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Purpose: Mutation-induced variation of protein-ligand binding affinity is the key to many genetic dis-
eases and the emergence of drug resistance, and therefore predicting such mutation impacts is of great
importance. In this work, we aim to predict the mutation impacts on protein-ligand binding affinity using
efficient structure-based, computational methods.
Methods: Relying on consolidated databases of experimentally determined data we characterize the
affinity change upon mutation based on a number of local geometrical features and monitor such feature
differences upon mutation during molecular dynamics (MD) simulations. The differences are quantified
according to average difference, trajectory-wise distance or time-vary differences. Machine-learning
methods are employed to predict the mutation impacts using the resulting conventional or time-series
features. Predictions based on estimation of energy and based on investigation of molecular descriptors
were conducted as benchmarks.
Results: Our method (machine-learning techniques using time-series features) outperformed the bench-
mark methods, especially in terms of the balanced F1 score. Particularly, deep-learning models led to the
best prediction performance with distinct improvements in balanced F1 score and a sustained accuracy.
Conclusion: Our work highlights the effectiveness of the characterization of affinity change upon muta-
tions. Furthermore, deep-learning techniques are well designed for handling the extracted time-series
features. This study can lead to a deeper understanding of mutation-induced diseases and resistance,
and further guide the development of innovative drug design.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As exposed by the next-generation sequencing (NGS) tech-
niques, a wide variety of genetic mutations exist in different organ-
isms [38]. Such genetic mutations, particularly missense
mutations, can cause proteins to malfunction by modulating their
stability as well as altering their affinity with other biological
molecules [38,44,22,43]. The stability changes (thermodynamic)
upon mutations can be quantified by the change of folding free
energy (DDGfold), which is a result of collective contributions from
multiple structural features (e.g. hydrogen bonds, etc.) and
physico-chemical properties (e.g. polarity, solvation energy, etc.)
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[26]. Besides experimental measurements, various computational
methods have been developed to decipher DDG, which fall into
sequence-based machine-learning approaches and structure-
based approaches involving statistical potentials, biophysics
knowledge or intensive sampling (e.g. free energy perturbation,
thermodynamic integration, etc.) [50]. Disease-causing mutations
frequently destabilize proteins (DDGfold < 0) with accompanied
structural changes [31]. However, local changes of geometry with-
out necessarily affecting the folding free energy (DDGfold ¼ 0) can
still be disease-causing [26]. This reflects the importance of local
geometrical changes upon mutations, and makes predicting the
impact and associated phenotypes of mutations a challenging
problem. Arguably, the phenotypes of mutations depend princi-
pally on the changes in protein-partner binding affinity, which
can be measured by the binding free energy changes (DDGbind)
and determines the magnitude of physiological effect. In general,
any mutation-induced affinity change may be disease-causing with
high risk [45,56]. Aside from experimental investigation, computa-
tional methods designed for deciphering binding free energy
changes can be categorized similarly to those determining the fold-
ing free energy changes [26].

Particularly, the effects of missense mutations on small mole-
cule ligand binding to proteins can respond to many genetic dis-
eases and the emergence of drug resistance [44,43]. Deciphering
the protein-ligand affinity changes upon mutations has therefore
been an essential step towards more innovative and personalized
therapeutic interventions. Although high-throughput DNA
sequencing allows vast amounts of mutations to be identified
rapidly, determining the mutation impacts often requires time-
consuming and expensive experiments (e.g. isothermal titration
calorimetry [13], FRET [42], surface plasmon resonance [34], etc.).
To computationally decode the impacts of mutations on protein-
ligand binding affinity, efforts have also been made, mostly based
on molecular dynamics (MD) simulations. These works either
focused on the direct estimation of binding free energy (DGbind)
or employed machine-learning techniques to monitor specific
structural/physico-chemical features in protein dynamics. For a
pair of wild-type type 1 human immunodeficiency virus (HIV-1)
protease and its drug-resistant mutant, Perryman et al. imple-
mented all-atom MD simulations in explicit solvent and examined
the structural properties sampled during the simulations, which
demonstrated decreased binding affinities of inhibitors to the
mutant [39]. In [21], for a group of homologically modeled mutants
of HIV-1 protease, implicit-solvent MD simulations were con-
ducted, based on which the free energy decomposition analysis
coupled with machine-learning techniques was applied to quanti-
tatively estimate the protease-drug binding affinity for different
mutations. Similarly, by incorporating binding free energy compo-
nents extracted from explicit-solvent MD simulations and person-
alized characteristics, drug-resistant epidermal growth factor
receptor (EGFR) mutations or EGFR-mutated lung cancer patients
were recognized using machine-learning approaches in [53]. Ma
et al. predicted drug-resistant EGFR mutants that generally have
lower binding affinity with inhibitors by combining MD simula-
tions and local surface geometrical properties, represented by the
curvature of atoms in drug-binding pockets [33]. Zou et al. investi-
gated the relationships between mutations and EGFR-inhibitor
interactions by investigating atom connectivity dynamics, which
indicate longitudinal distance changes between an inhibitor and
its target [62]. Aside from these MD simulation-based studies,
molecular descriptors can also be a potential alternative for deduc-
ing molecular affinity or its change upon mutation [7,57]. Molecu-
lar descriptors can be used to encode useful molecular information
as numerical features by characterizing the structural and physico-
chemical properties of molecules according to distinct aspects of
molecular topology. In the past decades, a variety of descriptors
ranging from simple constitutional/count descriptors to compli-
cated steric/quantum-chemical descriptors have been developed
for chemical structures [1,1,8,18,10,2,9] and proteins
[29,11,55,6,37]. Chemical-protein interaction descriptors can be
designed on top of them by a simple concatenation or tensor pro-
duct [10]. Such descriptors can easily be adopted by the machine-
learning community for determining the impact of mutations on
protein-ligand binding affinity.

To mitigate the limitations in these studies, such as scarcity of
samples, unavailability of experimentally-determined mutant
structures and lack of experimental affinity measurements for ver-
ification, attempts have been made over the past decades to estab-
lish comprehensive databases that link missense mutations with
experimentally measured affinity changes of protein-partner bind-
ing systems [43,27,3,35]. Among them, Platinum [43] is a manually
curated and literature-derived database that compiles ligand-
affinity measurements (experimental) for wild-type proteins
(WTPs) and their mutants under the same experiment conditions,
and links such protein-ligand complexes to their three-
dimensional structural information deposited in the Protein Data
Bank (PDB) [4]. This provides a valid resource for designing
structure-guided, computational approaches to predict the impacts
of mutations on protein-ligand binding affinity. Standing on these
consolidated databases and the importance of local geometrical
changes upon mutations, we proposed a number of local geomet-
rical/structural features (closeness, local surface area, orientation,
contacts and interfacial hydrogen bonds) and monitored their dif-
ferences between the WTP-ligand and mutant-ligand systems in
the dynamics simulations. Such feature differences were further
employed by machine-learning methods to predict the mutation
impact on protein-ligand binding affinity. To compromise on the
discrepancy among different experiment conditions for deriving
the ligand-affinity measurements, we only learned an increased
or decreased affinity upon mutation (categorical). The energy-
based and descriptor-based predictions were performed as bench-
marks for our method. An overall framework of this study is shown
in Fig. 1.
2. Material and methods

2.1. Data collection

In this work, we mainly adopted the protein-ligand affinity
information in Platinum [43] and the associated crystallographic
structures in PDB [4] for a supervised study of mutation impacts
on protein-ligand binding affinity. Specifically, we filtered the
mutations using criteria that (1) the molecular structures of both
the WTP and mutant have been released in PDB, avoiding struc-
tural modeling with no ground truth, (2) the structures should
have a high resolution (< 3 angstrom (Å)), guaranteeing high-
quality data, and (3) the involved ligands belong to the ligand
library of AMBER software suite, leading to accurate MD simula-
tions. For the impacts of mutations on protein-ligand binding affin-
ity, ‘decreased affinity’ (D) and ‘increased affinity’ (I) comprise the
two types. The impact of each mutation on protein-ligand binding
affinity is defined on the triplet WTP;mutant; ligandf g.
2.2. Molecular dynamics (MD) simulations

For a triplet WTP;mutant; ligandf g, the mutation impact on
protein-ligand binding affinity is highly associated with the dis-
crepancy between the WTP-ligand and the mutant-ligand binding
systems in their dynamics. For each mutation, the WTP and mutant



Fig. 1. Overall framework for predicting the impacts of mutations on protein-ligand binding affinity. In the data-collection phase, mutation, affinity (ligand-binding affinity
measurements for each pair of wild-type protein (WTP) and its mutant), experimental (experiment conditions for deriving the ligand-binding affinity) and structural (crystal
structures of WTP-ligand and mutant-ligand complexes) data were conjunctionally collected from Platinum and Protein Data Bank. The molecular dynamics (MD) simulation
step involved each WTP-ligand or mutant-ligand system, and adopted the explicit-solvent model. Next, the trajectory frames for each system were collected, and the
difference between each pair of WTP-ligand and mutant-ligand systems was quantified according to several local geometrical features (closeness, local surface area,
orientation, contacts and interfacial hydrogen bonds) in these frames. Finally, in the prediction phase we adopted machine-learning methods to relate such feature differences
to the mutation impact on protein-ligand binding affinity. Prediction based on direct estimation of binding free energy and that based on molecular descriptors were also
implemented as benchmarks.
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were structurally aligned [40] in advance to ensure a more com-
patible analysis. Only the ligand-binding protein chains were
remained. An online program H++ [15] was employed to protonate
these chains and add missing hydrogen atoms for them according
to the experimental pH values in Platinum, where a non-specified
pH was regarded as the neutral pH (7.0). The gaps (missing resi-
dues), most of which are not located in the ligand-binding vicinity,
of these protonated proteins were capped with acetyl group at the
N terminus and amide residue at the C terminus prior to MD sim-
ulations. Proteins with multiple binding sites were considered sep-
arately for each site.

Depending on the AMBER software suite [5], MD simulations in
explicit solvent with periodic boundaries were conducted for each
WTP-ligand or mutant-ligand complex. AMBER ff14SB and gaff force
fields were used separately for proteins and ligands. Compulsory
metal ions were handled using the 12-6 Lennard-Jones (LJ) non-
bonded model [28], which is broadly applied due to its simplicity
and excellent transferability. Cofactors such as heme groups (all-
atom model in [14]) were regarded as non-standard units,
with the parameters imported from AMBER parameter database
( http://research.bmh.manchester.ac.uk/bryce/amber/ http://re-
search.bmh.manchester.ac.uk/bryce/amber/). A 12 Å buffer of
TIP3P water around each neutralized complex in any direction,
constituting a truncated octahedron water box, was imposed. Prior
to the production MD simulation, each system was subsequently
minimized and equilibrated, and the equilibration includes heating
the system to the experimental temperature (a missing value
assigned to 298 Kelvin) and equilibrating the system at constant
pressure. All equilibration simulations were conducted with shake
on hydrogen atoms and Langevin dynamics for temperature control
[5]. To guarantee a valid production simulation, the equilibration
of each system was verified through investigating the root-mean-
square deviation (RMSD) of atomic positions to a reference struc-
ture. The production simulation for each system lasted for 2 ns
and resulted in 1000 trajectory frames, which were collected at a
time step of 2 picoseconds (ps). All the simulations were GPU-
accelerated [16,48].

For each WTP-ligand or mutant-ligand system, the production
MD trajectory is composed of a series of structural snapshots
S1; . . . ;SNf g N ¼ 1000ð Þ, and Si i ¼ 1; . . . ;Nð Þ represents the i-th
structure.

2.3. Characterizing affinity change upon mutation using local
geometrical features

2.3.1. Local geometrical features of protein-ligand systems
Protein-ligand closeness. For a protein-ligand system, distance

between the ligand and its binding site on the protein is a common
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Fig. 2. Local geometrical features of protein-ligand systems. (a) Closeness. (b) Solvent accessible surface area of ligand-binding site. (c) Orientation. (d) Contacts. (e)
Interfacial hydrogen bonds.
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measure for the affinity [62,61]. Here we define the closeness of a
protein-ligand system based on the distance (Fig. 2a) expressed in
Eq. (1).

cn ¼ �

X
Rk2BSR

D

X
i2Rk

Xi

jRk j ;

X
j2LIG

Xj

jLIGj

0BB@
1CCA

jBSRj ð1Þ

where i and j indicate atoms in amino acid residue Rk and the ligand
LIG respectively, Xi represents the coordinates of atom i;BSR
denotes the binding-site residues, jSj is the cardinality of set S and
D a; bð Þ means the Euclidean distance between a and b. This mea-
sures the negative average of the pairwise residue-ligand distances
based on their geometric centers. Here we only consider heavy
atoms to ease the computations.

Solvent accessible surface area of ligand-binding site. Solvent
accessible surface area (SASA) of a biomolecule measures the sur-
face area that is accessible to a solvent, and the SASA of the ligand-
binding site plays an important role in protein-ligand binding

affinity. For each protein-ligand system, the SASA (Å
2
) of the

binding-site atoms can be calculated to characterize the protein-
ligand binding affinity (Fig. 2b), according to the LCPO algorithm
[54].

Protein-ligand orientation. We define protein-ligand orientation
as Eq. (2). Each angle \LBBk is between two rays diverging from
the center of the whole binding site B, with one ray passing
through the center of a binding-site residue Bk and the other the
center of the ligand L. The absolute deviations of these angles to
p
2 were averaged to yield the protein-ligand orientation (Fig. 2c).
This orientation also measures protein-ligand binding affinity.
Here we consider geometric centers and the heavy atoms only.

ot ¼

X
Rk2BSR

j p2 � \LBBkj

jBSRj ð2Þ
Protein-ligand contacts. For a protein-ligand system, the atomic
contacts within a distance cutoff between the ligand and binding
site also measure the protein-ligand binding affinity, and we define
the total contacts (Fig. 2d) for the system as in Eq. (3).

ct ¼
X

Rk2BSR

X
i2Rk

Imin
j2LIG

d i;jð Þ<t
ð3Þ

where Ix is the indicator function where Ix ¼ 1 only if x is fulfilled,
and t is the distance cutoff. Cutoff of 3Å was selected in this work.

Interfacial hydrogen bonds for protein-ligand system. Hydrogen
bonds play a significant role in protein-ligand interactions as they
control the binding specificity and stabilization of various molecu-
lar binding systems in solvent [60]. Determining hydrogen bonds
follows simple geometric rules including basic structure (heavy-
atom acceptor A, hydrogen-atom donor H and heavy-atom donor
D), component atoms (specified atom types for donors and accep-
tors) and formation criteria (the A-to-D distance is less than a cut-
off and A� H � D angle is greater than a cutoff). Following the
CPPTRAJ module in AMBER, the cutoff for the A-to-D distance was
set as the default value of 3 Å and that for the A� H � D angle
the default value of 135� [5]. For a protein-ligand system, the num-
ber of hydrogen bonds connecting the system is defined as follows.

hb ¼
X

Rk2BSR
nD2Rk ;A2LIG þ

X
Rk2BSR

nD2LIG;A2Rk ð4Þ

where nD2Rk ;A2LIG indicates the number of hydrogen bonds formed by
donors in a binding-site residue Rk and acceptors in the ligand LIG,
and nD2LIG;A2Rk is similarly defined (Fig. 2e).

2.3.2. Characterizing affinity change upon mutation
Considering the dynamics of a protein-ligand system, we can

characterize its affinity using cn; sasa;ot; ct;hbf g, where
cni; sasai; oti; cti;hbif g corresponds to the ith MD structural snap-
shot Si (i ¼ 1; . . . ;N). By comparing the difference of such features
between each pair of WTP-ligand and mutant-ligand systems, we



D.D. Wang et al. / Computational and Structural Biotechnology Journal 18 (2020) 439–454 443
can characterize the affinity change upon mutation. Such differ-
ence can be defined using following strategies.

First, it can be defined as the average difference over all the MD
snapshots of each feature (Eq. (5)).

vm ¼ �mmt�l � �mwtp�l ð5Þ
where m 2 cn; sasa;ot; ct;hbf g, and mt � l and wtp� l indicate the
mutant-ligand and WTP-ligand systems respectively.

Another strategy is to calculate the trajectory-wise distance
between a pair of WTP-ligand and mutant-ligand systems based
on each feature (Eq. (6)).

vD
m ¼ D mmt�l;mwtp�l

� � ð6Þ
where D a;bð Þ is the distance between two time series a and b, and
can be the Euclidean, correlation, cosine or Dynamic Time Warping
(DTW) distance (Eq. (7)). The correlation distance is calculated
based on the Pearson correlation coefficient. The DTW distance is
computed as the Euclidean distance between the two aligned time
series according to the alignment path P.

DEuclidean a;bð Þ ¼ ka� bk2
DCorrelation a;bð Þ ¼ 1� cov a;bð Þ

rarb
¼ 1� a��að Þ� b��bð Þ

k a��að Þk2k b��bð Þk2
DCosine a;bð Þ ¼ 1� a�b

kak2kbk2

DDTW a;bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;jð Þ2P

ai � bj
� �2s

8>>>>>>>>><>>>>>>>>>:
ð7Þ

An alternative strategy is to simply use the trajectory of feature
differences between a pair of WTP-ligand and mutant-ligand sys-
tems (Eq. (8)).

vm ¼ mmt�l �mwtp�l ð8Þ
Accordingly, the affinity change upon mutation can be charac-

terized by vcn;v sasa;vot ;vct; vhbf g; vDist
cn ; vDist

sasa;vDist
ot ;vDist

ct ; vDist
hb

� �
or

vcn;vsasa;vot ;vct;vhbf g (time series).

2.4. Prediction of mutation impact on protein-ligand binding affinity

2.4.1. Prediction based on machine-learning techniques
Based on the extracted features, we can apply machine-learning

techniques to the prediction of mutation impacts on protein-ligand
binding affinity. We used a simple train-test mechanism with a
random half-half partition. Features were standardized to zero
mean and unit variance before fed to the training machines. For
each setting, we repeated the experiments 10 times and averaged
the performance. As we face an imbalanced classification problem,
the performance was evaluated by both the accuracy and balanced
F1 score. The balanced F1 score is simply computed as the average
of the F1 scores concerning the two mutation impacts (D and I)
separately, as shown in Eq. (9).

Fb
1 ¼ FD1þFI1

2

¼ precisionD �recallD
precisionDþrecallD

þ precisionI �recallI
precisionIþrecallI

ð9Þ

Conventional features. For conventional features like
vcn;v sasa;vot ;vct;vhbf g or vDist

cn ;vDist
sasa;vDist

ot ;vDist
ct ;vDist

hb

� �
, we employed

traditional random forests (RFs) [20], which have been successfully
applied to extensive machine-learning tasks [58]. RFs are an
ensemble learning method that depends on a multitude of
decision-tree learners in training and outputs the averaged predic-
tion from individual tree learners. RFs have mitigated the overfit-
ting problem of individual decision trees in the training phase.
Specifically, RFs apply the general bagging technique to tree learn-
ers, which repeatedly selects a random sample from the training
set, fits trees to those samples, and finally averages the prediction
(or takes the majority vote). In addition, RFs adopt feature bagging
(a random subset of features) in the learning process to reduce the
correlated trees in the original bagging algorithm. Normally the
optimal number of trees can be determined by cross validation
or observing the out-of-bag error. For simplicity in this work, we
fix this parameter as 50 for handling our medium-sized dataset,
with the maximum depth of each tree set as 2.

Single time-series features. Aside from conventional features, the
time-series features ( vcn;vsasa;vot;vct ;vhbf g) should have high clas-
sification power. It is well acknowledged that hidden Markov mod-
els (HMMs) are designed for analyzing time-series data, although
they can merely cope with individual sequences. Here use HMMs
to deal with single time-series features (vcn;vsasa;vot;vct or vhb).
Specifically, an HMM is a probabilistic model for learning systems
that can be assumed as a Markov process with hidden states, and
each state can independently generate observations according to
emission probabilities [46]. An HMM is commonly composed of
the hidden-state space S ¼ S1; . . . ; SNf g (state at time t denoted as
ht), the set of distinct observation symbols generated from the
states V ¼ V1; . . . ;VMf g (observation at time t denoted as ot), tran-
sition probabilities between hidden states A ¼ aij

� �
(considering

first-order Markov chains only), emission probabilities for the
states to produce observations E ¼ ei kð Þf g and probabilities of ini-
tial hidden states p ¼ pif g. These probabilities are defined in Eq.
(10). Emissions for continuous observations can come from distri-
butions such as a Gaussian, and we merely consider univariate
emission probabilities in this work.

aij ¼ P htþ1 ¼ Sjjht ¼ Si
� �

; 1 6 i; j 6 N

ei kð Þ ¼ P ot ¼ Vkjht ¼ Si½ �; 1 6 i 6 N; 1 6 k 6 M

pi ¼ P h1 ¼ Si½ �; 1 6 i 6 N

8><>: ð10Þ

An HMM can thereupon determined by h ¼ A;E;pf g. Given
observations O ¼ o1 . . . oT ; h can be trained by the Baum-Welch
algorithm to maximize P Ojhð Þ. For a given observation sequence
O ¼ o1 . . . oT and multiple HMMs H ¼ h1; . . . ; hlf g, the model that
best matches the observations can be determined by
argmax

h2H
P Ojhð Þ, where P Ojhð Þ can be computed through the Viterbi

algorithm. In this work, we separately trained HMMs for the two
mutation impacts (D and I) using the training set, based on single
time-series features. The cardinality of the state space is assumed
to be 3, which is commonly used in speech recognition [46]. Gaus-
sian emissions were adopted. A test trajectory is assigned with an
HMM if it corresponds to a higher P Ojhð Þ.

Multiple time-series features. To deal with multiple time-series
features ( vcn;vsasa;vot ;vct ;vhbf g), we adopted several machine-
learning and deep-learning models. The first model is a simple
densely connected neural network (multilayer perceptron - MLP),
which is composed of an input layer that flattens the times series
into a vector, a densely connected layer, a dropout layer and an
output layer. Specifically, we employed 50 nodes in the densely
connected layer, with the ReLU activation function. The sigmoid
function was used as the activation function for the output layer.
A dropout layer [49] was added between the densely connected
and output layers to mitigate the overfitting issues, and we
adopted a dropout ratio of 25%. During the training process, the
binary cross-entropy function was selected to calculate the loss,
and the efficient Adam optimizer [23] was adopted for updating
the network parameters. In addition, we set the class weight of
the minority class the two times as that of the majority during
training, to balance the samples.

An alternative model is the convolutional neural networks
(CNNs), which have been successfully applied to abundant applica-
tions such as image classification and speech recognition [30].
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CNNs are well designed for image classification due to their consid-
eration of spatial structure of the images [25], where neighboring
pixels are correlated. The essence of CNNs includes local receptive
fields, shared weights and pooling. Local receptive fields corre-
spond to localized regions of the input image that are connected
to different hidden neurons. A map of hidden neurons connected
to their local receptive fields share the same weights and bias,
implying the detection of the same feature (such as a horizontal
edge) by these neurons. This highlights the translation invariance
nature of images. Accordingly, the shared weights and bias define
a specific kernel of filter for the input image, corresponding to a
feature map in the hidden layer. For a filter of size k� k with
weights w and bias b, a hidden neuron in the feature map will out-
put as follows,

yi;j ¼ r
Xk
m¼0

Xk
n¼0

wm;nxiþm;jþn þ b

 !
ð11Þ

where x ¼ xi;j
� �

denotes the inputs and r �ð Þ is an activation func-
tion (ReLU in most CNNs). This corresponds to a convolution oper-
ation. A full convolution layer in a CNN normally consists of
multiple feature maps (filters), to learn different types of features.
A pooling layer frequently follows a convolutional layer, which con-
denses each feature map in the convolutional layer into a smaller
one by summarizing regions of the map as the max or average
value. Overall, a complete CNN is composed of an input layer, con-
secutive convolutional and pooling layers, a layer for flattening the
feature maps, a densely connected layer and a final output layer. For
inputs of multiple time-series features, it may differ from the orig-
inal spatial structures of images as the order of the time series may
vary. However, such data still possess the sequential structures
along the time axis, which can be beneficial from the convolutional
layers. Specifically in this work, we implemented both two-
dimensional (2D) and one-dimensional (1D) convolutions in CNN
models. For a 2D case, we assembled a CNN with a convolutional
layer including 50 filters of size 5� 5 (5 types of time series
vcn;vsasa;vot ;vct ;vhbf g), a 1D pooling layer of size 2 that maximizes
feature-map regions and the following layers. In the 1D case, we
replaced the 2D convolution filters with 1D filters of size 3. Simi-
larly, two dropout layers, one after the pooling layer and the other
after the densely connected layer, were inserted to mitigate the
overfitting problem. The optimizer, loss function, class weights,
dropout ratio and activation functions for training were set the
same as aforementioned.

The third model is the recurrent neural networks (RNNs) where
the activation of hidden/output neurons is determined by both the
current and earlier inputs (time-varying behavior), thus perfectly
designed for time-series features. RNNs are extremely useful in
speech recognition [17]. Basic RNNs organize neuron-like nodes
into successive layers, with each node having a time-varying acti-
vation. Unfortunately, RNNs suffer from short-term memory and
the vanishing gradient problem during back propagation. Long
short-term memory (LSTM) has been broadly incorporated as a
solution to the short-term memory. LSTM uses gates to regulate
the flow of information, which can deliver relevant information
along the sequences to make prediction. Specifically, in an LSTM
cell its state carries the relevant information throughout the pro-
cessing of the sequences, and it adds information to the state or
removes from it via different gates. Three types of gates, namely
the forget gate, input gate and output gate, are used in an LSTM
cell. A forget gate gforget decides what memory (previous hidden
state c t � 1ð Þ) to keep or forget. An input gate gin handles the
new coming information ĉ tð Þ and decides how much to memorize
it. The cell state c tð Þ is then defined as the combination of the
remaining memory and the processed new information. The out-
put gate gout then decides the next hidden state. Practically, many
LSTM cells will be used in an application, and the network can be
summarized as follows,

C tð Þ ¼ gforget � C t � 1ð Þ þ gin � bC tð ÞbC tð Þ ¼ tanh W � x tð Þ þ V � h t � 1ð Þð Þ
h tð Þ ¼ gout � tanh C tð Þð Þ
y tð Þ ¼ h tð Þ

8>>>><>>>>: ð12Þ

where C tð Þ denotes the overall state of many LSTM cells,
gforget; gin;gout

� �
are the gates to regulate different LSTM cells, �

means pointwise multiplication, and x tð Þ;h tð Þ and y tð Þ represent
the input, hidden state and the output respectively. tanh is the acti-
vation function for the new coming information and the hidden
state. The gates gforget;gin;gout

� �
are normally controlled by the cur-

rent input x t � 1ð Þ, the previous hidden state h t � 1ð Þ and the sig-
moid activation function. For RNNs in this work, we simply set
the number of hidden units in the LSTM cell as 50 and collected
the hidden state outputs for each time step in the LSTM. To avoid
overfitting, dropout layers between recurrent layers were embed-
ded. LSTM is then followed by a feature-flattening layer and an out-
put layer. Parameters like optimizer, loss function, class weights,
dropout ratio and activation functions for training were similarly
selected as earlier. In addition, we also attempted to combine
CNN and RNN models. CNNs are good at learning the spatial struc-
ture in the inputs, and we applied convolutional layers to extract
invariant features of the time-series data before feeding them into
an LSTM layer. Here 1D convolutional and max pooling layers were
used, with all the other parameters set the same as above.

2.4.2. Prediction based on energy estimation
Based on MD simulations, computational estimation of binding

free energies can be used to uncover the mutation impacts on
protein-ligand binding affinity [53,32,52]. The assembly of molec-
ular mechanics (MM) energies, Poisson-Boltzmann (PB) or general-
ized Born (GB) models, and surface area (SA) continuum solvation
yields popular MM/PBSA or MM/GBSA method to estimate the free
energy of binding of a ligand to a protein [12]. In these methods,
the free energy G of a state is estimated as follows.

G ¼ EMM þ Epolar
solv þ Enonpolar

solv � TS ð13Þ
where EMM is the MM energy term contributed by bonded, electro-

static and van der Waals interactions. Epolar
solv and Enonpolar

solv are the polar

and non-polar contributions to the solvation free energies. Epolar
solv can

be estimated by the PB equation or the GB model [12]. The non-
polar contribution is typically obtained based on the SASA. T indi-
cates the temperature of the system and S is the entropy contribu-
tion, which is frequently ignored because of its high computational
cost. Additionally, for similar systems like a WTP and its mutant,
such contributions can be quite similar and therefore ignored. It is
common to only simulate the dynamics of the protein-ligand com-
plex (PL) and extract the dynamics of free ligand (L) and protein (P)
respectively, leading to the estimation of the free energy of binding

DGbind as Eq. (12), where �iPL
	

indicates the energies are averaged
from the simulation of the complex.

DGbind ¼ GPL � GL � GPiPL
	 ð14Þ

To predict the mutation impacts on protein-ligand binding
affinity, we computed the difference of binding free energy
between each pair of WTP-ligand and mutant-ligand complexes
(Eq. (13)). As a largely negative binding free energy indicates a
higher affinity, a negative difference represents type I and other-
wise type D. MM/PBSA or MM/GBSA calculates relative binding
free energies with the ignorance of conformational rearrangement
upon binding, therefore considering the sign of the difference
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DGmt�l � DGwtp�l instead of the value can compromise on the dis-
crepancy among different pairs of WTP-ligand and mutant-ligand
systems.

y ¼ I; if DGmt�l � DGwtp�l < 0
D; otherwise



ð15Þ
2.4.3. Prediction based on molecular descriptors
Molecular descriptors, which play an important role in chemin-

formatics and bioinformatics, are a potential alternative for deduc-
ing the affinity change upon mutation. For chemical structures,
commonly used structural and physicochemical descriptors
include constitutional descriptors [1], topological descriptors
[1,8], Kappa shape indices [18], charge descriptors [10], Basak
information indices [2], autocorrelation descriptors [9], etc. Those
for proteins and peptides incorporate amino acid composition
descriptors [29], composition, translation and distribution (CTD)
of various structural and physicochemical properties [11], autocor-
relation descriptors [55], pseudo amino acid composition descrip-
tors [6,37], etc. Chemical-protein interaction descriptors can be
defined on top of these chemical and protein descriptors by a sim-
ple concatenation or tensor product [10].

We attempted to decode the mutation impacts on protein-
ligand binding affinity from the perspective of molecular descrip-
tors. A number of widely-used descriptors for the ligands and pro-
teins were employed in this study. For ligands, the following
descriptors were adopted.

� Constitutional descriptors (const): 30 features including molec-
ular weight, average molecular weight, count of all atoms,
counts of different types of atoms (hydrogen, halogen, Carbon,
nitrogen, etc.), number of rings, number of different types of
FTP1 ¼ Fmt � Flig ;Fwtp � Flig
� �

where
Fmt � Flig ¼ F kð Þ ¼ Fmt ið Þ � Flig jð Þ; i ¼ 1; . . . ; npro; j ¼ 1; . . . ;nlig ; k ¼ i� 1ð Þ � npro þ j

� �
Fwtp � Flig ¼ F kð Þ ¼ Fwtp ið Þ � Flig jð Þ; i ¼ 1; . . . ;npro; j ¼ 1; . . . ;nlig ; k ¼ i� 1ð Þ � npro þ j

� �( ð18Þ
bonds (rotatable, single, aromatic, etc.), number of hydrogen
bond acceptors/donors and molecular path counts (length of
1 	 6). The full list can be found in [10]).

� Kappa shape indices (kappa): 7 features including first-, second-
and third-order topological shape descriptors, Kier molecular
flexibility index, and first-, second- and third-order Kier
alpha-modified shape descriptors [51].

� Topological descriptors (top): 30 topological features including
(average) Weiner index, Balaban’s J index, Schiultz index, graph
distance index, Xu index, Pogliani index, Ipc index, BertzCT,
Gutman molecular topological index, Zagreb index with order
1 	 2, quadratic index, topological indices proposed by Narumi,
Harary number, Platt number, Polarity number, maximum
value in distance matrix, topological radius and topological
Petitjean [10]).

For proteins and peptides, we calculated the following descrip-
tors based on the sequences.

� Amino acid composition descriptors (aacomp): 20 features indi-
cating the fractions of each type of amino acid in the whole pro-
tein sequence.
� CTD descriptors (ctd): 147 features. The amino acids are first
encoded according to each of the attributes including
hydrophobicity, normalized van der Waals volume, polarity,
polarizability, etc. For each encoded class, the composition
(fractions in the whole sequence), transition (frequency of being
neighbors to another encoded class) and distribution (quantile-
based) descriptors can be calculated [11]).

� Type 1 pseudo amino acid composition descriptors (paacomp):
50 features. On the basis of normalized attribute values (hy-
drophobicity, hydrophilicity, side chain mass, etc.) of each type
of amino acids, a set of sequence order-correlated factors (first-
tier, second-tier, . . . ; k-tier) can be calculated. The pseudo amino
acid composition descriptors can be derived depending on such
factors, the normalized frequency of amino acids and some
weight factors (w) for the sequence-order effect [6]. Default
parameters in [10] were used in our study.

Depending on sequential information or structural topology,
these descriptors are invariant to structural deformation. Based
on each pair of descriptors respectively for the ligands and pro-
teins, we can construct several mutational interaction descriptors
(MIDs) to characterize the protein-ligand binding affinity change
upon mutation. As an example, using the constitutional descriptors
for the ligands (Flig ¼ Flig ið Þ; i ¼ 1; . . . ;nlig

� �
) and the amino acid

composition descriptors for the proteins (wtp: Fwtp ¼ Fwtp ið Þ; i ¼�
1; . . . ;nproÞ and mutant: Fmt ¼ Fmt ið Þ; i ¼ 1; . . . ;npro

� �
) leads to the

following types of MIDs.

FC1 ¼ Fmt; Fwtp;Flig

� � ð16Þ

FC2 ¼ Fmt � Fwtp;Flig

� � ð17Þ
FTP2 ¼ Fmt � Fwtp
� �� Flig ð19Þ

We also trained RFs to deal with such MIDs and evaluated
the performance using the accuracy and balanced F1 score (9).
For a given pair of descriptors (such as const for ligands and aa-
comp for proteins), we only reported the best performance
among the four types of MIDs (Eqs. (16)–(19)). Additionally,
we combined all descriptors for the liand (const, kappa and
top) and those for the proteins (aacomp, ctd and paacomp), for
a further prediction.
3. Results

3.1. Collected data

110 protein mutations, corresponding to 160 wildtype or
mutant proteins in PDB, passed this filter. The statistics for these
mutations are presented in Supplementary Table S1. Among them,
94 are single-point mutations and the rest double- or multi-point
mutations. Majority of the proteins belong to classes of oxidore-
ductase (54), hydrolase (25), transferase (9) and plasma protein



Fig. 3. Statistics of mutations. (a) Lengths of mutant proteins that cause a decreased ligand-binding affinity or an increased one. (b) Organisms where the proteins belong. (c)
The density of the mutations inducing an absolute affinity fold change (jfcj) larger or equal to a threshold (t). Results for t ¼ 1:05; t ¼ 1:2; t ¼ 2 and t ¼ 3:6 have been further
marked.
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(9). A wide range of organisms are involved, belonging to animalia
kingdom (58, including human), viral (26), bacterium (19), protist
kingdom (4) and fungi kingdom (2). As affected by the mutations,
85 mutants had decreased binding affinities (D) with the associ-
ated ligands compared to the WTPs, and 25 ones corresponded to
increased affinities (I). For these two groups of mutations, statistics
on the lengths of proteins and the organisms where the proteins
belong are presented in Figs. 3a and 3b. A further investigation of
the affinity changes was conducted in case of trivial changes. Gen-
erally, protein-ligand affinities are experimentally measured by

inhibitor constant (Ki), and Ki can be associated to DGbind via

DGbind ¼ RTln Ki
C (R: ideal gas constant, T: temperature, C: quotient

of activity coefficients). A smaller Ki indicates a higher binding
affinity. Considering the WTP-ligand and mutant-ligand affinities

(Awtp�l and Amt�l), the fold change fc ¼
� Amt�l

Awtp�l
Awtp�l < Amt�l

Awtp�l

Amt�l
otherwise

(
can

be used to evaluate the affinity change, where a value > 1 repre-
sents an increased affinity and a value < �1 an decreased affinity.
The density of the mutations inducing an absolute affinity fold
change larger or equal to a threshold (Pjfcj>¼t) is shown in Fig. 3c,
where we can see that 98.2% mutations have induced >¼ 5% affin-
ity changes (t ¼ 1:05) and 86.4% mutations >¼ 100% affinity
changes (t ¼ 2). This guarantees that the majority of our mutation
samples correspond to nontrivial affinity changes.

3.2. MD simulations with verification of the equilibration

For each WTP-ligand or mutant-ligand system, the explicit-
solvent MD simulations were implemented. For each solvated
Fig. 4. Equilibration verification of several protein-ligand systems using backbone RMSD
both the wildtype protein (WTP)-ligand and mutant-ligand systems are displayed. (a) Mu
length: 99). (b) 1J3K (mutant-ligand, protein length: 231) and 1J3I (WTP-ligand, protein
protein length: 329).
and neutralized system, we carried out a short minimization,
heated the system to the experimental temperature, equilibrated
the system at constant pressure, and implemented a production
simulation that produced the trajectory for analysis. To guarantee
reliable production simulations, we investigated the backbone
RMSD curves of the protein-ligand systems, referring to their start-
ing structures. Fig. 4 shows the backbone RMSD curves, at an inter-
val of 2 ps in the equilibration period, of several examples. As
presented in Fig. 4, equilibration of these systems can be verified
by the stable RMSD curves, and mutant-ligand systems mostly
have a larger RMSD than WTP-ligand systems. For computational
loads, a solvated complex comprising a protein of 311 residues
and a ligand in explicit solvent costed 2.65 h for running a 2 ns pro-
duction simulation on our server (NVIDIA Tesla K40c GPU).

3.3. Local geometrical features for characterizing protein-ligand
binding affinity change upon mutation

Based on a number of local geometrical features including
closeness, SASA of ligand-binding site, orientation, contacts and
interfacial hydrogen bonds, we characterized the difference
between each pair of WTP-ligand and mutant-ligand systems using
average difference, trajectory-wise distance and difference trajec-
tory (Section 2.3.2). For the two groups of mutations (D and I),
the distributions of the features extracted as average differences
are presented in Fig. 5a. Upon mutations, the average closeness dif-
ferences in group I are slightly higher than those in group D, indi-
cating that the increase in closeness from the WTP-ligand systems
to the mutant-ligand systems is higher in group I. Upon mutations,
group I has a lower negative average difference in binding-site
curves referring to their starting structures. RMSD curves at an interval of 2 ps of
tant-ligand: PDB ID of 2IEO (protein length: 99), andWTP-ligand: ID of 2IEN (protein
length: 233). (c) 1E2L (mutant-ligand, protein length: 329) and 1E2K (WTP-ligand,



Fig. 5. To characterize the affinity change upon mutation, difference between each pair of WTP-ligand and mutant-ligand systems was quantified by local geometrical
features (closeness, surface area of binding site, orientation, contacts and interfacial hydrogen bonds) extracted from the molecular dynamics (MD) trajectories of the
systems. Feature distributions for the two mutation impacts, decreased affinity (D) and increased affinity (I), are shown. Panel (a) shows the differences in each feature
averaged over all the MD structural snapshots for each mutation. Panel (b) shows the trajectory-wise Euclidean distance based on each feature for the mutations. Panel (c)
shows the time-vary differences in each feature during the 2 ns-simulation, averaged in each mutation group.
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SASA than group D, implying more buried area from the WTPs to
their mutants in group I than that in group D. The tendency in aver-
age orientation differences is not clear enough. Considering the
more negative values in group I, mutant-ligand complexes have a
more equilibrated orientation compared to the WTP-ligand sys-
tems in group I than those in group D. In addition, group I has a
lower average difference in overall contacts but a higher average
difference in interfacial hydrogen bonds (effective contacts), sug-
gesting hydrogen bonds may be more useful than the total contacts
in this prediction.

Besides, the trajectory-wise feature distance between each pair
of mutant-ligand and WTP-ligand systems was computed to quan-
tify their discrepancy. Distance metrics, including Euclidean, corre-
lation, cosine and DTW, were investigated and the scenario for
Euclidean distance is displayed in Fig. 5b (the rest scenarios are
presented in Supplementary Fig. S1). Similar as above, the ten-
dency in Fig. 5b seems weaker. Considering the larger span of val-
ues and a higher median in group D, it may indicate a larger
orientation adjustment from the WTP-ligand systems to the
mutant-ligand systems in this group. Simply considering the medi-
ans only, all the remaining features are similarly distributed as
those in the earlier scenario. Here the distance calculated between
two systems lacks of an explicit order (from the mutant to the WTP
or the opposite), which may be a potential aspect for further
refinement.

Apart from above conventional features, time-varying feature
differences between the WTP-ligand and mutant-ligand systems
were extracted as well. For the two mutation groups (D and I),
we averaged such time series and now present them in Fig. 5c.
Except for the orientation differences whose tendency is not clear
enough, the others are consistent with those observed in the previ-
ous scenarios.

3.4. Prediction results of mutation impacts on protein-ligand
binding affinity

We predicted the mutation impacts on protein-ligand binding
affinity using machine-learning methods in three scenarios. In all
these scenarios, we adopted a simple train-test mechanism with
a random selection of half samples for training. After standardizing
the features, we repeated the experiments 10 times based on dif-
ferent classification machines and averaged the performance for
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evaluation. Evaluation was based on the overall accuracy and bal-
anced F1 score. Energy-based prediction (MD simulation-
dependent) and descriptor-based prediction were also performed
as benchmarks. Both MM/PBSA and MM/GBSA protocols for the
energy calculations were employed. As descriptors for affinity
change upon mutation, MIDs (Eqs. (16)–(19)) were constructed
based on descriptors for ligands and proteins (lig:const, pro:aa-
comp; lig:kappa, pro:aacomp; lig:top, pro:aacomp; lig:const, pro:ctd;
lig:kappa, pro:ctd; lig:top, pro:ctd; lig:const, pro:paacomp; lig:kappa,
pro:paacomp; lig:top, pro:paacomp or lig:all, pro:all), and handled
Fig. 6. Performance evaluation of predicting mutation impacts on protein-ligand binding
score. Results from the estimation of binding-free-energy difference and from the predict
predictions, MM/PBSA and MM/GBSA methods were employed for estimating the bindin
ligands (Constitutional descriptors (const), Kappa shape indices (kappa) and Topologic
Composition, translation and distribution descriptors (ctd) and Type 1 pseudo amino acid
mutational interaction descriptors were constructed by concatenations or tensor produ
method characterized protein-ligand binding affinity change upon mutation by several lo
site, orientation, contacts and interfacial hydrogen bonds) and monitored such feature di
number of machine-learning methods were adopted for prediction of mutation impact. (a
or trajectory-wise distances between each WTP-ligand and mutant-ligand systems. Dista
(DTW) were considered. (b) Hidden Markov models (HMMs)-based predictions accordin
each of the five local geometrical features. (c) Prediction according to multiple time-seri
deep neural networks. These neural networks include multilayer perceptron (MLP), co
convolutional layers, recurrent neural networks (RNNs) with long short-term memory (
by RFs (same setting as above). The best performance on different
MIDs (Eqs. (16)–(19)) for each descriptor combination was
reported.

In the first scenario, conventional features, which were
extracted as the average difference between each pair of WTP-
ligand and mutant-ligand systems or as the trajectory-wise
distance between them, were handled by RFs. 50 trees with the
maximum depth of 2 were employed in RFs. The performance is
now shown in Fig. 6a. Comparing these conventional features,
the best performance corresponds to those extracted as
affinity. Performance was evaluated based on the overall accuracy and balanced F1
ion based on molecular descriptors are provided as benchmarks. In the energy-based
g free energy. In the descriptor-based predictions, generally used descriptors for the
al descriptors (top)) and proteins (Amino acid composition descriptors (aacomp),
composition descriptors (paacomp)) were adopted. On top of these descriptors, the
cts, and used for the prediction of mutation impact by random forests (RFs). Our
cal geometrical features (closeness, solvent accessible surface area (SASA) of binding
fferences upon mutation in the molecular dynamics (MD) simulations, after which a
) RF-based predictions according to the features extracted as the average differences
nce metrics of the Euclidean, Pearson correlation, cosine and dynamic time warping
g to single time-series (STS) features, extracted as the time-varying differences in
es (MTS) features (based on all of the five local geometrical features) by shallow or
nvolutional neural networks (CNNs) with 2D convolutional layers, CNNs with 1D
LSTM) cells, and neural networks composed of CNNs and LSTM (CNN-LSTM).
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trajectory-wise cosine distance (accuracy: 0.8, balanced F1 score:
0.650). Using such conventional features generally resulted in a
better accuracy than energy-based prediction (MM/GBSA: 0.581,
MM/PBSA: 0.505) while a lower or comparable balanced F1 score
(MM/GBSA: 0.667, MM/PBSA: 0.606). Additionally, it underper-
formed the descriptor-based prediction in both accuracy and
balanced F1 score (best descriptor-based prediction: lig:kappa,
pro:paacomp; accuracy: 0.846, F1 score: 0.670). Although the
prediction depending on average difference or trajectory-wise
distance was barely satisfactory, they can still provide some clues
on the importance of involved local geometrical features in the
prediction, which can be quantified by a tree ensemble like RFs.
Here we used the best performer (trajectory-wise cosine
distance + RF) to measure the relative importance of these features.
As shown in Fig. 7a, SASA of the binding site has the highest impor-
tance in this prediction, followed by interfacial hydrogen bonds,
contacts, orientation and closeness. In this prediction, we imposed
a relatively stringent threshold (3Å) on the contacts features. To
further investigate the effects of thresholds on such features, we
measured the importance of contacts features extracted based on
different thresholds (3 Å to 7 Å) using the best performer
(Fig. 7b). It partly shows a higher importance of closer protein-
ligand contacts in such prediction.

Single time-series features outputted as the time-varying differ-
ence upon mutation in the MD simulations were considered in the
second scenario. HMMs were applied with the number of hidden
states set as 3, the emissions assumed to be Gaussian, and the
model parameters randomly initiated and trained using the
Baum-Welch algorithm. Concerning the five time-series features
generated based on the local geometrical features, the prediction
performance is shown in Fig. 6b. Similar as in the first scenario,
combining single time-series features and HMMs failed to refine
the balanced F1 score. The best performance was derived when
employing the time-series contacts differences, corresponding to
an accuracy of 0.764 and a balanced F1 score of 0.586. This failed
to mitigate the imbalanced classification problem; therefore, we
combined all the time-series features and attempted to handle
them using deep-learning techniques in what follows.

In the third scenario, we combined all the time-series features
as two-dimensional features and employed shallow or deep neural
networks to predict the mutation impacts. The binary cross-
entropy loss function and Adam optimizer were used in each train-
ing process, and a higher class-weight was assigned to the minority
Fig. 7. Feature importance evaluated by the random forest model, with the features extr
features. (a) The relative importance of five local geometrical features was evaluated
(3 Å;4 Å;5 Å;6 Å;7Å), was evaluated.
class (I) to balance the samples. MLP with a feature-flattening
layer, a densely connected layer (50 hidden nodes, ReLU activa-
tion), a dropout layer (ratio of 25%) and an output layer (sigmoid
activation) was first constructed. We then applied CNNs with a
2D (5� 5) or 1D (3� 1) convolutional layer, a 1D max pooling
layer (2� 1), a dropout layer, a densely connected layer, a dropout
layer and an output layer. The other parameters were similarly
assigned. Additionally, RNNs with LSTMwere assembled to process
the time-series features. The LSTM model contains recurrent LSTM
layers (50 hidden units, combined outputs for each time step),
dropout layers between the recurrent layers, a feature-flattening
layer, a densely connected layer and an output layer. Lastly, we
assembled an CNN-LSTM model that is composed of a 1D CNN part
and an LSTM part for the prediction, with all the other parameters
set the same as above. The prediction performance is now shown
in Fig. 6c. Aside from the shallow neural networks (MLP), all the
other deep learning models improved both the accuracy
(0.820 	 0.836) and balanced F1 score (0.683 	 0.738), compared
to the energy estimation methods. Compared to the descriptor-
based predictions (best performance: lig:kappa, pro:paacomp, accu-
racy: 0.846, F1 score: 0.670), these deep learning models improved
the balanced F1 score (0.683 	 0.738). Especially for the LSTM
model, the best performance (accuracy: 0.820, balanced F1 score:
0.738) was obtained, guaranteeing its capacity for analyzing such
time-series data. CNNs resulted in a slightly weaker performance
(in balanced F1 score), which is due in part to the lack of spatial
structures of our input data.
4. Discussion

4.1. Sampling frequency in MD simulations

In our study, the trajectory frames were collected every 2 ps in
the MD simulations for feature extraction. Here, we investigated
whether the sampling frequency of trajectory frames will influence
the prediction performance. Specifically, based on the multiple
time-series features (Section 2.3.2) and LSTM model, we used dif-
ferent sampling frequencies (per 2;4; . . . ;50ps) for collecting tra-
jectory frames. The prediction results corresponding to different
sampling frequencies are plotted in Fig. 8, where a gradual decline
of performance is exhibited and a higher sampling frequency (such
as < per 10 ps) should be used to guarantee a fair performance.
acted as trajectory-wise Cosine distances upon mutation based on local geometrical
. (b) The relative importance of contacts features, based on different thresholds



Fig. 8. Investigation of how the sampling frequency of trajectory frames in MD
production simulations influences the prediction performance. Features were
extracted as multiple time series based on the local geometrical features and MD
trajectories. Prediction was conducted using the long short-term memory (LSTM)
model, and the performance was evaluated by accuracy and balanced F1 score.
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4.2. Duration for MD simulations

Due to the large-scale calculations imposed by the group of
protein-ligand systems, we performed a 2 ns-simulation on each
system in this study. In order to explore the influence of simulation
times on the extracted affinity features and the prediction, we
tested a number of systems with different simulation times
(2 ns, 10 ns, 20 ns, 30 ns, 40 ns and 50 ns). 1000 frames were col-
lected from each simulation at fixed intervals. The distributions of
the five local geometrical features during these simulations have
been presented in Fig. 9. Fig. 9a shows the feature distributions
for the protein-ligand system labeled as 1BV9 (PDB ID). For 1BV9,
the distributions of the five local geometrical features in the simu-
lations with different durations possess minor differences (slightly
wider or thinner spans of values), while they share quite similar
quantiles. 2IEN in Fig. 9b and 1J3K in Fig. 9c are analogous to
1BV9. For 1E2K in Fig. 9d, the contacts features in the 2 ns-
similation and the interfacial-hydrogen-bond features in the
40 ns-simulation differ more from the remaining simulations.
Accordingly, it is difficult to decide a ‘proper’ simulation time for
the systems. However, considering the similar feature distributions
in these simulations and the efficiency of large-scale calculations,
we recommend simulations of 2 	 10ns when facing a large num-
ber of systems. On the other hand, rapider MD simulations with
the implicit-solvent model can be an alternative when involving
larger scale calculations, but with some compromise on the accu-
racy [59].
4.3. The availability of mutant structures

To further test our method, another data set was compiled from
[19]. In [19], Hauser and co-workers have proposed a physics-
based potential for calculating alchemical free-energy, which facil-
itated the prediction of how mutations modulate inhibitor affini-
ties to Abl kinase (a primary therapeutic target in chronic
myelogenous leukemia). This data set (Abl-mut for short) differs
from Platinum with respect to data integrity (most of the mutant
structures in Abl-mut have not been experimentally resolved while
the mutations we examined in Platinum were all structurally avail-
able for the WT/mutant proteins), variety of data (Abl-mut merely
concers Abl kinase proteins while Platinum involves a variety of
proteins), experimental measurements of affinity (IC50 for Abl-
mut while binding constants Kd/Ki for Platinum) and prediction
labels (the sign of DDG was considered in the study of Platinum
while a threshold of 1.36 kcal mol�1 for DDG was used in Abl-mut
to classify the mutations into susceptible or resistant). In total,
Abl-mut consists of 144 mutation-inhibitor systems, regarding
eight kinase inhibitors (axitinib, bosutinib, dasatinib, imatinib,
nilotinib, ponatinib, gefitinib and erlotinib) and 31 clinically identi-
fied point mutations [19]. Due to the lack of experimental struc-
tures of Abl mutants and mutant-inhibitor complexes, techniques
such as homology modeling (with an experimentally-resolved
template structure) and docking (without a template) were fre-
quently involved in the preparation of the work in [19]. Since our
work is highly dependent on complex structures, we only retained
the 131 mutation-inhibitor systems each with a structural tem-
plate in order to minimize the interventions (only homology model
required) in the data preparation, and docking-based systems (Abl-
gefitinib and Abl-erlotinib) were pruned. The re-compilation of this
subset includes the following steps.

� Refining the template structures. The experimental X-ray struc-
tures of the WT Abl-inhibitor complexes were collected from
PDB as the template structures for mutant-inhibitor systems
(Abl-axitinib: 4WA9 (chain B), Abl-bosutinib: 3UE4 (chain A),
Abl-dasatinib: 4XEY (chain A), Abl-imatinib: 1OPJ (chain B),
Abl-nilotinib: 3CS9 (chain A), Abl-ponatinib: 3OXZ (chain A))
[4]. The residue indexes were standardized to a convention that
places the Thr gatekeeper residue at position 315. Shared resi-
dues at positions 233 	 500 of these templates were remained
as therefore no intervention is required (e.g. homology model-
ing). Missing residues of the Abl-dasatinib structure were mod-
eled according to PDB2GQG (both kinases in active
conformations) instead of PDB3IK3 (inactive conformation)
used in [19]. Similarly, Abl-nilotinib structure was filled using
PDB3IK3 (both kinases in inactive conformations) and Abl-
ponatinib was modeled based on PDB3OY3 (both kinases in
inactive conformations).

� All Abl mutant structures were computed based on above tem-
plates using comparative modeling protocols in Rosetta [47].
Rosetta DDG monomer application [24] was performed to score
mutant thermostability by calculating the folding free energy
differences between the WTPs and mutants. In such modeling,
high-level precision protocol (all atoms with backbone flexibil-
ity) and pre-minimizations were adopted. Remaining parame-
ters were set as default.

� H++ was employed to protonate these structures and add miss-
ing hydrogen atoms for them with pH = 7.0. Then the proto-
nated proteins were capped with acetyl group at the N
terminus and amide residue at the C terminus, and were aligned
to the templates to form the complexes with the inhibitors.

Similarly as in Section 2.2, 2-ns explicit-solvent MD simulations
of the Abl-inhibitor systems were conducted after energy mini-
mization and equilibration of the systems. 1000 trajectory frames
were collected for each system. Subsequently, we characterized
the mutation-induced local geometrical differences (Section 2.3)
and applied machine-learning models (Section 2.4.1) for classifying
the mutations into susceptible or resistant (threshold of 1.36 kcal

mol�1 for DDG). The best performers in energy-based (MM/GBSA,
Sections 2.4.2) and descriptor-based predictions (lig:kappa, pro:-
paacomp, Sections 2.4.3) were performed for comparisons. Differ-
ent from our main data set, Abl-mut only concerns the Abl kinase
protein and therefore has a simpler structure. Simpler parameter
setting, such as that the number of trees in RFs and the size of neu-
ral network layers were tuned from 10 to 20, was adopted to avoid
overfitting. The weights of the two classes were set as 1:4 (nega-
tive:positive) during training, as Abl-mut has lesser positive sam-
ples than the main data set (1:2). The prediction results are
presented in Fig. 10a. Aside from MM/GBSA (accuracy of 0.55),



Fig. 9. Investigation of how the MD simulation time influences the extracted local geometrical features using a number of protein-ligand systems. The distributions of the
features in the MD simulations (durations of 2 ns, 10 ns, 20 ns, 30 ns, 40 ns and 50 ns) for several systems are displayed. Panel (a) shows the feature distributions for the
systemwith a PDB ID of 1BV9 (protein length: 99). Panel (b) shows scenario for 2IEN (protein length: 99). Panel (c) shows the scenario for 1J3K (protein length: 231). Panel (d)
shows the scenario for 1E2K (protein length: 329).
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the descriptor-based predictions and the machine-learning-based
predictions both achieved an accuracy greater than 0.8. Due to fac-
tors such as the ignorance or underestimation of the entropy con-
tributions in free energy calculations, using a specific labeling
threshold for the absolute binding free energy can be a huge chal-
lenge to MM/GBSA, which induces the deficiency of such methods
in this prediction scenario. Compared to the descriptor-based pre-
dictions, predictions based on our method achieved slightly better
performance in balanced F1-score, with the best performer of CNN-
LSTM (accuracy: 0.841, balanced F1 score: 0.500). This indicates
the potential of machine-learning techniques in such prediction
scenarios. However, the overall performance is still not satisfying
enough, which may be largely due to the deficiency of initial
mutant structures and the inaccuracy of structure-modeling pro-
cesses. In future studies, collecting more quality data will always
be an important task to refine our method. Since 1.36 kcal mol�1

was used as the labeling threshold in [19], which seems arbitrary,
we additionally tested the effects of different labeling thresholds
on the prediction performance. A series of thresholds (�1.36, �1,
�0.5, 0, 0.2, 0.4, 0.6, 0.8, 1, 1.18, 1.36) were adopted, and the
performance of LSTM (parameters: 15 epochs, 15 LSTM units, 15
nodes in the densely-connected layer and class weights of 1:4)
on the time-varying local geometrical features was examined.
The results are now displayed in Fig. 10b. As shown in Fig. 10b,
the balanced F1-score fluctuates slightly, while the accuracy
depends heavily on the labeling thresholds (valley: 0.2). It may
imply that highly resistant samples such as those determined by

a labeling threshold of 1.36 kcal mol�1 (corresponding to a 10-fold
change in IC50 affinity [19]) and highly susceptible samples defined
by a lower labeling threshold are more predictable in this data set.



Fig. 10. Performance evaluation of predicting mutation impacts on protein-ligand binding affinity for the Abl-mut data set. Performance was evaluated based on the overall
accuracy and balanced F1 score. (a) Results of our method, which uses machine-learning techniques to monitor the time-varying local geometrical feature differences upon
mutation in the molecular dynamics (MD) simulations, are displayed. Shallow or deep neural networks include multilayer perceptron (MLP), convolutional neural networks
(CNNs) with 2D convolutional layers, CNNs with 1D convolutional layers, recurrent neural networks (RNNs) with long short-term memory (LSTM) cells, and neural networks
composed of CNNs and LSTM (CNN-LSTM) were used. Results from the estimation of binding-free-energy difference (MM/GBSA) and from the prediction based on molecular
descriptors (Kappa shape indices (kappa) for ligands and Type 1 pseudo amino acid composition descriptors (paacomp) for proteins, and random forests (RFs) for predictions)
are provided for comparisons. (b) Evaluation of the effects of different labeling cutoffs on the prediction performance. Prediction performance was evaluated based on LSTM.
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4.4. pH-dependence and protonation states in protein-ligand binding

Practically, all biological processes in different compartments of
the cell are pH-dependent, and macromolecules normally maintain
specific pH-dependent characteristics to function properly and
interact with the partners [50]. The pH-dependence in receptor-
ligand interactions is principally due to the protonation-state
changes of some titratable groups (with unusual pKa’s) upon bind-
ing, which may involve proton uptake/release [41]. These protona-
tion states must be properly predicted prior to or after binding,
which can be accomplished accurately with the unbound or com-
plex structures provided and with the pH of binding known. How-
ever, the modeling becomes more complicated if the unbound or
complex structures are not available or if the pH of binding is
unknown (frequently true). Additionally, predicting the protona-
tion states during the binding process, involving factors such as
binding-induced conformational changes, becomes much more
complicated. We focused on characterizing the bound protein-
ligand complexes in their MD simulations, and therefore the
changes of protonation states upon binding were not considered
here. For accurately assigning the protonation states to the bound
complexes, we employed H++ [15] based on the experimental pH
values in the Platinum database. For any experiment with a non-
specific pH value, a default value of 7.0 was used. For these exper-
iments, such setting may affect the assignments of protonation
states to the complexes, which may also downgrade our following
prediction performance. As a potential refinement of our work,
non-standard MD simulations, such as those based on constant-
pH protocols [36], can be explored to more carefully monitor the
protonation-state changes of titratable groups during the
dynamics.

5. Conclusion

In this paper we have described our study on predicting the
impacts of mutations on protein-ligand binding affinity based on
MD simulations and local geometrical features. Different from
many computational studies in this field that lack of experimental
validation, we initiated our study based on consolidated databases
of experimentally determined data (from Platinum and PDB). For
evaluating affinity change upon mutation, we measured the fea-
ture differences between each pair of WTP-ligand and mutant-
ligand systems in their dynamics simulations. Such differences
were quantified according to average difference over all structural
snapshots, trajectory-wise distance or time-vary differences. For
the resulting conventional or time-series features, we employed
a number of machine-learning methods to predict the impacts of
mutations. Compared to the benchmark performances yielded by
the energy estimation and by the molecular-descriptor investiga-
tion, our method induced an improved balanced F1 score while
sustained the accuracy. Especially, deep-learning (LSTM) models
well handled the extracted time-series features, resulting in the
best prediction performance in balanced F1 score. This highlights
the effectiveness of the extracted features and the deep-learning
techniques in this problem.

In future studies, more efficient methods to evaluate the
protein-ligand binding affinity and to longitudinally analyze such
affinity measures in molecular dynamics will be explored. Addi-
tionally, sophisticated strategies such as generative models for
mitigating the imbalance of samples will be investigated. Overall,
such studies will contribute to a better understanding of the
protein-ligand recognition and of the role of missense mutations
in genetic diseases and the emergence of drug resistance.
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