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The landmark TRICC (Transfusion
Requirements in Critical Care) trial found
no difference in 30-day mortality for
critically ill patients treated using a
restrictive (hemoglobin ,7 g/dl) compared

with liberal (hemoglobin ,10 g/dl)
transfusion threshold (1). After this, the
optimal threshold for administering packed
red blood cells (pRBCs) has been a topic of
great interest for clinicians and researchers.
Physiologically, pRBC transfusions improve
tissue oxygenation by increasing oxygen-
carrying capacity. However, the theoretical
benefits of increased oxygen delivery are
balanced by potential harms of pRBC
transfusion, such as volume overload,
transfusion reactions, and infectious disease
transmission (2–5). In addition, blood
transfusion for those unlikely to benefit is
costly, inconsistent with high-value health
care, and diminishes the availability of
blood products for others (6).

The results of the TRICC trial and other
evidence have been broadly incorporated by
practice guidelines to support pRBC at a
hemoglobin level of,7 g/dl for critically ill
but clinically stable intensive care unit (ICU)
patients over more liberal transfusion
practices (7). Notably, the threshold of 7 g/dl
represents the upper bound of conservative
strategies used in trials but has itself never
been shown to be superior to lower
thresholds (or to physiologic triggers without
a laboratory-based threshold). There has
been little enthusiasm to date to allocate
patients to a transfusion threshold,7 g/dl,

so randomized controlled trial (RCT) data to
guide optimal transfusion thresholds are
lacking.

Fortunately, advances in healthcare data
richness and analytic techniques for causal
estimation have enabledmore reliable
comparative effectiveness estimates outside of
RCTs. Amajor challenge in generating
unbiased effect estimates from such
observational data is confounding by
indication—when factors influencing a
clinician’s treatment decision (e.g., severity of
illness or likelihood to benefit) also influence
outcomes. Common techniques to adjust for
these factors may fail to fully account for the
differences between patients that clinicians
use to make treatment decisions, or data
sources may not contain sufficient data to
accurately model these factors. The
unmeasured confounding that remains
violates the assumptions necessary for causal
conclusions frommany observational study
designs. This can mean false or distorted
results regarding a treatment’s benefits and
harms.

Quasi-experimental study designs aim
to address this limitation by identifying
naturally occurring variation in receipt of a
treatment or intervention. Practically,
naturally occurring variation is induced by
measurement error in in data such as
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laboratory results or standardized test
scores. This natural variation is highly
unlikely to be related to an outcome of
interest, One technique for leveraging such
variation for causal inference is a regression
discontinuity design (RDD). RDD is a
powerful quasi-experimental design for use
when interventions are assigned on the
basis of a cutoff value on a scale measured
with noise (e.g., a hemoglobin of 7 g/dl or
a test score of 80%). The underlying
assumption of the RDD is that patients
with scores just above versus just below the
threshold value differ in their likelihood of
receiving an intervention but are otherwise
very similar. In effect, this noise functions
similarly to a coin flip in an RCT,
determining receipt of treatment
independent of other patient characteristics.
RDD analyses can be “sharp” when the
relationship between the treatment and the
running variable is absolute or “fuzzy”

when the threshold does not
deterministically move all observations
from unexposed to exposed, but rather
increases the probability of receiving the
treatment.

In this issue of AnnalsATS, Bosch
and colleagues (pp. 1177–1184)
leveraged the noise in measurement of
hemoglobin to set up a “fuzzy” RDD
that estimates the effect of transfusing
pRBCs at a threshold of hemoglobin 7 g/
dl by comparing outcomes in patients
just above with those just below the
threshold (8). Selecting from three large,
feature-rich datasets, Bosch and
colleagues identified 191,987 patients
who were admitted to an ICU with at
least one hemoglobin measurement on
Days 2–28 of ICU admission and who
did not have active bleeding or
myocardial infarction (conditions that
may warrant higher hemoglobin targets

and that likely would have resulted in
exclusion from a comparable RCT). The
assumptions necessary for fuzzy RDD
were met, including general balance of
other patient characteristics for patients
just above and just below the
hemoglobin threshold. Overall, the
authors found an abrupt increase
(discontinuity) in transfusion at the
hemoglobin threshold but no
improvement in organ dysfunction as
measured by the maximum Sequential
Organ Failure Assessment score within
72 hours after transfusion. In an
exploratory analysis among patients with
sepsis, pRBC transfusion was associated
with increased organ dysfunction.
Extensive sensitivity and secondary
analyses largely confirmed the primary
findings.

There are considerable strengths to this
study. The combined dataset is large,
generalizable, and granular with information
to permit detailed analysis and check of
necessary assumptions. The use of RDD
mitigates the risk of residual confounding
that has not been possible in prior studies.
Indeed, several studies have shown that
RDDs are remarkably effective at replicating
results from RCTs, whereas other
observational designs often are not (9–11).
The fewer assumptions required by RDD to
identify a causal effect compared with model-
based designs (e.g., regression adjustment)
are clear when representing the RDDwith a
causal graph (12, 13). Figure 1 shows data-
generating and data-limited directed acyclic
graphs representing Bosch and colleagues’
RDD. In the full dataset (Figure 1A),
transfusion decisions are driven by multiple
factors that may also affect the outcome. This
confounding leads to biased estimates unless
all these factors are measured and adjusted
for. In the limited dataset of patients with
hemoglobin values very close to the
threshold (Figure 1B), transfusion decisions
are only caused by the random noise in
hemoglobin measurement and not by
severity of illness and other confounder
variables. In other words, measurement error
in the hemoglobin value serves a role similar
to randomization in an RCT.

However, even though the data were
gathered from rich clinical databases, they
remain secondary data with inherent
limitations such as missingness and
accuracy. Furthermore, contextual
knowledge of hospital or unit transfusion

Hemoglobin value

Hemoglobin value, in narrow
range around 7g/dL

confounds

confounds

A

B

transfusion organ dysfunction

transfusion organ dysfunction

Figure 1. Causal graphs representing regression discontinuity design. (A) Data generating
graph showing hemoglobin threshold of 7 g/dl as the assignment variable resulting in
transfusion. (B) Data limited graph in which hemoglobin values are restricted to a narrow range
around 7 g/dl. The central assumption of regression discontinuity designs is that severity of
illness (and other confounders) are no longer related to hemoglobin levels in such a narrow
band, so there is no confounding.
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protocols or knowledge of clinician-level
decision making is not available in these
types of studies. For example, it is possible
that hospitals or physicians with greater
propensity to transfuse above the threshold
are also more likely to provide other
unproven therapies that may inadvertently
cause harm. These possibilities could not be
explored thoroughly in the study datasets.
Finally, clinicians wishing to apply these
findings broadly to critically ill patients
must keep in mind that the results of the
fuzzy RDD are only applicable to the
subpopulation of patients whose

hemoglobin values are in a narrow range
around the threshold.

Study limitations notwithstanding, the
lack of demonstrable benefit of a transfusion
threshold of 7 g/dl challenges conventional
wisdom about the usefulness of an
intervention that can cause harm and incurs
substantial cost. The results of this study may
provide adequate equipoise for a future RCT
that better establishes optimal transfusion
thresholds. Alternatively, advancements in
physiologic measurement and “big data”
methodology may soon permit
individualized transfusion recommendations

based on time-varying clinical data and real-
time predictions regarding the probability of
benefit. In the meantime, the present study is
an elegant demonstration of the role that
quasi-experimental methods can play in
providing real-world evidence when RCT
data are lacking. This approach is already
supported by the 21st Century Cures Act
requiring the U.S. Food and Drug
Administration to consider real-world
evidence during approval decisions (14).�

Author disclosures are available with the
text of this article at www.atsjournals.org.
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