.11 5.12 +0.74* 0.001°
Total cholesterol (mmol/L, mean + SD) 5.24+1.14 4.75+1.01% 0.045°
Triglycerides (mmol/L, mean + SD) 1.60 £0.94 1.92 +£1.35% 0.213"
HDL-C (mmol/L, mean + SD) 1.11+£0.24 1.05 +0.29% 0.306"
LDL-C (mmol/L, mean + SD) 3.3140.97 2.69 + 0.90° 0.004"
ABCD2 scores (median) 4 (2-6)

31 (64.58%)
20 (41.67%)
22 (45.83%)
8 (16.67%)
2 (4.17%)
1 (2.08%)
48 (100%)
2 (4.17%)
6 (12.50%)
9 (18.75%)
12 (27.27%)°

Note: ! The P value was obtained by Student’s t-test; ¥ The P value was obtained by two-tailed Pearson chi-square t-test; * Data were missing for 6 controls; °
Four patients dropped out in the one-year follow-up; ABCD2 is a simple score to identify individuals at high early-risk of stroke after a TIA. TIA: transient
ischemic attack; HCs: healthy controls; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol.

Smoking, no. (%)

Drinking, no. (%)
Hypertension, no. (%)
Diabetes, no. (%)

Coronary artery disease, no. (%)
Atrial fibrillation, no. (%)
Medication, no. (%)
Antiplatelets, no. (%)
Statins, no. (%)

DWT hyperintensity, no. (%)
Vessel stenosis, no. (%)

TIA/stroke attack in one year follow-up, no. (%)

TaBLE 2: Regions of WM showing abnormal ALFF and fALFF in patients with TIA compared with HCs.

MNI coordinates

Metrics Tract (JHU-atlas) Voxels X y . T value
Cingulum_R 120 12 0 39 -3.7533

ALFF Superior_longitudinal_fasciculus_R 119 45 221 30 -4.2423
Superior_corona_radiata_L 102 -15 -9 45 -3.7579

Cerebral_peduncle_R 116 12 -24 -15 -3.7614

fALFF Cingulum_R 109 6 -3 33 -3.9512
Middle_cerebellar_peduncle 90 -18 -57 -42 -3.8369

Note: The statistical threshold was set at voxel with P <0.05 and cluster with P < 0.05 for GRF correction. Cingulum_R: right cingulate gyrus; Superior_
longitudinal_fasciculus_R: right superior longitudinal fasciculus; Superior_corona_radiata_L: left superior corona radiate; Cerebral_peduncle_R: right
cerebral peduncle; Middle_cerebellar_peduncle: middle cerebellar peduncle; TIA: transient ischemic attack; HCs: healthy controls; MNI: Montreal
Neurological Institute; ALFF: amplitude of low-frequency fluctuation; fALFF: fractional ALFF.

patients with TTA and HCs was not reported in Table 2 due
to it being off the JHU atlas.

3.3. Correlation Analysis. The ALFF and fALFF values were
extracted from WM regions that showed significant differ-
ences between patients with TIA and HCs, and correlation
analyses between these values and clinical/physiological/bio-
chemical characteristics were conducted. There were no
significant differences between the ALFF values in WM
regions showing group difference and clinical measurements

(P>0.05). There was a significant negative correlation
between the fALFF values extracted from the right cerebral
peduncle and diastolic blood pressure (r=-0.316, P=
0.029), and a significant positive correlation between the
fALFF values in the right cerebral peduncle and triglycerides
(r=0.310, P=0.032). In addition, the fALFF values in the
middle cerebellar peduncle showed a significant negative
correlation with diastolic blood pressure (r=-0.320, P=
0.027) and a significant positive correlation with triglycer-
ides (r=0.327, P =0.023).
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FIGURE 2: Regions of WM showing group differences in ALFF and
fALFF together with signal values extracted from these regions.

3.4. Classification Results. Accuracy, sensitivity, specificity,
and precision were calculated to evaluate the classification
ability of the parametric Q-learning model. The classifier
achieved a total accuracy of 82.02%, sensitivity of 85.42%,
specificity of 78.05%, precision of 82.00%, and area under
the curve (AUC) of 0.87. The receiver operating characteris-
tic (ROC) curve of the classifier is shown in Figure 3.

4. Discussion

In this study, two resting-state methods (ALFF and fALFF)
were used for the first time to identify abnormalities in the
low-frequency range of WM regions in patients with TIA.
Moreover, the Q-learning algorithm of the reinforcement
method was applied to detect neuromarkers that could be
used to classify patients with TIA and HCs based on neuro-
imaging data. Additionally, we explored the relationship
between functional abnormalities in WM and the clinical/
physiological/biochemical features in patients with TIA.
The results showed decreased ALFF in the right cingulate
gyrus, right superior longitudinal fasciculus, and left
superior corona radiata and decreased fALFF in the right
cerebral peduncle, right cingulate gyrus, and middle cerebel-
lar peduncle in patients with TIA. These findings suggest
that resting-state metrics can effectively help explore low-
frequency BOLD fluctuations in WM in patients with TIA
and that these regions of WM showing decreased ALFF
and fALFF might indicate that patients with TIA may
develop motor and cognitive impairment and emotional
problems. Moreover, the Q-learning algorithm provided
sensitive information for classifying patients with TIA and
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TPR

FPR

— AUC=0.87

FIGURE 3: The receiver operating characteristic (ROC) curve of
metrics. The image of ROC was displayed using the Matplotlib
toolkit in Python. FPR, false positivity rate; TPR, true positivity
rate; AUG, area under the ROC curve.

HCs. These findings may help us gain a deeper understand-
ing of the pathological mechanisms underlying TIA from the
perspective of WM dysfunction.

The ALFF is considered a reliable method for detecting
the intensity of spontaneous fluctuations and presenting
spontaneous brain activity [34]. Recently, ALFF has been
demonstrated to effectively reflect functional alterations in
WM (32, 38], providing a new perspective for studying
WM dysfunction in various diseases. In the present study,
we found a decreased ALFF in the right cingulate gyrus,
right superior longitudinal fasciculus, and left superior
corona radiata in the WM region of patients with TIA.
The cingulate gyrus is structurally complex and performs a
wide range of functions. Noninvasive imaging has shown
that the cingulate gyrus is associated with executive control,
emotion, and pain [80]. Damage to the cingulate gyrus may
lead to cognitive abnormalities in attention, memory, and
emotional processing [81]. Based on prior research and the
results of this study, we speculated that patients with TIA
may show negative changes in cognitive functions, such as
emotion, memory, and executive control. Anatomical stud-
ies have shown that the superior longitudinal fasciculus is
the biggest associative fiber bundle system in the brain and
is connected to the superior frontal gyrus and supplemen-
tary motor areas [82]. Patients with TIA are known to
exhibit significant cognitive impairment compared with
HCs, and the superior longitudinal fasciculus also plays a
critical role in a wide range of cognitive functions [19, 83],
which might indicate that the onset of TIA may lead to func-
tional impairment in the WM region and affect the patient’s
cognitive function. The corona radiata consists of numerous
tracts involving subcortical motor pathways, which is one of
the most prominent motor-related neural fibers [84]. Jiang
et al. [85] also found that when an ischemic stroke lesion
is located in the corona radiata, it may interfere with the
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functional circuitry between the brainstem and frontal cor-
tex, thereby interfering with the patient’s emotional expres-
sion [86]. We speculated that the decrease in ALFF in the
corona radiata may suggest the possibility of developing
poststroke depression after a future stroke episode in
patients with TTA.

fALFF is calculated as the ratio of the low-frequency
range power spectrum to the entire frequency range power
spectrum, which is effective in suppressing physiological
noise compared to ALFF [35, 87]. To obtain more compre-
hensive information about low-frequency BOLD fluctua-
tions in WM, we further investigated functional WM
abnormalities in patients with TIA using the fALFF method,
which is more sensitive to spontaneous neural activity [35].
This study found decreased fALFF in the right cerebral
peduncle, right cingulate gyrus, and middle cerebellar
peduncle in patients with TIA compared with HCs. Recent
diffusion tensor imaging (DTI) studies of cerebral hemor-
rhage have shown that decreased fractional anisotropy
(FA) values in the cerebral peduncle away from the hema-
toma region indicate neurodegenerative lesions [88, 89].
Koyama et al. [84] also demonstrated that changes in this
region are viable predictors of motor outcome. Consistent
with the ALFF findings, we also found decreased fALFF in
the right cingulate gyrus of patients with TIA, suggesting
the possibility of developing cognitive abnormalities in the
future. Bilateral middle cerebellar peduncle lesions are com-
monly associated with cerebrovascular diseases [90]. S.H.
Kim and J.S. Kim [91] found unilateral middle cerebellar
peduncle lesions in acute stroke patients that manifested
clinically as ocular motor abnormalities. Additionally, Zhou
et al. [92] found that patients with bilateral middle cerebellar
peduncle infarction developed ataxia, characterized by
impaired motor coordination. Combined with insights from
previous studies, we found that these WM regions with
decreased fALFF in patients with TIA were all related to
motor function. Hence, we speculated that patients with
TIA and decreased fALFF in these WM regions may be at
risk of impaired motor coordination and movement disor-
ders (such as local movement disorders) in the future. Our
results may shed new light on abnormal changes in these
WM regions after the onset of TIA.

In the present study, we noted some variations between
the results of the ALFF and fALFF analyses, except for the
right cingulate gyrus, which exhibited a decrease in both
the ALFF and fALFF. The ALFF reflects the power in the
effective frequency range [34], and the fALFF measures the
relative spontaneous neural activity in the effective fre-
quency range over the entire frequency range [35]. Owing
to the difference in the calculation methods of the two met-
rics, our results showed slight differences. In addition, the
BOLD signal in fMRI reflects the activation of neurons and
global physiological fluctuations [93], which may influence
the estimation of ALFF. The fALFF is a modified index of
ALFF that, relative to the ALFF, can improve the sensitivity
and specificity to spontaneous neural activities [87, 94], may
provide us with more sensitive information about low-
frequency BOLD fluctuations in WM, and validate abnormal
functional neural activity in patients with TIA. However, it is

noteworthy that the results of ALFF and fALFF analyses
both showed decreased low-frequency neural activities in
WM of patients with TIA compared with HCs, which may
suggest an impaired function in these motor, emotional,
and cognitive-related WM regions caused by TIA onset.
Combining these two metrics provided us with more com-
prehensive information on the neural activity in the low-
frequency range in WM than using only one method, which
also helped examine WM dysfunction in patients with TIA.

Correlation analysis revealed no significant correlations
between the ALFF values extracted from WM regions show-
ing group differences and clinical characteristics. In contrast,
significant correlations were observed between values in sev-
eral WM regions showing group differences in fALFF and
clinical characteristics. Values in the right cerebral peduncle
and middle cerebellar peduncle were negatively correlated
with diastolic blood pressure. Demographic information
revealed that diastolic blood pressure was significantly
higher in patients with TIA than in HCs. According to the
World Health Organization Hypertension Guideline, dia-
stolic blood pressure is a risk factor for cardiovascular dis-
ease; it is closely associated with mental stress, anxiety, and
other emotions [95], which correspond to symptoms pre-
sented by some stroke patients since they have developed
pathological emotional manifestations such as depression,
anxiety disorder, apathy, and psychosis after onset [96, 97].
In this study, we speculated that decreased fALFF values in
the right cerebral peduncle and middle cerebellar peduncle
may be associated with emotional challenges in patients with
TIA. Triglycerides were previously considered a separate risk
factor for ischemic stroke in elderly Chinese patients with
hypertension [98]. Furthermore, high triglycerides are asso-
ciated with pathophysiological processes and may contribute
to an increased risk of ischemic stroke [99]. Our findings
demonstrated that the fALFF values in the right cerebral
peduncle and middle cerebellar peduncle of patients with
TIA were positively correlated with triglyceride levels. These
results imply that the two WM regions may serve as key pre-
dictors of ischemic stroke occurrence in the future.

Machine learning has been widely used in neuroscience
and for diagnosing neuropsychiatric diseases and has shown
good classification performance [100, 101]. More objective
diagnostic criteria can be established through machine
learning algorithms to help identify neuromarkers for TIA
diagnoses. In this study, we combined two indicator features
(ALFF and fALFF) and used the Q-learning algorithm to
distinguish patients with TIA from HCs with an identifica-
tion accuracy of 82.02% and satisfactory specificity, sensitiv-
ity, and precision, which helped establish diagnostic
indicators. Therefore, the abnormal ALFF and fALFF values
in the WM of the brain could be used as potential imaging
biomarkers to differentiate patients with TIA from HCs.
Furthermore, Q-learning is a promising method for studying
these WM functional abnormalities.

5. Limitations

The present study had some limitations that should be inter-
preted with caution. First, the sample size of this study was



comparatively small, and we would like to validate our
results in the future with bigger sample size. Second, fMRI
data of patients with TIA were not collected during the
follow-up period, to the extent that we have not yet clarified
how spontaneous activity in WM changes as TIA progresses.
Future studies could be designed longitudinally to test
whether current methods can be used to monitor disease
progression. Finally, this study lacked information on the
emotional condition of patients with TIA, such as depres-
sion and anxiety. Considering that our results showed that
abnormal WM regions in patients with TIA might also have
emotional problems; therefore, future studies can evaluate
depression and anxiety in patients using appropriate scales
to learn more about the relationship between WM neural
activity and scale scores.

6. Conclusion

The present study demonstrated abnormal WM functional
alterations in the low-frequency range in patients with
TIA. Moreover, WM neural activity in the low-frequency
range may serve as a potential neuromarker to differentiate
patients with TIA from HCs. These findings provide novel
insights into the underlying mechanisms in patients with
TIA from the perspective of WM function. Abnormal WM
regions may serve as the basis for the clinical diagnosis and
prevention of stroke in patients with TIA.
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Figure S1. Regions of WM showing group differences in
ALFF in different frequency bands. Figure S2. Regions of
WM showing group differences in fALFF in different fre-
quency bands. Figure S3. Regions of WM showing group dif-
ferences in ALFF with GRF correction using different
thresholds (voxel-level P <0.05 and P <0.01). Figure S4.
Regions of WM showing group differences in fALFF with
GRF correction using different thresholds (voxel-level P <
0.05 and P < 0.01). Figure S5. The receiver operating charac-
teristic (ROC) curve of metrics under different thresholds
(voxel-level P <0.05 and P<0.01, GRF correction) served
as features.” By using the mean ALFF and fALFF values in
the clusters showing significant differences (voxel-level P <
0.05, GRF correction) between the two groups as features,
the classifier achieved a total accuracy of 82.02%, sensitivity
of 85.42%, specificity of 78.05%, precision of 82.00%, and
AUC of 0.87; ° By using the mean ALFF and fALFF values
in the clusters showing significant differences (voxel-level P
< 0.01, GRF correction) between the two groups as features,
the classifier achieved a total accuracy of 80.90%, sensitivity
of 77.08%, specificity of 85.37%, precision of 86.05%, and
AUC of 0.77. The image of ROC was displayed using the
Matplotlib toolkit in Python. FPR, false positivity rate;
TPR, true positivity rate; AUC, area under the ROC curve.
Figure S6. The receiver operating characteristic (ROC) curve
of metrics (ALFF). By using the mean ALFF values in the
clusters showing significant differences (voxel-level P < 0.05
, GRF correction) between the two groups as features, the
classifier achieved a total accuracy of 78.65%, sensitivity of
75.00%, specificity of 82.93%, precision of 83.72%, and
AUC of 0.77. The image of ROC was displayed using the
Matplotlib toolkit in Python. FPR, false positivity rate;
TPR, true positivity rate; AUC, area under the ROC curve.
Figure S7. The receiver operating characteristic (ROC) curve
of metric (fALFF). By using the mean fALFF values in the
clusters showing significant differences (voxel-level P < 0.05
, GRF correction) between the two groups as features, the
classifier achieved a total accuracy of 70.79%, sensitivity of
79.17%, specificity of 60.98%, precision of 70.37%, and
AUC of 0.75. The image of ROC was displayed using the
Matplotlib toolkit in Python. FPR, false positivity rate;
TPR, true positivity rate; AUC, area under the ROC curve.
(Supplementary Materials)
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