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BACKGROUND: There is now good evidence that events during gestation significantly influence the developmental well-being of
an individual in later life. This study aimed to investigate the relationships between intrauterine growth trajectories determined by
serial ultrasound and subsequent markers of adiposity and inflammation in the 27-year-old adult offspring from the Raine Study, an
Australian longitudinal pregnancy cohort.

METHODS: Ultrasound fetal biometric measurements including abdominal circumference (AC), femur length (FL), and head
circumference (HC) from 1333 mother-fetal pairs (Gen1-Gen2) in the Raine Study were used to develop fetal growth trajectories
using group-based trajectory modeling. Linear mixed modeling investigated the relationship between adult body mass index (BMI),
waist circumference (WC), and high-sensitivity C-reactive protein (hs-CRP) of Gen2 at 20 (n = 485), 22 (n =421) and 27 (n =437)
years and the fetal growth trajectory groups, adjusting for age, sex, adult lifestyle factors, and maternal factors during pregnancy.
RESULTS: Seven AC, five FL and five HC growth trajectory groups were identified. Compared to the average-stable (reference)
group, a lower adult BMI was observed in two falling AC trajectories: (8 = —1.45 kg/m?, 95% Cl: —2.43 to —0.46, P = 0.004) and
(8= —1.01 kg/m?, 95% Cl: —1.96 to —0.05, P = 0.038). Conversely, higher adult BMI (2.58 kg/m?, 95% Cl: 0.98 to 4.18, P = 0.002) and
hs-CRP (37%, 95% Cl: 9-73%, P = 0.008) were observed in a rising FL trajectory compared to the reference group. A high-stable HC

www.nature.com/ijo

Check for updates

1X

trajectory associated with 20% lower adult hs-CRP (95% Cl: 5-33%, P =0.011).
CONCLUSION: This study highlights the importance of understanding causes of the unique patterns of intrauterine growth.
Different fetal growth trajectories from early pregnancy associate with subsequent adult adiposity and inflammation, which

predispose to the risk of diabetes and cardiometabolic disease.
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INTRODUCTION
Obesity has become a major health problem, with approximately
half of the adults worldwide either overweight or obese in 2016
[1]. Recent data show 53% adults of the European Union (2019)
[2] and 64% from the USA (2017-18) [3] are either overweight or
obese, whilst the prevalence among Australians has increased
from 57% in 1995 to 67% in 2017-18 [4]. The increasing burden of
obesity presents a significant health challenge; clustering of other
atherogenic risk factors including insulin resistance, dyslipidemia,
and hypertension predispose to cardiovascular disease, diabetes,
fatty liver, and premature mortality, while other disabilities
include impaired quality of life, reduced mobility, and mental
health disorders [5, 6]. Along with obesity, chronic low-grade
inflammation has also been postulated in the development and
progression of cardiometabolic disease [7, 8]. High-sensitivity C-
reactive protein (hs-CRP), an acute phase reactant secreted from
the liver, has been shown to be consistently associated with
atherosclerosis [9, 10].

Many genetic and lifestyle factors contribute to the develop-
ment of obesity and cardiometabolic diseases. Early life

determinants may have an important role in programming
metabolic control mechanisms including fetal growth in utero
and subsequently contribute to cardiometabolic risk in the
offspring [11, 12]. Studies of the association between birthweight
and adiposity in children and young adults have shown
inconsistent results. Although a number of studies have shown
a positive linear relationship between birthweight and subsequent
obesity [13-16], very-low birthweight has also been associated
with higher risk of future adiposity, particularly in preterm babies
and those with central adiposity [17-19]. Others have reported a J-
or U-shaped relationship, with higher prevalence of obesity seen
with low as well as high birthweight [20-23].

The role of environmental influences during critical periods of
growth and development on long-term health, including obesity,
was demonstrated by Barker et al in the 1990s [24, 25]. Although
birthweight is routinely used as a surrogate for antenatal growth,
it does not represent a measure of different fetal growth patterns
in utero. Studies of the association between antenatal ultrasound
measures of fetal growth and subsequent obesity [26-29] have
largely relied on fetal anthropometry or estimated fetal weight
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during one or more trimester, but none has examined patterns of
fetal growth throughout gestation.

We have recently reported different intrauterine growth
trajectories derived from ultrasounds from 15 weeks gestation
to birth in the Raine Study, an Australian longitudinal pregnancy
cohort [30]. In particular, restricted fetal head and abdominal
circumference associated with higher adult blood pressure
independent of a range of confounders, including adult adiposity.
As the specific influence of in utero fetal growth patterns on adult
adiposity remains unclear, the present study extends our recent
findings to investigate the relationships between intrauterine
growth trajectories with markers of anthropometry and inflamma-
tion in the young adult offspring from the Raine Study.

METHODS

Study population

The Raine Study is an ongoing multigenerational prospective cohort study
that aimed to recruit 2900 pregnant women between 16-18 weeks of
pregnancy from King Edward Memorial Hospital and nearby clinics in
Perth, Western Australia from May 1989 to November 1991. The study
investigated the effect of ultrasound imaging on pregnancy outcomes, as
described previously [31]. Pregnant women (Gen1) were randomized to an
intervention group that recommended ultrasound imaging at 5 timepoints
(18, 24, 28, 34, and 38 weeks gestation) or a control group with ultrasound
imaging only at 18 weeks unless clinically warranted. The mothers
delivered 2868 live infants (Gen2) who have been followed up
prospectively from birth till 27 years. The current analysis uses Gen2
information available from questionnaires, clinical assessments, and
biochemistry at 20, 22, and 27 years. Written informed consent was
provided by the pregnant women (Gen1) at recruitment and the adult
offspring (Gen2) at 20, 22, and 27 years. The study was approved by the
Human Research Ethics Committees at King Edward Memorial Hospital and
The University of Western Australia.

Gen1 demographic and lifestyle measures during pregnancy
Self-reported questionnaires at 16 and 34 weeks gestation provided
information on Gen1 maternal and paternal socio-demographic character-
istics, including ethnicity, marital status, family income, smoking and alcohol
drinking. Family income was assessed by annual family income at the time of
the first ultrasound scan, low income being < $24 000 (AUS) in 1989-1991.
Pregnancy characteristics including maternal weight and height were
obtained from maternal medical records. Gestational age was determined
from the date of the last menstrual period or by ultrasound estimation at
18 weeks. As gestational weight gain in the 2nd and 3rd trimester associates
with fetal growth and birthweight [32, 33], maternal body mass index (BMI)
was calculated at 16 weeks and weight gain during pregnancy was calculated
between 16 and 34 weeks gestation. Maternal smoking and alcohol drinking
were recorded as dichotomous responses, with a positive response
suggesting consumption either at 16 or 34 weeks or both. Gestational
diabetes was self-reported and recorded by midwives 2 days post-delivery.
Preterm pregnancy was defined as live birth at <37 completed weeks.
Birthweight and length of the offspring were extracted from hospital records.
Hypertension (HTN) in pregnancy was categorized as Uncomplicated-HTN or
Complicated-HTN. Mothers with Uncomplicated-HTN had either a history of
pre-pregnancy HTN or those who developed HTN during pregnancy but
without any evidence of proteinuria or preterm delivery. Complicated-HTN
included mothers who developed HTN during pregnancy plus proteinuria
(>2+ on dipstix) or 300 mg on 24-h urinary protein excretion or preterm
delivery at less than 37 weeks gestation [34]. HTN during pregnancy was
defined as any recording of systolic blood pressure (SBP) > 140 mmHg and/or
diastolic blood pressure (DBP) >90 mmHg [35].

Adult offspring (Gen2) anthropometry & hs-CRP

Body weight was measured using Wedderburn Chair Scales (to the nearest
100g) with participants dressed in light clothes and height using a
Stadiometer (to the nearest 0.1 cm). Waist circumference (WC) was
recorded (to the nearest 0.1cm) using a measuring tape at the halfway
point between the lowest rib and the iliac crest. hs-CRP was measured by
an immunoturbidimetric method on an Architect c16000 Analyser (CRP
Vario test, Abbott Laboratories Inc., IL, USA) (inter-assay CV 2.07%) in the
PathWest Laboratory at Royal Perth Hospital. hs-CRP values >10 mg/L at
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any follow-up were excluded from the analysis if a participant had a
BMI < 30kg/m? across the three follow-ups. Elevated hs-CRP in the
absence of obesity is likely to indicate acute inflammation [36].

Adult offspring (Gen2) demographic and lifestyle measures
Computer-based self-assessment questionnaires were used to assess
demographic and socio-behavioral data at 20, 22, and 27 years. Smoking
was coded as a dichotomous variable and a participant was considered a
smoker if they had smoked a cigarette in the past 1 month. Alcohol
consumption was coded as a continuous variable and reported as total
ethanol consumption in g/week, with 1 standard drink equivalent to 10 g
ethanol. Alcohol intake included the type and amount of alcoholic
beverages consumed daily over the past 7 days. Hormonal contraceptive
use in females was based on current use of any hormonal contraceptive
pill, injection, implants or intrauterine device. Socioeconomic status (SES)
of the Gen2 participants was assessed using Socioeconomic indexes for
areas (SEIFA) scores, which has been used in Australia and in the Raine
Study to quantify SES [37]. Educational status had 3-categories-
participants completing high school (Year-12, 17 years of age in Australia);
participants with apprenticeship or vocational training; and those in
university (tertiary education). Physical activity was measured as metabolic
equivalents (MET) and coded as a continuous variable as MET-minutes-per-
week where one MET is equal to the amount of oxygen consumed during
rest (3.5 ml/kg/min). BMI was calculated as body weight/height® (kg/m?)
and coded as a continuous variable. World Health Organisation (WHO)
criteria were used to define overweight (BMI =25 kg/mz) and obese (BMI
>30 kg/mz) when categorizing BMI [38].

STATISTICAL ANALYSIS

Antenatal data and fetal growth trajectories

Ultrasound measurements of fetal abdominal circumference (AC),
femur length (FL) and head circumference (HC) were used to
construct fetal growth trajectories from 1333 mother-fetal pairs,
after necessary exclusions (Fig. 1). Details relating to trajectory
construction have been published [30]. In brief, standard deviation
scores (SDS) were calculated for ultrasound-based fetal anthropo-
metric markers using linear regression, adjusting for physiological
factors influencing fetal growth (maternal height and parity, sex,
and ethnicity of the fetus). To facilitate trajectory development
using a minimum of two data points and to eliminate selection
bias, ultrasound measurements from only the intervention arm of
the randomized controlled trial were chosen for analysis. Maternal
height was centered at 164 cm (average height of women during
1980-90s) and gestational age at 28 weeks (196 days, mean
gestational age). Ethnicity of the fetus/offspring was dichotomized
and categorized as Caucasian if both parents were Caucasians.
Using a Stata plug-in, group-based trajectory modeling (GBTM)
was applied on each fetal anthropometric marker SDS and seven
AC, five FL, and five HC trajectory groups were identified (Fig. 2).

Effect of trajectories on Gen2 adult anthropometry and hs-
CRP

Random coefficient linear mixed modeling (LMM) was used to
estimate the effects of trajectory groups on adult BMI, WC and hs-
CRP at 20, 22, and 27 years assessed together. Bootstrapping with
500 repetitions was performed to attenuate the potential
influence of outlier observations and provide more robust
estimates of parameter estimates’ error. Data for fetal growth
trajectories and Gen2 participants’ lifestyle factors were available
for 485, 421, and 437 adults at 20, 22, and 27 years, respectively,
representing 679 individuals attending one or more follow-up
(Fig. 1). Non-normality of the outcome variables was accounted for
using linear mixed regression modeling and further by boot-
strapping [39, 40]. hs-CRP was log-transformed before boot-
strapping due to the presence of significant skewing. The model
residuals were subsequently checked to confirm normal distribu-
tion. The selection of confounders was determined a priori and
was based on scientific evidence, statistical reasoning, and data
availability. Adult covariates included age at follow-up, sex, female
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2900 pregnant women with < 20-weeks
gestation enrolled

[ 2868 Live births (Mother-fetal pair) J

.

1440 randomized into
the Intervention arm

the regular arm

| 1428 randomized into

Excluded: Multiple pregnancies (n=72), major
congenital abnormalities (n=13), single scans
(n=21), gestation <15 weeks (n=1)

A\ 4

Excluded from
analysis a-priori

1333 available for
trajectory construction

| Adult BMI & WC data availability at each follow-up*

Year 20: 616

y
Year 22: 481

Year 27: 505

| Adult lifestyle data availability at each follow-up

v
Year 20: 485

231 Males
254 Females

Year 22: 421

213 Males
208 Females

Year 27: 437

218 Males
219 Females

Total adult participants for longitudinal analyses (20-22-27 years)
who attended one or the other follow-ups: 679

*BMI- body mass index (kg/m?); WC- waist circumference (cms)

Fig. 1 Flow diagram of Raine Study participants attending the 20, 22 and 27-year follow-up. Flow diagram of Raine Study participants
attending the 20, 22 and 27-year follow-up with completeadult body mass index (BMI), waist circumference (WC) and lifestyle data.

contraceptive use, ethnicity, alcohol intake, smoking, adult SES,
educational status, and physical activity for BMI and WC analysis,
plus BMI for hs-CRP analysis. Maternal covariates included family
income, smoking, alcohol drinking, weight gain during pregnancy,
maternal BMI, preterm pregnancy, gestational diabetes mellitus
(GDM), Uncomplicated-HTN, Complicated-HTN and breast feeding
>6 months. Univariate analysis using a P-value cut-off of 0.1 was
applied to select variables for multivariate modeling. To select the
most parsimonious model, stepwise backwards selection was
performed based on a P-value threshold as well as change in
estimate, both approaches carried out manually to determine the
final set of confounders. A very conservative approach was
followed by relying on a significant global P-value for the
trajectory group variable along with local P-values for each group.
Age, sex, contraceptive use in females, SES, and ethnicity of Gen2
adults were included in all multivariate models. Final covariates for
Model 1 included age, sex, female contraceptive use, ethnicity, SES
and physical activity. Model 2 additionally accounted for the
pregnancy covariates namely uncomplicated hypertension during

International Journal of Obesity (2022) 46:1925 - 1935

pregnancy, maternal alcohol drinking, and maternal BMI at
16 weeks. All models with hs-CRP as the outcome variable
adjusted for BMI. BMI was centered at 25 kg/m? and modeled with
a second-order polynomial. Gen2 physical activity and SES
variables were normalized in the multivariate modeling using
z-score standardization. Interaction between trajectory groups and
sex of Gen2 adults was explored for all models. Birthweight of
Gen2 adults was also analyzed as a continuous variable to
estimate the effect on adiposity measures.

Results are presented as percentages, means with standard
deviations or medians with upper and lower quartiles. Stata v17.0
(Stata Corp., College Station, TX, USA) was used for all statistical
analyses with two-sided significance set at P < 0.05. Stata codes
are available for researchers upon request to authors.

RESULTS
Table 1 shows the general characteristics of the participants (Gen2)
at 20, 22, and 27 years and their mothers (Gen1) during pregnancy.

SPRINGER NATURE



A. Yadav et al.

T

2

3 Average-stable
(Reference group),
4 Average-falling,

1928
N A
[m)
n 7
[0]
8 — /
o > ;
3 6> AC trajectory groups:
5 o 3-Ref 1 Low-falling,
S 4 2 Low-stable,
]
£
€
o
e)
Qo
<C

5 Average-rising,

15 24 28 34 38 . .
Period of aestation (i « 6 High-falling,
eriod of gestation (in weeks) 7 High-rising
Trajectory Groups
1 53% =2 143% =3 245%
A |—14 212% =5 124% =6 16.8%
=7 55%
V=
8 5
%)
=3 4-Ref
5 ©1
-
2 ° / FL trajectory groups:
§ - 2 1 Low-falling,
w /1 2 Very low-rising,
o 3 Low-stable,
' T T T T T 4 Average-stable
15 24 28 34 38 (Reference group),
Period of gestation (in weeks) 5 High-stable
Trajectory Groups
B 1 78% =2 79% =3 33.2%
=4 39.1% =5 11.9%
o -
%)
Q
ﬁ - 5\
o
C
o 4-Ref/—?£
2
E 7 3
§ 2\ .
S _ HC trajectory groups:
2 1 1 Low-stable,
T 2 Average-falling,
N4 . . . . . 3 Low-rising,
15 24 28 34 38 4 Average-stable
Period of gestation (in weeks) (Reference group),
Trajectory Groups 5 High-stable
C 1 95% =2 306% =3 10.8%
-4 383% =5 10.8%
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Fig. 2 Fetal growth trajectories using abdominal circumference (AC), femur length (FL), and head circumference (HC) anthropometric
markers. Reproduced from Yadav et al. [30]. DOI:10.1097/HJH.0000000000003035 with permission from Wolters Kluwer Health, Inc.
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Table 1.

Characteristics

Adult participants (Gen2)
Age (years) Mean (SD)

BMI (kg/m?) Median
(Q1, Q3)

*BMI categories
<25 (kg/m?)
Overweight
Obese

Waist circumference (cm)
Median (Q1, Q3)

hs-CRP (mg/L) Median
(Q1, Q3)

Alcohol drinkers (%)

Alcohol intake (g/wk
ethanol) Median (Q1, Q3)

Smoking (% smokers)

Physical Activity (METmin
/week) Median (Q1, Q3)

Socioeconomic status
(SEIFA score) Median
(Q1, Q3)

Educational status (%)
Category-1
Category-2
Category-3

#Contraceptive use in
females (%)

Ethnicity (% Caucasians)
Breastfed >6 months (%)
Birthweight (g) Mean (SD)

Birth length (cm)
Mean (SD)

Maternal (Gen1)

BMI (kg/m?) Median
(Q1,Q3)

Preterm delivery (%)
GDM (%)

Maternal smoking (%)
Alcohol drinkers (%)
Uncomplicated-HTN (%)
Complicated-HTN (%)

Low income (%)

Year 20 (n = 485)

Males
n=231

20.1 (0.4)

235
(21.1,26.4)

64.5
234
12.1

79.1
(74.8,87.8)

0.71 (1.2)

75.3

80.0
(10.0,90.0)

15.6

7386.0
(3546.0,
13050.0)

1072.8
(995.7, 1114.4)

81.6
15.0
34

87.9

57.7

3371.5 (552.3)
49.3 (2.7)

229
(21.1,24.8)

4.8
26
21.2
60.6
264
3.5
33.2

Females
n=254

20.1 (0.4)

23.1
(20.9,26.4)

67.7
17.7
14.6

739
(68.0,82.2)

1.38 (2.8)

70.1

50.0
(0.0,120.0)

16.1

9936.0
(3336.0,
16398.0)

1075.9
(1006.8,
1121.5)

724
20.7
6.9

60.2

89.8

579

3308.8 (510.2)
48.7 (2.3)

23.2
(21.2,25.9)

5.5
1.6
23.2
57.5
18.5
2.8
34.6

Year 22 (n =421)

Males
n=213

22.2 (0.8)

24.2
(22.1,27.2)

60.6
28.6
10.8

83.5
(77.0,91.0)

0.65 (1.0)

85.0

109.7
(39.8,240.3)

174

3816.0
(1893.0, 7164.0)

1080.9
(1002.9, 1120.0)

52.4
26.0
21.6

88.7

58.5

3343.1 (581.9)
49.1 (3.1)

22.8
(20.7,24.6)

7.0
33
183
59.2
25.8
4.7
373

Females
n=208

22.2 (0.8)

238
(21.5,28.0)

61.5
17.8
20.7

76.0
(70.5,89.5)

1.53 (4.2)

79.8

50.0
(11.1,103.5)

16.4

2147.5
(801.0, 4563.0)

1069.0
(1006.8, 1116.5)

51.5
19.8
28.7
59.6

90.9

58.1

3322.2 (516.5)
48.7 (2.2)

235
(21.0,26.2)

53
1.4
24.0
56.3
20.7
1.0
34.2

General characteristics of the participants (Gen2) at 20, 22 and 27 years and their mothers (Gen1) during pregnancy.

Year 27 (n =437)

Males
n=218

26.7 (0.4)

247
(22.6,27.6)

51.4
344
14.2

85.5
(79.8,94.3)

0.70 (1.4)

74.8
79.2 (0.0,202.5)

234

2698.5
(1200.0, 5112.0)

1079.1
(1003.9, 1118.4)

215
326
45.8

89.9
58.8

3416.1 (572.5)
49.5 (2.9)

229
(21.1,25.5)

6.0
3.2
16.5
583
26.2
3.2
38.8

Females
n=219

26.8 (0.4)

23.7
(22.6,27.6)

61.6
20.1
18.3

76.6
(71.1,85.5)

1.10 (2.6)

69.9

42.2
(0.0,118.8)

21.0

1920.0
(495.0, 3564.0)

1069.3
(1006.8,
1116.5)

19.6
28.0
524
48.9

91.3

53.8

3338.3 (528.4)
48.8 (2.3)

234
(21.1,25.9)

4.1

0
25.6
58.0
19.2
23
344

SD standard deviation, Q7 1st quartile or 25th percentile, Q3 3rd quartile or 75th percentile, BMI body mass index, hs-CRP high-sensitivity C-reactive protein.
*BMI categories: <25, overweight (=25 and <30), obese (>30) [in kg/m?]; SEIFA: Socioeconomic indexes for areas; Educational status: Category-1 Those
completing high school, Category-2 Those with apprenticeship or vocational training, Category-3 Those in university.
#Contraception refers to the use of hormonal contraceptives; GDM- gestational diabetes mellitus; HTN- hypertension; Low income- family income at the time
of conception, low being annual income < $24,000 (AUS).

Approximately 90% of Gen2 were Caucasians. Males and females
had a similar BMI at all three ages. However, males were more
likely to be overweight (BMI>25 and <30kg/m? and have a
greater waist circumference, and more females had obesity
(BMI>30kg/m?) at each age. Median hs-CRP values tended to

International Journal of Obesity (2022) 46:1925 - 1935

be higher in females compared to males at each follow-up. Alcohol
was consumed by approximately 70-85% of males and females at
20, 22, and 27 years. The frequency of smoking was ~16% at 20-
years and ~22% at 27 years. Physical activity in males and females
was higher at 20-years than at 22 and 27 years. Female hormonal
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Table 2.

2A: Abdominal circumference (AC)

Fetal growth trajectories and their association with BMI, WC & hs-CRP.

*Trajectories Group-1 Group-2 Group-4 Group-5 Group-6 Group-7 Global

(Group Low- Low- Average- Average-rising 12.4% High- High- P value

membership) falling 5.3% stable 13.1% falling 20.6% (n=284) falling 18.3% rising 5.6%

(n=36) (n=89) (n=139) (n=124) (n=38)
BMI Model 1 —0.06 —0.31 —1.45%* 0.26 —-1.01* 0.20 0.011
Model 2 0.86 0.21 —1.03* —0.04 —0.75 —0.47 0.044
wWC Model 1 —0.44 —1.06 —3.10% 0.78 —1.86 0.16 0.033
Model 2 2.56 0.24 —2.20% 0.20 -1.19 -1.38 0.138

hs- Model 1 1.40* 1.07 1.05 0.99 0.98 0.70** 0.001

CRP Model 2 1.48** 1.07 1.06 0.98 0.97 0.70%* 0.001

2B: Femur length (FL)

*Trajectories (Group Group-1 Group-2 Group-3 Group-5 Global

membership) Low-falling 5.9% Very-low-rising 7.7% Low-stable 31.7% High-stable 12.4% P value

(n =40) (n=52) (n=215) (n = 84)

BMI Model 1 0.50 2.58*%* 0.45 0.35 0.028
Model 2 0.39 1.77* 0.50 0.05 0.159

wWC Model 1 —1.39 5.22*% 0.37 2.04 0.055
Model 2 —1.62 342 0.47 1.29 0.296

hs-CRP Model 1 1.13 1.37** 1.37%** 1.12 <0.001
Model 2 1.13 1.38%* 1.39%** 1.12 <0.001

2C: Head circumference (HC)

*Trajectories (Group Group-1 Group-2 Group-3 Group-5 Global

membership) Low-stable 8.0% Average-falling 31.5% Low-rising 8.1% High-stable 11.6% P value

(n =54) (n=214) (n =55) (n=79)

BMI Model 1 —0.55 —0.10 0.57 —0.61 0.488
Model 2 —0.26 —0.37 0.14 —0.82 0.415

wWC Model 1 —0.95 —0.76 1.15 —0.89 0.714
Model 2 —0.23 -1.33 0.35 -1.34 0.515

hs-CRP Model 1 1.16 1.05 1.02 0.80* 0.020
Model 2 1.15 1.04 1.02 0.78** 0.024

Linear mixed modeling results displayed.

BMI body mass index (§ coefficient in kg/m?), WC waist circumference (8 coefficient in cms), hs-CRP high-sensitivity C-reactive protein (Exponentiated

coefficients).
Significant P values: *<0.05, **<0.01, ***<0.001.

*Trajectories based on 1333 participants; Reference group is Group-3 (Average-stable) with a membership of 24.9% (n = 169) for abdominal circumference,
Group-4 (Average-stable) with a membership of 42.4% (n = 288) for femur length and Group-4 (Average-stable) with a membership of 40.8% (n = 277) for head

circumference.

Sample Size: Model 1: BMI and WC- 1242 observations representing 606 participants who attended one or more follow-up; hs-CRP 1139 observations/574
participants. Model 2: BMI and WC- 1223 observations/596 participants; hs-CRP- 1126 observations/566 participants.

Model 1 covariates- age, sex, female contraceptive use, ethnicity, socioeconomic status & physical activity; Model 2 covariates- Model 1 plus uncomplicated
hypertension during pregnancy, maternal alcohol drinking, and maternal BMI at 16 weeks (only maternal BMI at 16 weeks for hs-CRP). Models for hs-CRP

additionally adjusted for adult BMI.

contraceptive use was 60.2% at 20 years and 48.9% at 27 years.
Birthweights were similar between males and females. In relation
to maternal characteristics (Gen1), 7% reported preterm deliveries,
3.3% gestational diabetes, 26.4% Uncomplicated-HTN and 4.7%
complicated HTN (Table 1). More than 16% of Gen1 mothers
smoked and >56% consumed alcohol during pregnancy.

Abdominal circumference (AC) trajectories

Relationship of AC trajectories with BMI. Compared with the
reference average-stable trajectory (Group-3), participants in Group-4
(average-falling) (8= —145kg/m? 95% Cl=—243, —046) and
Group-6 (high-falling) (8= —1.01kg/m? 95% Cl=—1.96, —0.05)
had significantly lower BMI (P = 0.004 and P = 0.038, respectively) in
models that accounted for age, sex, female contraceptive use,
ethnicity, SES and physical activity (Table 2A BMI, Model 1 and
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Supplementary Table 1). The associations persisted for Group-4 when
further adjusted for maternal covariates (Table 2A BMI, Model 2 and
Supplementary Table 2). Maternal uncomplicated hypertension
(P=10.010), maternal alcohol drinking (P = 0.006) and maternal BMI
at 16 weeks (P < 0.001) were independently associated with offspring
BMI (Supplementary Table 2). The observed associations between
fetal growth trajectory groups for all three anthropometric
parameters (AC, FL, and HC) and adult BMI, WC and hs-CRP, based
on linear mixed modeling (Model 1) have been summarized in Fig. 3.
No significant sex-trajectory interaction was detected.

In analyses examining BMI categories with AC trajectory
groups, there were 7.1 and 10.4% participants with obesity in
Group-4 and Group-6 respectively, compared to 22.3% in the
reference Group-3 at 27 years, with similar trend at 20 and
22 years (Supplementary Table 3).
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Fig. 3 Relationships observed between fetal growth trajectories and adult BMI, WC and hs-CRP. Associations observed from linear mixed
modeling (Model 1) between growth trajectories (A-Abdominal circumference, B-Femur Length and C-Head Circumference) and adult
outcomes (BMI- Body mass index, WC waistcircumference, hs-CRP- high sensitivity C-reactive protein). Y-axes: Standard deviation scores or
z-scores for AC, FL and HC. X-axes: Gestational age in weeks. Dashed lines (--) represent the reference trajectory group while solid-bold lines (-)
represent those trajectory groups having a significant association with reference group. Minus sign (—) indicates a negative association while

a plus sign (+) indicates a positive association.

Relationship of AC trajectories with WC. Participants in Group-4
(average-falling) associated with significantly lower WC in Model 1
(B=-3.10cm, 95% Cl=-5.48, —0.72) (P=0.011) compared to
Group-3 (Table 2A WC, Model 1 and Supplementary Table 1). The
association remained significant with further adjustment for
maternal covariates (8=-220cm, 95% Cl=-4.16, —0.24)
(P=10.028), although the global P-value was not significant
(Table 2A WC, Model 2 and Supplementary Table 2). Maternal
covariates independently associated with offspring WC included
uncomplicated hypertension (P = 0.032), maternal alcohol drinking
(P =0.001) and maternal BMI at 16-weeks (P < 0.001) (Supplemen-
tary Table 2). There was no significant sex-trajectory interaction.

Relationship of AC trajectories with hs-CRP. Participants in
Group-1 (low-falling) (8= 1.40, 95% Cl=1.07, 1.83) had 40%
higher (P =0.013) hs-CRP while those in Group-7 (high-rising)
(8=0.70, 95% Cl=0.56, 0.88) had 30% lower (P =0.002) hs-
CRP, compared with Group-3 (Table 2A hs-CRP, Model 1 and
Supplementary Table 1). These associations remained signifi-
cant when adjusted for maternal covariates (Table 2A hs-CRP,
Model 2 and Supplementary Table 2). Maternal BMI at 16 weeks

International Journal of Obesity (2022) 46:1925 - 1935

was independently associated with offspring hs-CRP (P = 0.036)
(Supplementary Table 2). No sex-trajectory interaction was
detected.

Femur length (FL) trajectories

Relationship of FL trajectories with BMI & WC. Group-2 (very-low
rising) participants associated with significantly higher BMI
(8B=2.58kg/m?, 95% Cl=0.98, 4.18; P=0002) in models
accounting for age, sex, contraceptive use, ethnicity, SES and
physical activity when compared with the reference Group-4
(average-stable) (Table-2B BMI, Model 1 and Supplementary Table
4). Significance for Group-2 was retained (8= 1.77 kg/m?, 95%
Cl=0.20, 3.35; P=0.027) when further adjusted for maternal
covariates (Table 2B BMI, Model 2 and Supplementary Table 5).
Maternal uncomplicated hypertension (P =0.015), maternal alco-
hol drinking (P = 0.008), and maternal BMI at 16 weeks (P < 0.001)
were independently associated with offspring BMI (Supplemen-
tary Table 5), although with the global P value was not significant.
No sex-trajectory interaction was detected. 22.2% participants in
Group-2 were obese at 27 years compared to 12.6% in the
reference Group-4, with similar distribution at 20 and 22 years
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(Supplementary Table 6). A similar association for Group-2
participants was detected for WC (8=5.22cm, 95% Cl=1.28,
9.17) (P=0.009), compared to reference Group-4 (Table 2B WC,
Model 1 and Supplementary Table 4).

Relationship of FL trajectories with hs-CRP. Compared with
reference Group-4, participants in both Group-2 (very-low rising)
(B=1.37,95% Cl=1.09, 1.73) and Group-3 (low-stable) (8 = 1.37,
95% Cl=1.19, 1.58) associated with 37% higher hs-CRP (P = 0.008
and P<0.001 respectively), when adjusted for age, sex, contra-
ceptive use, BMI, ethnicity, SES & physical activity (Table 2B hs-
CRP, Model 1 and Supplementary Table 4). These associations
remained significant with further adjustment for maternal
covariates (Table 2B hs-CRP, Model 2 and Supplementary Table 5).
Maternal BMI at 16 weeks (P=0.021) was independently
associated with adult hs-CRP (Supplementary Table 5). A sex-
trajectory interaction was detected (P=0.001) and in sex-specific
analysis, males in Group-2 (8 =1.74, 95% Cl = 1.24, 2.43) had 74%
higher (P =0.001) hs-CRP (adjusted for age, BMI, ethnicity, SES and
physical activity) while females in Group-3 (B=1.70, 95%
Cl=1.37, 2.11) had 70% higher (P <0.001) hs-CRP (adjusted for
age, contraceptive use, BMI, ethnicity, SES and physical activity)
(Supplementary Table 7). In both instances, the associations were
retained with further adjustment for maternal covariates.

Head circumference (HC) trajectories

Relationship of HC trajectories with BMI & WC. There were no
associations of HC growth trajectories with BMI and WC (Table 2C,
BMI and WC and Supplementary Tables 8, 9). However, a
significant sex-trajectory interaction was detected for BMI
(P=0.009) and sex-specific analysis showed females in Group-3
(low-rising) had significantly higher BMI (8=2.52kg/m? 95%
Cl=0.23, 4.81, P=0.031), compared with reference Group-4
(adjusted for age, contraceptive use, ethnicity, SES and physical
activity) (Supplementary Table 10). Comparison of BMI categories
across HC trajectory groups showed a similar distribution of
participants with obesity across groups (Supplementary Table 11).

Relationship of HC trajectories with hs-CRP. Participants in Group-
5 (high-stable) (8 =0.80, 95% Cl = 0.67, 0.95) associated with 20%
lower hs-CRP (P=0.011), compared to reference Group-4
(average-stable) (Table 2C hs-CRP, Model 1 and Supplementary
Table 8) and remained significant with further adjustment for
maternal covariates (3=0.78, 95% Cl=0.65 0.94, P=0.008)
Table 2C hs-CRP, Model 2 and Supplementary Table 9. Maternal
BMI at 16-weeks (P =0.026) was independently associated with
adult hs-CRP (Supplementary Table 9). There was no sex-trajectory
interaction (P = 0.294).

Relationship of birthweight and adult BMI, WC and hs-CRP
Birthweight (kg), corrected for gestational age, was positively
associated with BMI (8=1.61kg/m? 95% Cl=0.79, 242,
P=10.001) and WC (8=4.62, 95% Cl =2.66, 6.58, P<0.001) after
adjusting for adult covariates (Supplementary Table 12, Model 1).
The association remained significant with further adjustment for
maternal covariates (Supplementary Table 12, Model 2). No
significant association of hs-CRP was detected with birthweight
(P=0.053).

DISCUSSION

Using serial ultrasound measures during pregnancy, this study has
shown significant relationships between fetal growth patterns and
subsequent markers of adiposity and inflammation in 27-year-
olds, with some differences between the sexes. The findings show
that adult BMI and waist circumference was inversely associated
with trajectories reflecting average or above-average abdominal
growth from early-mid pregnancy and decelerating. Restricted
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abdominal circumference throughout pregnancy associated with
higher adult hs-CRP, whereas greater-than-average fetal abdom-
inal and head circumference throughout pregnancy was asso-
ciated with lower hs-CRP in adulthood. The associations between
fetal growth and adult adiposity and hs-CRP, largely persisted after
adjustment for postnatal lifestyle factors as well as maternal and
pregnancy covariates, with effects more pronounced in females
compared to males. These findings support the evidence linking
different patterns of fetal growth and markers of adult cardiovas-
cular disease, including our finding of such relationships with
adult blood pressure in the same cohort [30].

In our study, the trajectories that associated with long-term
adiposity showed discordance in growth between early and later
pregnancy. In particular, 38% of the offspring that experienced
average or greater growth of abdominal circumference during the
first half of gestation (with diminishing late growth), associated
with 1kg/m? and 1.45kg/m? respectively, lower adult BMI.
Greater-than-average abdominal circumference during the first
half of gestation (with diminishing late growth) also associated
with a 3.1 cm lower waist circumference in adulthood. Whereas
there was no association between the consistently low AC
trajectory and adult BMI, lower fetal femur length in early
pregnancy followed by accelerated growth late in pregnancy
associated with 2.58 kg/m? higher adult BMI. Similarly lower head
circumference in early pregnancy (which increased in late
pregnancy) in females was associated with higher adult adiposity.

Data from the Generation R Study on 1184 children with first-
trimester fetal crown to rump length measurements showed that
impaired first-trimester fetal growth was associated with adverse
cardiovascular risk in school age children and reported 0.3% lower
total fat mass for every one standard deviation higher first-
trimester fetal length [41]. In another Generation R study
performed on a cohort of 481 healthy children, there was a
tendency towards inverse association of estimated fetal weight in
the second trimester with preperitoneal fat at 2 years of age [42].
Using femur length and head circumference, we similarly
observed higher BMI in some fetuses with less than average size
that is already apparent by middle of second trimester. Early fetal
growth serves as a critical period in relation to adult adiposity. Our
study adds further to evidence for this concept, by showing that
not only does restricted early growth associate with future
adiposity but sufficient growth in early pregnancy is associated
with a protective effect on adiposity later in life. Our data shows
that a very-low-to-rising FL trajectory associated with higher adult
BMI which is consistent with studies such as the Danish Fetal
Origin Cohort 1988 (DaFO88) and Generation R [43, 44]. The
DaFO88 study showed that an upward change in growth
trajectory, defined using bi-parietal diameter difference at 20-
weeks gestation and birth, was associated with increased BMI at
20 years [43]. The Generation R Study found that accelerated third-
trimester fetal growth was associated with an increased risk of
overweight in preschool children [44]. Our study builds on this
evidence by showing the association between accelerated fetal
growth and increased risk of adiposity at 27 years.

The relationship between postnatal measures including birth-
weight and adiposity during adolescence and adulthood has been
extensively examined [45-50]. Systematic reviews and meta-
analyses have reported a positive association between high
birthweight and increased risk of adiposity from childhood to
adulthood [13-16, 47, 50]. Although our birthweight findings are
reflective of this, the use of serial ultrasound measures in this
study shows that birthweight does not accurately represent
different trajectories of early-mid fetal growth. We have previously
shown that offspring with similar birthweight can have substan-
tially different fetal growth patterns, and fetuses with similar
growth at 15 weeks gestation can have a significantly different
birthweight [30]. Such differences may play an important role in
determining adiposity and cardiometabolic health in adolescence
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and adulthood. The associations between trajectory groups and
adult outcomes in this study were independent of maternal
factors during pregnancy, although in some instances the analysis
may not have had sufficient power to achieve statistical
significance based on the global P-value. Several maternal factors
such as uncomplicated hypertension during pregnancy, maternal
alcohol drinking, and maternal BMI at 16 weeks were significantly
associated with adult adiposity and hs-CRP. Our findings thus
contribute to the existing evidence that the effect of early
intrauterine environment on fetal growth could be an important
determinant of adiposity in later life.

Evidence for the key role of environmental influences on
subsequent childhood and adult adiposity comes from several
experimental animal studies and birth cohort studies, as well as a
few human trials [51-55]. These studies have shown the influence
of maternal BMI and smoking, pre-eclampsia, and gestational
weight gain, on childhood obesity. Different mechanisms proposed
include the role of fetal adipocytes, leptin, epigenetic modifications
and exposure to glucocorticoids [11, 56]. Maternal stress, anxiety,
and depression during pregnancy can lead to increased fetal
exposure to glucocorticoids and activation of the hypothalamic-
pituitary adrenal axis which plays an important role in fetal
development and subsequent risk of adiposity in later life [57-59].

Our findings are the first to show an inverse relationship
between measures of in utero fetal growth and adult hs-CRP, a
biomarker of chronic low-grade systemic inflammation. While
restricted fetal abdominal and femur growth both associated with
higher hs-CRP in adulthood, greater-than-average fetal abdominal
and head growth associated with lower adult hs-CRP, indepen-
dently of adult BMI and maternal factors. These data add to the
existing literature that show an inverse association between
birthweight and hs-CRP in children and adults [60]. Chronic low-
grade inflammation is the hallmark of obesity and increased levels
of inflammatory mediators have been found in individuals with
obesity [61]. In utero undernutrition can cause permanent injury
to fat depots, liver, and muscle tissue and lead to a state of low-
grade inflammation postnatally [60]. Recent data from the Raine
Study have also shown a strong association between hs-CRP and
BMI in the offspring from the age of 14 years to 22 years [62]. Our
findings showed some differences between associations with
adiposity and hs-CRP. The associations with hs-CRP tended to be
with the extreme largest and smallest groups that maintained
their relative size throughout pregnancy. Additionally, the effect
was independent of maternal factors, and no female preponder-
ance of effect was observed.

Obesity is a complex phenomenon, involving an array of
genetic and environmental factors. While the postnatal factors
contributing to adiposity have been extensively studied, there is
limited literature investigating the antenatal origins of adult
obesity using serial ultrasound measures. Previous antenatal
studies have focussed on childhood obesity and very few have
used serial fetal anthropometric measurements to examine fetal
growth [28, 63]. In our study, the associations between growth
trajectories, anthropometry, and hs-CRP were adjusted for age and
sex, with associations persisting after adjusting for postnatal
lifestyle factors. We also found significant sex differences between
trajectories and the outcome measures: BMI and waist circumfer-
ence associations were evident in females, whilst an association
with hs-CRP was only in males.

Our limited sample size and the number of trajectory groups did
not allow us to explore the mechanisms underlying maternal or
adult lifestyle factors. Nevertheless, the pregnancy and birth
characteristics of the different trajectory groups for all three fetal
anthropometric markers has been described previously [30]. In
particular, mean maternal BMI at 16 weeks gestation was
23.1kg/m? and 23.6kg/m? for Groups-4 and 6 respectively for
abdominal circumference, compared to 24.3 kg/m? for the refer-
ence Group-3. None of the mothers of participants in Group-5 for
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the head circumference trajectory reported complicated hyperten-
sion during pregnancy, compared to 2.2% in the reference Group-4.

Strengths of this study include the use of serial fetal growth
ultrasound measurements taken during pregnancy to assess fetal
growth and examine the association with measures of adult
adiposity and inflammation. The Raine Study cohort comprises of
a well-characterized group of individuals with carefully documen-
ted antenatal and postnatal information. Despite availability of
approximately 50% of the cohort, it represents the contemporary
Western Australian population both at the recruitment and during
each follow-up which allows generalization of the findings to
similar populations [31, 37, 64]. The robustness of linear mixed
modeling along with bootstrapping allowed us to investigate the
relationship between fetal growth and adiposity markers [39, 40].
The breadth of data available in the Raine Study enabled us to
explore relationships independent of adult and maternal factors
influencing adiposity. A limitation of this study was that serial
ultrasound measures were conducted not prior to 15 weeks of
gestation, consequently we don’t have data on the actual first-
trimester growth patterns. However, assessment of fetal anthro-
pometric markers at 15 weeks is likely to represent first-trimester
growth and along with subsequent measurements, it provided
substantial information to make a reliable estimation of fetal
growth throughout gestation. Another limitation was our inability
to explore sex-trajectory interactions using multiple comparisons
due to small sample and sizable number of trajectory groups.
There was no adjustment for sibling rank due to non-availability of
information. However, mother’s parity was accounted for while
constructing the trajectories. Lastly, it is important to understand
that this is an observational study and causality inferences need a
cautious approach.

Our study has shown that growth patterns established in utero
associate with adult markers of anthropometry and inflammation
which are related to the risk of future cardiovascular disease. These
data together with our previous results that showed restricted fetal
growth associated with higher adult blood pressure, add to our
understanding of the concept of the developmental origins of
health and disease and provide new evidence of antenatal
determinants of adiposity in adult life. To the best of our
knowledge, this is the first study to have shown a relationship
between fetal growth as early as 15 weeks and adult adiposity
using serial ultrasound-based trajectory modeling in a well-
structured cohort. The results reinforce evidence for a role of fetal
programming and early life environmental influences on adult
adiposity and low-grade inflammation. Preventive health care
interventions targeting factors affecting maternal and fetal well-
being including pregnancy diseases such as gestational diabetes
and pre-eclampsia, cigarette smoking, eating habits, and hormonal
imbalances could potentially play a vital role in determining future
cardiometabolic risk. Future research is needed to establish
mechanisms driving the unique in utero growth patterns and the
definitive pathways leading to the enhanced risk of adiposity and
inflammatory-related disorders in later life.
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