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Abstract
Homeostasis refers to a phenomenon whereby the output xo of a system is approx-
imately constant on variation of an input I. Homeostasis occurs frequently in
biochemical networks and in other networks of interacting elements where mathe-
matical models are based on differential equations associated to the network. These
networks can be abstracted as digraphs G with a distinguished input node ι, a dif-
ferent distinguished output node o, and a number of regulatory nodes ρ1, . . . , ρn . In
these models the input–output map xo(I) is defined by a stable equilibrium X0 at
I0. Stability implies that there is a stable equilibrium X(I) for each I near I0 and
infinitesimal homeostasis occurs at I0 when (dxo/dI)(I0) = 0. We show that there
is an (n + 1) × (n + 1) homeostasis matrix H(I) for which dxo/dI = 0 if and only
if det(H) = 0. We note that the entries in H are linearized couplings and det(H) is
a homogeneous polynomial of degree n + 1 in these entries. We use combinatorial
matrix theory to factor the polynomial det(H) and thereby determine a menu of dif-
ferent types of possible homeostasis associated with each digraph G. Specifically, we
prove that each factor corresponds to a subnetwork of G. The factors divide into two
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combinatorially defined classes: structural and appendage. Structural factors corre-
spond to feedforward motifs and appendage factors correspond to feedback motifs.
Finally, we discover an algorithm for determining the homeostasis subnetwork motif
corresponding to each factor of det(H) without performing numerical simulations on
model equations. The algorithm allows us to classify low degree factors of det(H).
There are two types of degree 1 homeostasis (negative feedback loops and kinetic or
Haldane motifs) and there are two types of degree 2 homeostasis (feedforward loops
and a degree two appendage motif).

Keywords Homeostasis · Coupled systems · Combinatorial matrix theory ·
Input–output networks · Biochemical networks · Perfect adaptation

Mathematics Subject Classification 34C99 · 92C42 · 92C40 · 94C15

1 Introduction

1.1 Overview and perspective

This paper divides into three parts. Part I, which is just Sect. 1.1, puts our work
in perspective. Part II, which consists of Sects. 1.2–1.14, gives a precise technical
description of our results. Finally, Part III consists of Sects. 2–7 and contains the
rigorous mathematics, along with the proofs of theorems mentioned in Part II. We
note that certain graph theoretic notions and theorems are needed in the proofs in Part
III, but are not needed in the description of our results in Part II.

A system exhibits homeostasis if on change of an input variable I some observ-
able xo(I) remains approximately constant. Many researchers have emphasized that
homeostasis is an important phenomenon in biology. For example, the extensive work
of Nijhout, Reed, Best and collaborators (Nijhout et al. 2004; Reed et al. 2010; Best
et al. 2009; Nijhout and Reed 2014; Nijhout et al. 2015, 2018) consider biochemi-
cal networks associated with metabolic signaling pathways. Further examples include
regulation of cell number and size (Lloyd 2013), control of sleep (Wyatt et al. 1999),
and expression level regulation in housekeeping genes (Antoneli et al. 2018).

Adaptation is a closely related notion. It is the ability of a system to reset an
observable xo(I) to its prestimulated output level (its set point) after responding to
an external stimulus I. Adaptation has been widely used in synthetic biology and
control engineering (cf. Ma et al. 2009; Ang and McMillen 2013; Tang and McMillen
2016; Ferrell 2016; Qian and Vecchio 2018; Araujo and Liota 2018; Vecchio et al.
2018; Aoki et al. 2019). Here, the focus of the research is on the stronger condition of
perfect adaptation, where the observable xo(I) is required to be constant over a range
of external stimuli I. The literature is huge, and these articles are a small sample.

The mathematical formulation of both homeostasis and adaptation is as follows.
Start with a system of ordinary differential equations usually associated to a network of
interacting elements. Next define an input–output function that maps the input variable
or the external stimulus I to the output xo(I). Then the occurrence of homeostasis or
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perfect adaptation is a question about the properties of xo(I) under (time-dependent)
variation of I.

For instance, Reed et al. (2017) consider biochemical signaling networks whose
nodes represent the concentrations of certain biochemical substrates that interact
through mass action kinetics. They identify two homeostasis motifs in three-node net-
works: the feedforward loop motif (FFL) (Fig. 3c) and the kinetic motif (K) (Fig. 3b).
There is notation in these figures that we have not yet defined. In related work on
three-node biochemical networks with Michaelis-Menten kinetics, Ma et al. (2009)
identify numerically two network topologies that achieve perfect adaptation. To do
this, the authors searched 16,038 equations in various three-node network topologies
over a wide range of parameter space. They found just two motifs that achieved per-
fect adaptation: the negative feedback loop motif (NFL) (Fig. 3a) and the incoherent
feedforward loop (IFL) (Fig. 3c). The combined results of Reed et al. (2017) and Ma
et al. (2009) show that at least three network topologies (K, NFL, IFL ∼= FFL) emerge
as motifs exhibiting homeostasis or perfect adaptation in three-node biochemical net-
works.

Recently, Golubitsky and Wang (2020) classified the ‘homeostasis types’ that can
occur in three-node input–output networks based on the notion of infinitesimal home-
ostasis (Golubitsky and Stewart 2017) (see Definition 1.2). Using this approach, they
were able to reproduce the classification results in Ma et al. (2009) and Reed et al.
(2017), within a broader class of systems including, but not limited to, specific model
systems based on mass action or Michaelis-Menten kinetics. They showed that three-
node networks that can exhibit infinitesimal homeostasis are, up to core equivalence
(see Definition 1.9), the three network topologies mentioned above.

This paper generalizes the results of Golubitsky and Wang (2020) on three-node
networks to arbitrarily large input–output networks. We follow (Golubitsky and Stew-
art 2006) and abstract the notion of biochemical network to a ‘math network’ given by
a digraph G with a distinguished input node ι and a different distinguished output node
o. The specific model equations are abstracted into admissible systems of differential
equations, namely, one-parameter smooth families of vector fields compatible with the
network topology of G, such that only the input node depends explicitly on I. These
networks and their associated systems of differential equations are called input–output
networks. We show that under certain conditions (the existence of an asymptotically
stable equilibrium X0 for a particular parameter value I0), one can always define the
input–output function I �→ xo(I) associated to a given input–output network G.

A straightforward application of Cramer’s rule (Lemma 1.5) gives a useful method
for computing infinitesimal homeostasis points: infinitesimal homeostasis occur at I0,
namely, dxo

dI (I0) = 0, if and only if det
(
H(I0)

) = 0 (Sect. 1.3). This result motivates
the introduction of the homeostasis matrix H(I) (see equation (1.6)), whose entries are
linearized coupling strengths and linearized self-coupling strengths associated with
the input–output network. The homeostasis matrix H—which has appeared in the
literature under different names and notations (cf. Ma et al. 2009; Ang and McMillen
2013; Tang andMcMillen 2016; Golubitsky and Stewart 2017; Araujo and Liota 2018;
Aoki et al. 2019)—is the central object in our theory. As an aside: In ourmath networks
arrows are identical and represent couplings and nodes are identical and represent
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differential equations, but neither the couplings nor the equations are assumed to be
identical.

Our main result states that the homeostasis types that occur in admissible systems
of differential equations associated with the network G are classified by the topology
of certain subnetwork motifs of G. Moreover, there is an algorithm (Sect. 1.8) for
determining all the homeostasis subnetworkmotifs and the corresponding homeostasis
conditions, which also can be used for designing network topologies that display
infinitesimal homeostasis.

In order to prove our results we introduce new concepts and techniques. The notion
of core network (Sect. 1.4) allows one to go from a general input–output network
to a ‘minimal network’ that retains all essential features of homeostasis. We define
core equivalence of core networks in such a way that the determinant of a home-
ostasis matrix is determined by its core equivalence class. Combinatorial matrix
theory (Brualdi and Ryser 1991) lets us put H into block upper triangular form and
each diagonal block Bη is irreducible (no further triangularization is possible) and
corresponds to a homeostasis type (Sect. 1.5). The degree of the homeostasis type is
defined as the size k of the square block Bη and we prove that each block Bη has either
k or k−1 self-couplings. In the first case we call the homeostasis type appendage class
and in the second structural class (Sect. 1.6). We characterize combinatorially both
homeostasis types by identifying homeostasis subnetwork motifs and associating a
subnetwork motif to each homeostasis type (Sect. 1.7). We also give an algorithm that
determines the homeostasis blocks and their respective homeostasis types (Sect. 1.8).

In the biochemical network literature on homeostasis (or adaptation) it is usual to
find designations attached to the networks, such as negative feedback loop, antithet-
ical integral feedback, incoherent feedforward loop, etc. Ma et al. (2009); Tang and
McMillen (2016); Ferrell (2016). These names refer to the presence of a certain mech-
anism that is responsible for the occurrence of homeostasis in a particular network.
Ma et al. (2009) suggest that studies of these mechanisms can yield design principles
for constructing network topologies that exhibit homeostasis. This could be called
a ‘bottom-up’ approach for constructing homeostasis. It starts by identifying small
building blocks that are associated with homeostasis and then how the blocks can be
combined to build-up increasingly more complex networks that exhibit homeostasis.
Herewe take a ’top-down’ approach.We start with an input–output networkG and have
an algorithm that shows us how homeostasis in G can be generated from homeostasis
in certain subnetworks.

Fundamental to our approach is the discovery that homeostasis in G can be associ-
ated with only two ‘classes of mechanisms’ that we called structural and appendage,
each associated with certain topological properties (Sect. 1.7). In addition to classify-
ing homeostasis types in a given network, these topological constraints also provide
insights into the ‘bottom-up’ construction of homeostasis systems. The structural and
appendage classes are abstract generalizations of the usual ‘feedforward’ and ‘feed-
back’mechanisms (Ma et al. 2009; Ferrell 2016).More precisely, for each homeostasis
type (in each class), there is a corresponding ‘network motif’ and an associated home-
ostasis mechanism. For instance, negative feedback loop and antithetical integral
feedback are types in the appendage class, and incoherent feedforward loop is a type
in the structural class.
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The motivation for the term structural homeostasis comes from Reed et al. (2017),
where the authors identify the feedforward loop as one of the homeostastic motifs in
three-node biochemical networks. In general, structural homeostasis corresponds to a
balancing of two or more excitatory/inhibitory sequence of couplings from the input
node to the output node; that is, a generalized feedforward loop. There is a degenerate
case where the role of the balancing is played by neutral coupling, a transition state
between excitation and inhibition. This homeostasis type is called Haldane, because
Haldane (1965) seems to have been the first to observe this homeostatic mechanism.

The intuition behind the term appendage homeostasis is that homeostasis is gen-
erated by a cycle of regulatory nodes; that is, a generalized feedback loop. This loop
functions as controller nodes on a system that does not by itself exhibit homeostasis.
There is a degenerate case of appendage homeostasis that we call null degradation
where the role of the controller is played by a neutral node that balances between
degradation and production. See Sect. 1.13 for additional detail.

A striking outcomeof our approach is thatwedonot need to specify anyhomeostasis
generating mechanisms at the outset. However, we find a posteriori that (given the
appropriate generalizations) there are essentially only the two well-known feedback /
feedforward types of homeostasis generating mechanisms.

Our work is unusual in that it combines ideas from combinatorial matrix theory and
graph theory adapted to input–output networks to determine properties of equilibria of
differential equations. Specifically, the determinant formula (Theorem 3.2) connects
the nonzero summands of det(H) with simple paths from the input node to the output
node of the network G. It is reminiscent of the connection between a directed graph
and its adjacency matrix (Brualdi and Cvetkoić 2009). These simple paths allow us
to identify both structural and appendage homeostasis. Finally, our theoretical results
also allow us to derive formulas for determining the chair singularities (Nijhout et al.
2014; Reed et al. 2017).

1.2 Input–output networks and infinitesimal homeostasis

We now define the basic objects: input–output networks, network admissible systems
of differential equations, and input–output functions.

An input–output network G has a distinguished input node ι, a distinguished output
node o (distinct from ι), and n regulatory nodes ρ = (ρ1, . . . , ρn). The network G
also has a specified set of arrows (or directed edges) connecting nodes � to nodes j .
The associated network systems of differential equations have the form

ẋι = fι
(
xι, xρ, xo, I

)

ẋρ = fρ
(
xι, xρ, xo

)

ẋo = fo
(
xι, xρ, xo

) (1.1)

where I ∈ R is an external input parameter, X = (xι, xρ, xo) ∈ R × Rn × R is the
vector of state variables associated to the network nodes and F(X , I) = ( fι, fρ, fo)

is a smooth one-parameter family of G-admissible vector fields on the state space
R × Rn × R (see Golubitsky and Stewart 2006 for the definition of the space of
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admissible vector fields attached to a given network G). We write the network system
(1.1) as

Ẋ = F(X , I) (1.2)

Let f j,x�
denote the partial derivative of the j th node function f j with respect to

the �th node variable x�. We make the following assumptions about the vector field F
throughout:

(a) F has an asymptotically stable equilibrium at (X0, I0).
(b) The partial derivative f j,x�

can be nonzero only if the network G has an arrow
� → j .

(c) Only the input node coordinate function fι depends on the external input parameter
I and the partial derivative of fι with respect to I at the equilibrium point (X0, I0)
satisfies

fι,I (X0, I0) �= 0 (1.3)

It follows from (a) and the implicit function theorem applied to

F(X , I) = 0 (1.4)

that there exists a unique smooth family of stable equilibria

X(I) = (
xι(I), xρ(I), xo(I)

)
(1.5)

such that F(X(I), I) ≡ 0 and X(I0) = X0.

Definition 1.1 The mapping I �→ xo(I) is called the input–output function.

Local homeostasis is defined near I0 when the input–output function xo is approx-
imately constant near I0. An important observation is that locally homeostasis occurs
when the derivative of xo with respect to I is zero at I0. More precisely:

Definition 1.2 Infinitesimal homeostasis occurs at I0 if x ′
o(I0) = 0 where ′ indicates

differentiation with respect to I.
Terms that involve coupling in network systems are:

Definition 1.3 Let F = ( fι, fρ, fo) be an admissible system for the network G.
(a) The partial derivative f j,x�

(X0, I0) is the linearized coupling associated with the
arrow � → j at the equilibrium (X0, I0).

(b) The partial derivative f j,x j (X0, I0) is the linearized self-coupling of node j at the
equilibrium (X0, I0).

Remark 1.4 A notion similar to infinitesimal homeostasis, called perfect homeostasis
or perfect adaptation, requires the stronger condition that the derivative of the input–
output function be identically zero on an interval. It follows fromTaylor’s theorem that
infinitesimal homeostasis implies that the input–output function xo is approximately
constant near I0, the converse is not valid in general (Reed et al. 2017). This property is
called near perfect homeostasis or near perfect adaptation in the literature (cf. Ferrell
2016; Tang and McMillen 2016). Hence, infinitesimal homeostasis is an intermediate
notion between perfect homeostasis and near perfect homeostasis.
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1.3 Infinitesimal homeostasis using Cramer’s rule

As noted previously (Golubitsky and Stewart 2017; Reed et al. 2017; Golubitsky
and Wang 2020), a straightforward application of Cramer’s rule gives a formula for
determining infinitesimal homeostasis points. See Lemma 1.5.

We use the following notation. Let J be the (n + 2) × (n + 2) Jacobian matrix of
(1.2) and let H be the (n + 1) × (n + 1) homeostasis matrix given by dropping the
first row and the last column of J :

J =
⎡

⎣
fι,xι fι,xρ fι,xo

fρ,xι fρ,xρ fρ,xo

fo,xι fo,xρ fo,xo

⎤

⎦ H =
[

fρ,xι fρ,xρ

fo,xι fo,xρ

]
(1.6)

Here all partial derivatives f�,x j are evaluated at the equilibrium X0. The next lemma
has appeared in several places including (Ma et al. 2009, Figure 5A), (Golubitsky
and Stewart 2017, Lemma 6.1), (Reed et al. 2017, Theorem 3),and (Golubitsky and
Wang 2020, Lemma 9), though not in this generality. The proof is included here for
completeness, even though it is virtually identical to the one in Golubitsky and Wang
(2020).

Lemma 1.5 Let (X0, I0) be an asymptotically stable equilibrium of (1.2). The input–
output function xo(I) satisfies

x ′
o = ± fι,I

det(J )
det(H) (1.7)

Hence, I0 is a point of infinitesimal homeostasis if and only if

det(H) = 0 (1.8)

at (X0, I0).
Proof Implicit differentiation of (1.4) with respect to I yields the matrix system

J

⎡

⎣
x ′

i
x ′
ρ

x ′
o

⎤

⎦ = −
⎡

⎣
fι,I
0
0

⎤

⎦ (1.9)

Since X0 is assumed to be a stable equilibrium, it follows that det(J ) �= 0. On applying
Cramer’s rule to (1.9) we can solve for x ′

o obtaining

x ′
o(I0) = 1

det(J )
det

⎡

⎣
fι,xι fι,xρ − fι,I
fρ,xι fρ,xρ 0
fo,xι fo,xρ 0

⎤

⎦ (1.10)

which leads to (1.7). By assumption (1.3), fι,I �= 0. Hence, the fact that infinitesimal
homeostasis for (1.2) is equivalent to (1.8) follows directly from (1.7). 	
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ρ

ι

ο

(a) Network G

ρ

ι

ο

(b) Corenet work Gc

Fig. 1 Example of a core subnetwork. Gc obtained from G by deleting nodes that are not both upstream
from o and downstream from ι and all arrows into and out of the deleted nodes

1.4 Core networks

Homeostasis in a given network G can be determined by analyzing a simpler network
that is obtained by eliminating certain nodes and arrows from G. We call the network
formed by the remaining nodes and arrows the core subnetwork.

Definition 1.6 A node τ in a network G is downstream from a node ρ in G if there
exists a path in G from ρ to τ . Node ρ is upstream from node τ if τ is downstream
from ρ.

These relationships are important when trying to classify infinitesimal homeostasis.
For example, if the output node o is not downstream from the input node ι, then the
input–output function xo(I) is identically constant in I. Although technically this is
a form of infinitesimal homeostasis, it is an uninteresting form.

Definition 1.7 (a) The input–output network is a core network if every node is both
upstream from the output node and downstream from the input node.

(b) Every input–output network G has a core subnetwork Gc whose nodes are the
nodes in G that are both upstream from the output node and downstream from the
input node and whose arrows are the arrows in G whose head and tail nodes are
both nodes in Gc.

The next result concerning core networks follows from Theorem 2.4.

Corollary 1.8 Let G be an input–output network and let Gc be the associated core
subnetwork. The input–output function associated with Gc has a point of infinitesimal
homeostasis at I0 if and only if the input–output function associated with G has a
point of infinitesimal homeostasis at I0.

It follows fromCorollary 1.8 that classifying infinitesimal homeostasis for networks
G is equivalent to classifying infinitesimal homeostasis for the core subnetwork Gc.
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Figure 1 gives an example of reducing a network to a core network. In this case the
left two nodes in Fig. 1a are deleted to get to the core network, which is illustrated in
Fig. 1b.

Definition 1.9 (a) Two (n + 2)-node core networks are core equivalent if the deter-
minants of their homeostasis matrices are identical polynomials of degree n + 1.

(b) A backward arrow is an arrow whose head is the input node ι or whose tail is the
output node o.

Corollary 1.10 If two core networks differ from each other by the presence or absence
of backward arrows, then the core networks are core equivalent.

Proof The linearized couplings associated to backward arrows are of form fι,xk and
fk,xo , which do not appear in the homeostasis matrix (1.8). 	

Therefore, backward arrows can be ignored when computing infinitesimal home-

ostasis with the homeostasis matrix H . However, backward arrows cannot be totally
ignored, since they are involved in the determination of both the equilibria of (1.2)
and their stability.

Corollary 1.10 can be generalized to a theorem giving necessary and sufficient
graph theoretic conditions for core equivalence. See Theorem 3.3.

1.5 Infinitesimal homeostasis blocks

The previous results imply that the computation of infinitesimal homeostasis reduces
to solving det(H) = 0, where H is the homeostasis matrix associated with a core
network. From now on we assume that the input–output network G is a core network.

It is important to observe that the nonzero entries of H are the linearized coupling
strengths f j,x�

for the network connected nodes � → j and the linearized self-coupling
strengths f j,x j . It follows that h = det(H) is a homogeneous polynomial of degree
n + 1 in the (n + 1)2 entries of H . We use combinatorial matrix theory to show that in
general h is nonzero and can factor, and that there is a different type of infinitesimal
homeostasis associated with each factor. (Note that if h ≡ 0, then the input–output
function is constant.)

Frobenius-König theory (Brualdi and Ryser 1991) (see Schneider 1977 for an his-
torical account) applied to the homeostasismatrix H implies that there are two constant
(n + 1) × (n + 1) permutation matrices P and Q such that

P H Q =

⎡

⎢⎢⎢
⎣

B1 ∗ · · · ∗
0 B2 · · · ∗
...

...

0 0 · · · Bm

⎤

⎥⎥⎥
⎦

(1.11)

where the square matrices B1, . . . , Bm are unique up to permutation. More precisely,
each block Bη cannot be brought into the form (1.11) by permutation of its rows and
columns. Hence

det(H) = det (B1) · · · det (Bm) or h = h1 · · · hm (1.12)
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is a unique factorization since hη = det(Bη) cannot further factor for each η; that is,
each det(Bη) is an irreducible homogeneous polynomial. Specifically:

Theorem 1.11 The polynomial hη = det(Bη) is irreducible (in the sense that it cannot
be factored as a polynomial) if and only if the block submatrix Bη is irreducible (in
the sense that Bη cannot be brought to the form (1.11) by permutation of rows and
columns of Bη).

Proof The decomposition (1.11) corresponds to the irreducible components in the
factorization (1.12) follows from (Brualdi and Ryser (1991), Theorem 4.2.6 (pp. 114–
115) and Theorem 9.2.4 (p. 296)). 	


A consequence of (1.12) and (1.8) is that for each η = 1, . . . , m there is a defining
condition for infinitesimal homeostasis given by the polynomial equation det(Bη) = 0.
Recall that the input–output function is implicitly defined in terms of the external input
I and det(Bη) is a homogeneous polynomial in the linearized coupling strengths f j,x�

evaluated at X(I). Hence, there are m different defining conditions for infinitesimal
homeostasis, hη(I) = 0, where each one gives a nonlinear equation that can be solved
for some I = I0. In practice, for a given model, it is unlikely that these equations can
be solved in closed form; however, it is possible that each defining condition can be
solved numerically. So, the decomposition of the homeostasis matrix H into blocks
Bη simplifies the solution of det(H) = 0.

Definition 1.12 Given the homeostasis matrix H of an input–output network G, we
call the unique irreducible diagonal blocks Bη in the decomposition (1.11) irreducible
components.We say that homeostasis inG isof type Bη if det(Bη) = 0 anddet(Bξ ) �= 0
for all ξ �= η.

1.6 Infinitesimal homeostasis classes

The next results assert that the irreducible components Bη of H determine two distinct
homeostasis classes (appendage and structural) and that one can associate a subnet-
work Kη of G with each Bη (see Sect. 4).

Let Bη be an irreducible component in the decomposition (1.11), where Bη is a
k × k diagonal block, that is, Bη has degree k. Since the entries of Bη are entries of
H , these entries have the form fρ,xτ ; that is, the entries are either 0 (if τ → ρ is not
an arrow in G), self-coupling (if τ = ρ), or coupling (if τ → ρ is an arrow in G).

Since P and Q in (1.11) are constant permutation matrices, all entries in each row
(resp. column) of Bη must lie in a single row (resp. column) of H . Hence, Bη has the
form

Bη =
⎡

⎢
⎣

fρ1,xτ1
· · · fρ1,xτk

...
. . .

...

fρk ,xτ1
· · · fρk ,xτk

⎤

⎥
⎦ (1.13)

It follows that the number of self-coupling entries of Bη are the same no matter which
permutation matrices P and Q are used in (1.11) to determine Bη. In Theorem 4.4 we
show that a k × k submatrix Bη has either k or k − 1 self-coupling entries.
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Definition 1.13 The homeostasis class of an irreducible component Bη of degree k is
appendage if Bη has k self-couplings and structural if Bη has k − 1 self-couplings.

Definition 1.14 The subnetworkKη of G associated with the homeostasis block Bη is
defined as follows. The nodes in Kη are the union of nodes p and q where f p,xq is
a nonzero entry in Bη and the arrows of Kη are the union of arrows q → p where
p �= q.

Theorem 4.7 implies that when Bη is appendage, the subnetwork Kη has k nodes
and Bη can be put in a standard Jacobian formwithout any distinguished nodes ((4.4)).
Also, when Bη is structural, the subnetwork Kη has k + 1 nodes and Bη can be put
in a standard homeostasis form with designated input node and output node ((4.3)).
Moreover, in this case, the subnetworkKη has no backward arrows. That is,Kη has no
arrows whose head is the input node or whose tail is the output node. See Remark 4.8
for details.

1.7 Combinatorial characterization of homeostasis

In Sects. 1.7.1 and 1.7.2 we define a number of combinatorial terms. These terms are
illustrated in the 12-node network in Fig. 2.

1.7.1 Simple nodes

Core input–output networks G have combinatorial properties that we now define and
exploit. The key ideas are the concepts of ιo-simple paths and super-simple nodes.

Definition 1.15 Let G be a core input–output network.

(a) A directed path connecting nodes ρ and τ is called a simple path if it visits each
node on the path at most once.

(b) An ιo-simple path is a simple path connecting the input node ι to the output node
o.

(c) A node in G is simple if the node lies on an ιo-simple path and appendage if the
node is not simple.

ρ 5

I οι ρ 1 ρ 3 ρ 4 ρ 6

τ 1 τ 2 τ 3 τ 4

ρ 2

Fig. 2 The 12-node example
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(d) A super-simple node is a simple node that lies on every ιo-simple path.

Nodes ι and o are super-simple since by definition these nodes are on every ιo-simple
path. Lemma 6.1 shows that super-simple nodes are well ordered (by downstream
ordering) and hence adjacent super-simple pairs of nodes can be identified.

1.7.2 Properties of appendage homeostasis

Characterization of appendage homeostasis networks requires the following defini-
tions.

Definition 1.16 Let G be a core input–output network.

(a) The appendage subnetworkAG ofG is the subnetwork consisting of all appendage
nodes and all arrows in G connecting appendage nodes.

(b) The complementary subnetwork of an ιo-simple path S is the subnetwork CS

consisting of all nodes not on S and all arrows in G connecting those nodes.
(c) Nodes ρi , ρ j in AG are path equivalent if there exists paths in AG from ρi to

ρ j and from ρ j to ρi . An appendage path component (or an appendage strongly
connected component) is a path equivalence class in AG .

(d) A cycle is a path whose first and last nodes are identical.
(e) Let K ⊂ AG be an appendage path component. A cycle is K-bad if it contains

both nodes in K and simple nodes, but it does not contain super-simple nodes. K
satisfies the no-cycle condition if there are no K-bad cycles with nodes in K.

Note that the definition of the no-cycle condition in Definition 1.16(e) is equivalent
to: Let K ⊂ AG be an appendage path component. We say that K satisfies the no cycle
condition if for every ιo-simple path S, nodes in K do not form a cycle with nodes in
CS\K.

In Sect. 5 we prove that every subnetwork Kη of G associated with an irreducible
appendage homeostasis block Bη consists of appendage nodes (Lemma 5.2), is an
appendage path component ofAG , and satisfies the no cycle condition (Theorem 5.4).
The converse is proved in Theorem 7.1.

Remark 1.17 Nodes in the appendage subnetwork AG can be written uniquely as the
disjoint union

AG = (A1∪̇ · · · ∪̇As
) ∪̇ (B1∪̇ · · · ∪̇Bt

)
(1.14)

where each Ai is an appendage path component that satisfies the no cycle condition
and each Bi is an appendage path component that violates the no cycle condition.
Moreover, each Ai (resp. Bi ) can be viewed as a subnetwork of AG by including the
arrows in AG that connect nodes in Ai (resp. Bi ). We call Ai a no cycle appendage
path component and Bi a cycle appendage path component.

1.7.3 A 12-node example illustrating combinatorial terms

The 12 nodes consist of the input node ι, the output node o, six simple nodesρ1, . . . , ρ6,
and four appendage nodes τ1, . . . , τ4. See Definition 1.15(c). The network has four
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Table 1 Four ιo-simple paths for network in Fig. 2

Simple path (S) Complementary subnetwork (CS )

ι → ρ1 → ρ2 → ρ3 → ρ4 → ρ5 → o {τ1, τ2, τ3, τ4, ρ6}
ι → ρ1 → ρ2 → ρ3 → ρ4 → ρ6 → o {τ1, τ2, τ3, τ4, ρ5}
ι → ρ1 → ρ3 → ρ4 → ρ5 → o {τ1, ρ2, τ2, τ3, τ4, ρ6}
ι → ρ1 → ρ3 → ρ4 → ρ6 → o {τ1, τ2, τ3, τ4, ρ5, ρ2}

ιo-simple paths (see Definition 1.15(b) and Table 1) and five super-simple nodes
ι, ρ1, ρ3, ρ4, o. See Definition 1.15(d).

The appendage subnetwork is τ1 ← τ2 ↔ τ3 ← τ4. See Definition 1.16(a). The
complementary subnetworks (see Definition 1.16(b)) are listed in Table 1. There are
three path components in the appendage subnetwork, namely, τ1, τ2 ↔ τ3, and τ4.
See Definition 1.16(c).

An example of a cycle containing both appendage and simple nodes is τ4 → ρ6 →
τ4. See Definition 1.16(d). Note that this cycle is τ4-bad. The two path components τ1
and τ2 ↔ τ3 satisfy the no-cycle condition given in Definition 1.16(e) since there are
no K-bad cycles for K = {τ1} or K = {τ2 ↔ τ3}.

1.7.4 Properties of structural homeostasis

Corollary 6.10 shows that if Bη corresponds to an irreducible structural block, thenKη

has two adjacent super-simple nodes (Proposition 6.9) and these super-simple nodes
are the input node � and the output node j in Kη. In addition, it follows from the
standard homeostasis form (Theorem 4.7) that the network Kη contains no backward
arrows. That is, no arrows ofKη go into the input node � nor out of the output node j .

We use the properties of structural homeostasis to construct all structural home-
ostasis subnetworks Kη up to core equivalence. First, we introduce the following
terminology.

Definition 1.18 The structural subnetwork SG of G is the subnetwork whose nodes
are either simple or in a cycle appendage path component Bi (see Remark 1.17) and
whose arrows are arrows in G that connect nodes in SG .

Lemma 5.5 implies that all structural homeostasis subnetworks are contained in
SG , which is an input–output network. That is, G and SG have the same simple, super-
simple, input, and output nodes. Lemma 6.2 shows that every non-super-simple simple
node lies between two adjacent super-simple nodes. Using this fact, we can define a
subnetwork L of SG for every pair of adjacent super-simple nodes.

Definition 1.19 Let ρ1, ρ2 be adjacent super-simple nodes.

(a) A simple node ρ is between ρ1 and ρ2 if there exists an ιo-simple path that includes
ρ1 to ρ to ρ2 in that order.

(b) The super-simple subnetwork, denoted L(ρ1, ρ2), is the subnetwork whose nodes
are simple nodes between ρ1 and ρ2 and whose arrows are arrows of G connecting
nodes in L(ρ1, ρ2).

123



62 Page 14 of 43 Y. Wang et al.

It follows that allL(ρ1, ρ2) are contained inSG . By Lemma 6.3 (d), each appendage
node in SG connects to exactly one L. This lets us expand a super-simple subnetwork
L ⊂ SG to a super-simple structural subnetwork L′ ⊂ SG as follows.

Definition 1.20 Let ρ1 and ρ2 be adjacent super-simple nodes in G. The super-simple
structural subnetwork L′(ρ1, ρ2) is the input–output subnetwork consisting of nodes
in L(ρ1, ρ2)∪B where B consists of all appendage nodes that form cycles with nodes
in L(ρ1, ρ2); that is, all cycle appendage path components that connect to L(ρ1, ρ2).
Arrows of L′(ρ1, ρ2) are arrows of G that connect nodes in L′(ρ1, ρ2). Note that ρ1
is the input node and ρ2 is the output node of L′(ρ1, ρ2).

In Sect. 6 we prove that every subnetwork Kη of G associated with an irre-
ducible structural homeostasis block Bη is a super-simple structural subnetwork
(Theorem 6.11). The converse is proved in Theorem 7.2.

1.8 Algorithm for enumerating homeostasis subnetworks

Before finding homeostasis in a model (say a biochemical model) one must choose
input and output nodes (a modeling assumption) and reduce the resulting input–output
network to a core network. Then we apply the following algorithm.
Step 0:Webegin by identifying the ιo-simple paths in the core network and thus identi-
fying the simple, super-simple, and appendage nodes. We also identify the appendage
subnetwork AG .
Step 1: Determining the appendage homeostasis subnetworks from AG . Let

A1 , . . . , As (1.15)

be the no cycle appendage path components of AG (see Remark 1.17). Theorem 7.1
implies that these appendage path components are the subnetworksKη that correspond
to appendage homeostasis blocks. In addition, there are s independent defining condi-
tions for appendage homeostasis given by the determinants of the Jacobian matrices
det(JAi ) = 0 for i = 1, . . . , s.
Step 2: Determining the structural homeostasis subnetworks from SG (see Defini-
tion 1.18). Let ι = ρ1 > ρ2 > · · · > ρq+1 = o be the super-simple nodes in SG
in downstream order. Theorems 6.11 and 7.2 imply that up to core equivalence the q
super-simple structural subnetworks

L′ (ι, ρ2) , L′ (ρ2, ρ3) , . . . , L′ (ρq−1, ρq
)
, L′ (ρq , o

)
(1.16)

are the subnetworks Kη that correspond to structural homeostasis blocks. In
addition, there are q defining conditions for structural homeostasis blocks given
by the determinants of the homeostasis matrices of the input–output networks:
det

(
H(L′(ρi , ρi+1))

) = 0 for i = 1, . . . , q.
Therefore, the m = s + q subnetworks listed in (1.15) and (1.16) enumerate the

appendage and structural homeostasis subnetworks in G.
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τ

οι

(a) negative feedback loop

ρ οι

(b) kinetic motif

ρ οι

(c) (incoherent) feedforward loop

Fig. 3 Homeostasis types in three-node networks. a Three-node core network exhibiting Haldane (ι → o)
and null-degradation (τ ) homeostasis. b Three-node core network exhibiting Haldane (ι → ρ; ρ → o)

homeostasis. c Three-node core network exhibiting degree 2 structural homeostasis. According to Golubit-
sky and Wang (2020) this is a list of all three-node core networks up to core equivalence

1.9 Low degree homeostasis types

Here we specialize our discussion to the low degree cases k = 1 and k = 2 where we
determine all such homeostasis types (see Fig. 3). The first three types appear in three
node networks and are given in the classification in Golubitsky andWang (2020). The
fourth type has degree k = 2, but can only appear in networks with at least four nodes
(see Fig. 4a). We note that the lowest degree of a structural homeostasis block with an
appendage node (that is, L′ � L) is k = 3 (see Fig. 4b).

Degree 1 no cycle appendage homeostasis (null-degradation)

This corresponds to the vanishing of a degree 1 irreducible factor of the form ( fτ,xτ ).
The single node τ is a no cycle appendage path component. Apply Step 1 in the
algorithm in Sects. 1.7–1.8 to Fig. 3a.

Degree 1 structural homeostasis (Haldane)

This corresponds to the vanishing of a degree 1 irreducible factor of the form ( f j,x�
)

whose associated subnetwork is L′(�, j) of the form � → j . Apply Step 2 in the
algorithm in Sects. 1.7–1.8 to Fig. 3b.

Degree 2 structural homeostasis (feedforward loop)

This corresponds to a three-node input–output subnetwork L′(�, j) with input node
�, output node j , and regulatory node ρ, where � and j are adjacent super-simple and
ρ is a simple node between the two super-simple nodes. It follows that both paths
� → ρ → j and � → j are in L′ = L. Hence, L′ is a feedforward loop motif.
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2

οι

τ1τ

(a) Haldane (ι → o); Degree 2 no cycle
appendage ( τ2 ⇔ τ1)

τ

οι ρ

(b) Structural with appendage node

Fig. 4 Homeostasis types in four-node networks. a Smallest network exhibiting degree 2 no cycle appendage
homeostasis. b Smallest network exhibiting appendage node in structural homeostasis

Homeostasis occurs when

det
(
H(L′(�, j))

) = fρ,x�
f j,xρ − f j,x�

fρ,xρ = 0

Apply Step 2 in the algorithm in Sects. 1.7–1.8 to Fig. 3c.

Degree 2 no cycle appendage homeostasis

This is associated with a two-node appendage path component A = {τ1, τ2} with
arrows τ1 → τ2 and τ2 → τ1. Homeostasis occurs when

det (J (A)) = fτ1,xτ1
fτ2,xτ2

− fτ1,xτ2
fτ2,xτ1

= 0

Apply Step 1 in the algorithm in Sects. 1.7–1.8 to Fig. 4a.

1.10 12-node artificial network example

We now return to the artificial example in Sect. 1.7.3 to illustrate the algorithm for
enumerating homeostasis blocks. The network shown in Fig. 2 has input node (ι), out-
put node (o), six simple nodes (ρ1, . . . , ρ6), and four appendage nodes (τ1, τ2, τ3, τ4).
The input–output network G in Fig. 2 has four ιo-simple paths (see Table 1) and
six homeostasis subnetworks that can be found in two steps using the algorithm in
Sect. 1.8.
Step 1:G has three appendage path components (A1 = {τ1},A2 = {τ2, τ3},B1 = {τ4})
in AG . Among these, A1 and A2 satisfy the no cycle condition, whereas B1 does
not since τ4 forms a cycle with simple node ρ6. Hence, there are two appendage
homeostasis subnetworks given by A1 and A2.
Step 2: G has five super-simple nodes (in downstream order, they are ι, ρ1, ρ3, ρ4, o).
The five super-simple nodes lead to four structural homeostasis subnetworks given
(up to core equivalence) by L′(ι, ρ1), L′(ρ1, ρ3), L′(ρ3, ρ4), L′(ρ4, o).

Table 2 lists the six homeostasis subnetworks in G, which give the six irreducible
factors of det(H) where H is the 11× 11 homeostasis matrix of G. The factorization
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Table 2 Homeostasis subnetworks in Fig. 2

Class Homeostasis subnetworks Name

Appendage A1 = {τ1} Null-degradation

Appendage A2 = {τ1 ⇔ τ2} No cycle appendage

Structural L′(ι, ρ1) = {ι → ρ1} Haldane

Structural L′(ρ1, ρ3) = {ρ1, ρ2 ρ3} Feedforward loop

Structural L′(ρ3, ρ4) = {ρ3 → ρ4} Haldane

Structural L′(ρ4, o) = {ρ4, ρ5, ρ6, τ4, o} Degree 4 structural

of the degree 11 homogeneous polynomial det(H) is given by

det(H) = ± fτ1,xτ1
det (B2) fρ1,xι det (B4) fρ4,xρ3

det (B6)

where

B2 =
[

fτ2,xτ2
fτ2,xτ3

fτ3,xτ2
fτ3,xτ3

]
B4 =

[
fρ2,xρ1

fρ2,xρ2

fρ3,xρ1
fρ3,xρ2

]

B6 =

⎡

⎢
⎢
⎣

fρ5,xρ4
fρ5,xρ5

0 0
fρ6,xρ4

0 fρ6,xρ6
fρ6,xτ4

0 0 fτ4,xρ6
fτ4,xτ4

0 fo,xρ5
fo,xρ6

0

⎤

⎥
⎥
⎦

1.11 A biological example

The first step in applying our algorithm for finding infinitesimal homeostasis to a bio-
logical input–output network is to convert the network to a mathematical input–output
network and then, if necessary, reducing the math network to a core network. See Gol-
ubitsky andWang (2020) for the application of our methods to three-node biochemical
systems. As another application, we consider the five-nodeE. coli chemotaxis network
studied in Ma et al. (2009) (see Fig. 5, left panel). In this example the input node is
the Receptor complex and the output node is the response regulator CheY.

The corresponding 5-node mathematical network is shown in the middle panel of
Fig. 5. This network can be reduced to a 4-node core network (Fig. 5, right panel) by
removing the node τ3, which is not downstream from the input node, and the arrow
τ3 → τ2. The remaining nodes are both downstream from ι and upstream from o and
hence form a core network Gc (see Definition 1.7).

The core network Gc has one ιo-simple path ι → o with ι and o being the super-
simple nodes. The appendage subnetwork AGc consists of two appendage nodes τ1
and τ2. We enumerate the homeostasis blocks in two steps:

1. AGc has two appendage path components (A1 = {τ1},A2 = {τ2}) and each compo-
nent satisfies the no-cycle condition. Hence, there are two appendage homeostasis
subnetworks given by A1 and A2.
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Fig. 5 A biological network example. (Left) The E. coli chemotaxis network from Ma et al. (2009). (Mid-
dle) The mathematical input–output network G corresponding to the E. coli network. (Right) The core
subnetwork Gc of G

2. The two super-simple nodes lead to only one structural homeostasis subnetwork
given by L(ι, o) = L′(ι, o), which is the ιo-simple path.

These three homeostasis subnetworks give degree 1 factors of det(H) where H is the
3 × 3 homeostasis matrix of Gc. It follows that two types of homeostasis can occur
in this E. coli network: null-degradation homeostasis occurs when fτ1,xτ1

or fτ2,xτ2
vanish (that is, the linearized internal dynamics of Methylation level or CheB is zero)
and Haldane homeostasis occurs when fo,xι = 0 (that is, the coupling from the input
node Receptor complex to the output node CheY is 0).

The analysis in Ma et al. (2009) proceeds along a slightly different tack. There the
authors simplify the network to 3-nodes by combining τ1 and τ2. This changes the
outcome whereby null-degradation can only occur in one way in their formulation and
it is through the simultaneous occurrence of null-degradation in τ1 and τ2.

1.12 Remark on chairs

Nijhout et al. (2014) observed that homeostasis often appears in models in the form
of a chair. That is, as I varies, the input–output function x0(I) has the piecewise
linear description: increases linearly, is approximately constant, and then increases
linearly again. Golubitsky and Stewart (2017) observed that it follows from elementary
catastrophe theory that smooth chair singularities have the normal form I3, defining
conditions

x ′
o (I0) = x ′′

o (I0) = 0

and nondegeneracy condition x ′′′
0 (I0) �= 0. Moreover, Golubitsky and Wang (2020)

noted that if x ′
0(I) = g(I)h(I), where g(I0) �= 0, then the defining conditions for a
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chair singularity are equivalent to

h (I0) = h′ (I0) = 0 and h′′ (I0) �= 0 (1.17)

It follows from Lemma 1.5 and (1.12) that a chair singularity for infinitesimal home-
ostasis is of type Bη if hη(I) satisfies (1.17) at I = I0.

1.13 Remarks on the interpretation of structural and appendage homeostasis

We claim that structural homeostasis balances fluxes along simple paths from one
super-simple node to the next. This is defined by det(H(L′(ρ j , ρ j+1))) and gives a
feedforward interpretation to structural homeostasis. See Definition 1.20. The balanc-
ing can be weighted by appendage nodes that appear in L′(ρ j , ρ j+1)\L(ρ j , ρ j+1).

On the other hand, appendage homeostasis balances fluxes in a given appendage
path component. Each of these path components has input from a super-simple node
and output to an upstream super-simple node, and this gives a feedback interpretation.

1.14 Structure of the paper

In Sect. 2 we show that infinitesimal homeostasis in the original system (1.1) occurs
in a network if and only if infinitesimal homeostasis occurs in the core network for
the associated frozen system. See Theorem 2.4. We discuss when backward arrows
can be ignored when computing the determinant of the homeostasis matrix and the
limitations of this procedure. See Corollary 1.10. In Sect. 3 we relate the form of
the summands of the determinant of the homeostasis matrix H with the form of ιo-
simple paths of the input–output network. See Theorem 3.2. In Theorem 3.3 we also
discuss ‘core equivalence’. In Sect. 4 we prove the theorems about the appendage and
structural classes of homeostasis. SeeDefinition 4.3, Theorem4.4, and the normal form
Theorem 4.7. In Sect. 5 we prove the necessary conditions that appendage homeostasis
must satisfy. See Theorem 5.4. In Sect. 6, specifically Sect. 6.5, we introduce an
ordering of super-simple nodes that leads to a combinatorial definition of structural
blocks. See Definition 1.19 and Definition 1.20. The connection of these blocks with
the subnetworks Kη obtained from the homeostasis matrix is given in Corollary 6.7
and Theorem 6.11. In Sect. 7 we summarize our algorithm for finding infinitesimal
homeostasis directly from the input–output network G. It also gives a topological
classification of the different types of infinitesimal homeostasis that the network G
can support.

2 Core networks

Let G be an input–output network with input node ι, output node o, and regulatory
nodes ρ j . We use the notions of upstream and downstream nodes to construct a core
subnetwork Gc of G.
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The stable equilibrium (X0, I0) of the system of differential Eq. (1.1) satisfy a
system of nonlinear Eq. (1.4), that can be explicitly written as

fι
(
xι, xρ, xo, I

) = 0

fρ
(
xι, xρ, xo

) = 0

fι
(
xι, xρ, xo

) = 0

(2.1)

We start by partitioning the regulatory nodes ρ into three types:

– those nodes σ that are both upstream from o and downstream from ι,
– those nodes d that are not downstream from ι,
– those nodes u that are downstream from ι and not upstream from o.

Based on this partition, the system (2.1) has the form

fι (xι, xσ , xu, xd , xo, I) = 0

fσ (xι, xσ , xu, xd , xo) = 0

fu (xι, xσ , xu, xd , xo) = 0

fd (xι, xσ , xu, xd , xo) = 0

fo (xι, xσ , xu, xd , xo) = 0

(2.2)

In Lemma 2.1 we make this form more explicit.

Lemma 2.1 The definitions of σ , u, and d nodes imply the admissible system (2.2) has
the form

ẋι = fι (xι, xσ , xd , xo, I)

ẋσ = fσ (xι, xσ , xd , xo)

ẋu = fu (xι, xσ , xu, xd , xo)

ẋd = fd (xd)

ẋo = fo (xι, xσ , xd , xo)

(2.3)

Specifically, arrows of type σ → d, ι → d, u → d, o → d, u → σ , u → o, u → ι

do not exist.

Proof We list the restrictions on (2.2) given first by the definition of d and then by the
definition of u.

σ �→ d If a node in σ connects to a node in d, then there would be a path from ι to
a node in d and that node in d would be downstream from ι, a contradiction.
Therefore, fd is independent of xσ .

ι �→ d Similarly, the node ι cannot connect to a node in d, because that node would
then be downtream from ι, a contradiction. Therefore, fd is independent of
xι.

o �→ d If there is an arrow o → d, then there is a path ι → σ → o → d. Hence
there is a path ι → d and that is not allowed. Therefore, fd is independent of
xo.
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d

ι οσ

u

(a) Partision of input-output network
into node types.

σι ο

(b) Partition of corenet work into node types.

Fig. 6 Nodes and arrows in general network and core network

u �→ d Note that nodes in u must be downstream from ι. Hence, there cannot be
a connection from u to d or else there would be a connection from ι to d.
Therefore, fd is independent of xu .

u �→ σ if a node in u connects to a node in σ , then there would be a path from
u to o and u would be upstream from o, a contradiction. Therefore, fσ is
independent of xu .

u �→ o Suppose a node in u connects to o. Then that node is upstream from o, a
contradiction. Therefore, fo is independent of xu .

u �→ ι Finally, if u connects to ι, then u connects to o, a contradiction. Therefore, fι
is independent of xu .

The remaining types of connections can exist in Gc. Nodes and arrows that can exist
in Gc are shown in Fig. 6b. 	


Lemma 2.2 Suppose X0 = (x∗
ι , x∗

σ , x∗
u , x∗

d , x∗
o ) is a stable equilibrium of (2.3). Then

the core admissible system (obtained by freezing the xd nodes at x∗
d and deleting the

xu nodes)
ẋι = fι

(
xι, xσ , x∗

d , xo, I
)

ẋσ = fσ
(
xι, xσ , x∗

d , xo
)

ẋo = fo
(
xι, xσ , x∗

d , xo
) (2.4)

has a stable equilibrium at Y0 = (x∗
ι , x∗

σ , x∗
o ).

Proof It is straightforward that Y0 is an equilibrium of (2.4). Reorder coordinates
(ι, σ, u, d, o) to (ι, σ, o, d, u). Then Lemma 2.1 implies that the Jacobian J of (2.3)
has the form

J =

⎡

⎢⎢
⎢⎢
⎣

fι,xι fι,xσ 0 fι,xd fι,xo

fσ,xι fσ,xσ 0 fσ,xd fσ,xo

fu,xι fu,xσ fu,xu fu,xd fu,xo

0 0 0 fd,xd 0
fo,xι fo,xσ 0 fo,xd fo,xo

⎤

⎥⎥
⎥⎥
⎦

(2.5)
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and on swapping the u and o coordinates we see that J is similar to

J1 =

⎡

⎢⎢⎢
⎢
⎣

fι,xι fι,xσ fι,xo fι,xd 0
fσ,xι fσ,xσ fσ,xo fσ,xd 0
fo,xι fo,xσ fo,xo fo,xd 0
0 0 0 fd,xd 0

fu,xι fu,xσ fu,xo fu,xd fu,xu

⎤

⎥⎥⎥
⎥
⎦

(2.6)

It follows that the eigenvalues of J at X0 are the eigenvalues of fd,xd , fu,xu , and the
eigenvalues of the Jacobian of (2.4) at Y0. Since the eigenvalues of J1 have negative
real part, the equilibrium Y0 is stable. 	

Lemma 2.3 Suppose that G is an input–output network with core network Gc. Suppose
that the core admissible system

ẋι = fι (xι, xσ , xo, I)

ẋσ = fσ (xι, xσ , xo)

ẋo = fo (xι, xσ , xo)

(2.7)

has a stable equilibrium at Y0 = (x∗
ι , x∗

σ , x∗
o ) and a point of infinitesimal homeostasis

at I0. Then the admissible system for the original network G can be taken to be

ẋι = fι (xι, xσ , xo, I)

ẋσ = fσ (xι, xσ , xo)

ẋd = −xd

ẋu = −xu

ẋo = fo (xι, xσ , xo)

(2.8)

has a stable equilibrium at X0 = (x∗
ι , x∗

σ , 0, 0, x∗
o ) and infinitesimal homeostasis at

I0.

Theorem 2.4 Let xo(I) be the input–output function of the admissible system (2.3)
and let xc

o(I) be the input–output function of the associated core admissible system
(2.4). Then the input–output function xc

o(I) associated with the core subnetwork has a
point of infinitesimal homeostasis at I0 if and only if the input–output function xo(I)

associated with the original network has a point of infinitesimal homeostasis at I0.
More precisely,

x ′
o(I) = k(I) xc ′

o (I) (2.9)

where k(I0) �= 0.

Proof It follows from Lemma 1.5 that x ′
o(I0) = 0 if and only if

det

⎡

⎢⎢
⎣

fσ,xι fσ,xσ 0 fσ,xd

fu,xι fu,xσ fu,xu fu,xd

0 0 0 fd,xd

fo,xι fo,xσ 0 fo,xd

⎤

⎥⎥
⎦ = 0
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if and only if

det
(

fu,xu

)
det

⎡

⎣
fσ,xι fσ,xσ fσ,xd

0 0 fd,xd

fo,xι fo,xσ fo,xd

⎤

⎦ = 0

if and only if

det
(

fu,xu

)
det

(
fd,xd

)
det

[
fσ,xι fσ,xσ

fo,xι fo,xσ

]
= 0

Both matrices fu,xu and fd,xd are triangular with negative diagonal entries and thus
have nonzero determinants. It then follows from Lemma 1.5 that xc ′

o (I0) = 0 if and
only if

det

[
fσ,xι fσ,xσ

fo,xι fo,xσ

]
= 0 (2.10)

is satisfied. 	

It follows from Theorem 2.4 and Lemma 2.3 that classifying infinitesimal home-

ostasis for networks G is identical to classifying infinitesimal homeostasis for the core
subnetwork Gc. Specifically, an admissible system with infinitesimal homeostasis for
the core subnetwork yields, by Lemma 2.3, an admissible system with infinitesimal
homeostasis for the original network which in turn yields the original system for the
core subnetwork with infinitesimal homeostasis by Theorem 2.4.

Remark 2.5 Corollary 1.10 implies that backward arrows can be eliminatedwhen com-
puting zeros of det(H). These arrows cannot be eliminated when computing equilibria
of the network equations or their stability. See (2.13) in Example 1.

Example 1 Consider the network in Fig. 7. Assume WLOG that an admissible vector
field for this network

ẋι = fι
(
xι, xρ, I)

ẋρ = fρ
(
xι, xρ

)

ẋo = fo
(
xρ, xo

) (2.11)

has an equilibrium at the origin (X0, I0) = (0, 0); that is

fι(0, 0, 0) = fρ(0, 0) = fo(0, 0) = 0.

Begin by noting that the Jacobian of (2.11) is

J =
⎡

⎣
fι,xι fι,xρ 0
fρ,xι fρ,xρ 0
0 fo,xρ fo,xo

⎤

⎦ (2.12)

The origin is a linearly stable equilibrium if and only if

fo,x0 < 0 fι,xι + fρ,xρ < 0 fι,xι fρ,xρ − fι,xρ fρ,xι > 0 (2.13)
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Fig. 7 Backward arrow.
Network with a (dashed)
backward arrow

οι ρ

Whether the third inequality in (2.13) holds depends on the value of the backward
coupling fι,xρ = 0. However, whether infinitesimal homeostasis (x ′

o(0) = 0) occurs
is independent of the backward coupling since

det

[
fρ,xι fρ,xρ

fo,xι fo,xρ

]
= det

[
fρ,xι fρ,xρ

0 fo,xρ

]
= fρ,xι fo,xρ = 0

3 Determinant formulas

Let H be the (n + 1) × (n + 1) homeostasis matrix (1.6) of the input–output network
G with input node ι, n regulatory nodes ρ j , and output node o, and admissible system
(1.1).

Lemma 3.1 Every nonzero summand of det(H) corresponds to a unique ιo-simple
path and has all coupling strengths within this ιo-simple path as its factors.

Proof Each nonzero summand in det(H) has n + 1 factors and each factor is the
strength of a coupling arrow or of the linearized internal dynamics of a node. We can
write H as

H =

⎡

⎢⎢⎢
⎢⎢
⎣

ι

↓
ρ1
↓

ρn−1
↓

ρn

↓
f1,ι f1,1 · · · f1,n−1 f1,n
f2,ι f2,1 · · · f2,n−1 f2,n
...

...
...

...
...

fn,ι fn,1 · · · fn,n−1 fn,n

fo,ι fo,1 · · · fo,n−1 fo,n

⎤

⎥⎥⎥
⎥⎥
⎦

| ← ρ1
| ← ρ2

| ← ρn

| ← o

(3.1)

The columns of H correspond to n + 1 nodes in the order ι, ρ1, . . . , ρn and the rows
of H correspond to n + 1 nodes in the order ρ1, . . . , ρn, o. The entry f j,ι = fρ j ,xι

in column ι is the linearized coupling strength of an arrow ι → ρ j . The entry fo,k =
fo,xρk

in row o is the linearized coupling strength of an arrow ρk → o. The entry
f j,k = fρ j ,xρk

is the linearized coupling strength of an arrow ρk → ρ j . If j = k,
the entry fk,k = fρk ,xρk

is the linearized internal dynamics of node k. Note that each
summand in the expansion of det(H) has one factor associated with each column of
H and one factor associated with each row of H .

Fix a summand. By assumption there is a unique factor associated with the first
column. If this factor is fo,ι, we are done and the simple path is ι → o. So assume the
factor in the first column is fk,ι, where 1 ≤ k ≤ n. This factor is associated with the
arrow ι → ρk .

Next there is a unique factor in the column called ρk and that factor corresponds to
an arrow ρk → ρ j for some node ρ j . If node ρ j is o, the summand includes ( fk,ι fo,k)

and the associated simple path is ι → ρk → o. Hence we are done. If not, we assume
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1 ≤ j ≤ n. Since there is only one summand factor in each row of H , it follows that
k �= j . This summand is then associated with the path ι → ρk → ρ j and contains the
factors ( fk,ι f j,k).

Proceed inductively. By the pigeon hole principle we eventually reach a node that
connects to o. The simple path that is associated to the given summand is unique
because we start with the unique factor in the summand that has an arrow whose tail
is ι and the choice of ρi is unique at each step. Moreover, every coupling within this
simple path is a factor of the given summand. 	


The determinant formula (3.2) for det(H) in Theorem 3.2 is obtained by indexing
the sum by the ιo-simple paths of G as described in Lemma 3.1.

Theorem 3.2 Suppose G has k ιo-simple paths S1, . . . , Sk with corresponding com-
plementary subnetworks C1, . . . , Ck. Then

(a) The determinant formula holds:

det(H) =
k∑

i=1

FSi GCi (3.2)

where FSi is the product of the coupling strengths within the ιo-simple path Si and
GCi is a function of coupling strengths (including self-coupling strengths) from
Ci .

(b) Specifically,
GCi = ± det

(
JCi

)
(3.3)

where JCi is the Jacobian matrix of the admissible system corresponding to the
complementary subnetwork Ci . Generically, a coupling strength in G cannot be
a factor of GCi .

Proof (a) Let Si be the r + 2 node ιo-simple path ι → j1 → · · · → jr → o and let

FSi = fi1,xι fi2,xi1
· · · fir ,xir−1

fo,xir

be the product of all coupling strengths in Si . By Lemma 3.1, det(H) has the form
(3.2). We claim that GCi is a function depending only on the coupling strengths
(including self-coupling strengths) from the complementary subnetworkCi . Since
each summand in the expansion of det(H) has only one factor in each column of
H and one factor in each row of H , the couplings in GCi must have different tails
and heads from the ones that appear in the simple path. Hence, GCi is a function
of couplings (including self-couplings) between nodes that are not in the simple
path Si , as claimed.

(b) Next we show that up to sign GCi is the determinant of the Jacobian matrix of
the admissible system for the subnetwork Ci (see (3.3)). To this end, relabel the
nodes so that the ιo-simple path Si is

ι → 1 → · · · → r → o
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and the nodes in the complementary subnetworkCi are labeled r +1, . . . , n. Then

FSi = (−1)χ f1,xι f2,x1 · · · fr ,xr−1 fo,xr

where χ permutes the nodes of the ιo-simple path Si to 1, . . . , r . The summands
of det(H) associated with Si are FSi GCi , where

GCi =
∑

σ

(−1)σ fr+1,xσ(r+1) · · · fn,xσ(n)
(3.4)

and σ is a permutation of the indices r + 1, . . . , n. Observe that the right hand
side of (3.4) is just det(JCi ) up to sign.

Lastly, we show that no coupling strength in G can be a factor of det(JCi ). The
coupling strengths correspond to the arrows and the self-coupling strengths cor-
respond to the nodes. The self-coupling strengths are the diagonal entries of JCi ,
which are generically nonzero. If we set all coupling strengths to 0 (that is, assume
they are neutral), then the off-diagonal entries of det(JCi ) are 0 and det(JCi ) �= 0.
Now suppose that one coupling strength is a factor of det(JCi ), then det(JCi ) = 0
if that coupling is neutral and we have a contradiction. It follows that no coupling
strength can be a factor of det(JCi ). 	


Theorem 3.3 Two core networks are core equivalent if and only if they have the same
set of ιo-simple paths and the Jacobian matrices of the complementary subnetworks
to any simple path have the same determinant up to sign.

Proof ⇒ Let G1 and G2 be core networks and assume they are core equivalent. There-
fore, det(B1) = det(B2) and by Theorem 3.2

det (B1) ≡
k∑

i=1

FSi GCi =
�∑

j=1

FTj G D j ≡ det (B2)

If a simple path of G1 were not a simple path of G2, the equality would fail; that is, the
polynomials would be unequal. Therefore, wemay assume � = k and (by renumbering
if needed) that Ti = Si for all i . It follows that

k∑

i=1

FSi

(
GCi − G Di

) = 0

Since the FSi are linearly independent it follows that GCi = G Di for all i ; that is,
det(JCi ) = ± det(JDi ) where JCi and JDi are the Jacobian matrices associated with
G1 and G2. Hence the Jacobian matrices of the two complementary subnetworks have
the same determinant up to sign.
⇐ The converse follows directly from Theorem 3.2. 	
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Corollary 3.4 Two core networks are core equivalent if they have the same set of ιo-
simple paths and the same complementary subnetworks to these simple paths.

Proof Follows directly from Theorem 3.3. 	


4 Infinitesimal homeostasis classes

In this section we prove that there are two classes of infinitesimal homeostasis:
appendage and structural. See Definition 4.3 and Theorem 4.4. The section ends with
a description of a ‘normal form’ for appendage and structural homeostasis blocks.
These ‘normal forms’ are given in Theorem 4.7.

Section 5 discusses graph theoretic attributes of appendage homeostasis and
Sect. 6.5 discusses graph theoretic attributes of structural homeostasis. This mate-
rial leads to the conclusions in Sect. 7 where it is shown that each structural block is
generated by two adjacent super-simple nodes and each appendage block is generated
by a path component of the subnetwork of appendage nodes.

Recall from (1.11) that we can associate with each homeostasis matrix H a set of
m irreducible square blocks B1, . . . , Bm where

P H Q =

⎡

⎢⎢⎢
⎣

B1 ∗ · · · ∗
0 B2 · · · ∗
...

...

0 0 · · · Bm

⎤

⎥⎥⎥
⎦

(4.1)

and P and Q are (n + 1) × (n + 1) permutation matrices.

Lemma 4.1 Let H be an (n + 1) × (n + 1) homeostasis matrix and let P and Q be
(n + 1) × (n + 1) permutation matrices. Then the rows (and columns) of P H Q are
the same as the rows (and columns) of H up to reordering. Moreover, the set of entries
of H are identical with the set of entries of P H Q.

Proof The set of rows of P H are identical to the set of rows of H . A row of H Q
contains the same entries as the corresponding row of H—but with entries permuted.
The second statement follows from the first. 	


Recall that the entries of the homeostasismatrix H , defined in (1.6) for an admissible
system of a given input–output network G, appear in three types: 0, coupling, and self-
coupling. The following lemma is important in our discussion of homeostasis types.

Lemma 4.2 The number of self-coupling entries in each diagonal block Bη is an invari-
ant of the homeostasis matrix H.

Proof Suppose H is transformed in two different ways to upper triangular form (4.1).
Then one obtains two sets of diagonal blocks B1, . . . , Bm and B̃1, . . . B̃m̃ . Since one
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set of blocks is transformed into the other by a permutation, it follows that the number
of blocks in each set is the same. Moreover, the blocks are related by

B̃M(ν) = Pν Bν Qν

where M is a permutation of the index sets and for each ν, Pν and Qν are permutation
matrices. It follows from Lemma 4.1 that the size and the number of self-coupling
entries of the square matrices B̃M(ν) and Bν are identical. 	


Definition 1.13 defined two homeostasis classes. We repeat that definition here but
with more specificity.

Definition 4.3 Let Bη be an irreducible k × k square block associated with the (n +
1) × (n + 1) homeostasis matrix H in (4.1). The homeostasis class associated with
Bη is appendage if Bη has k self-coupling entries and structural if Bη has k − 1
self-coupling entries.

Theorem 4.4 shows that each square block is either appendage or structural.

Theorem 4.4 Let H be an (n + 1) × (n + 1) homeostasis matrix and let Bη be a
k × k square diagonal block of the matrix P H Q given in (4.1), where P and Q
are permutation matrices and k ≥ 1. Then Bη has either k − 1 self-couplings or k
self-couplings.

Proof Note that either

P H Q =
[

Bη D
0 E

]
or P H Q =

⎡

⎣
A B C
0 Bη D
0 0 E

⎤

⎦ (4.2)

where A is an nonempty square matrix. In the first case in (4.2) Bη has single self-
coupling entries in each of either k − 1 or k columns.

We assume the second case in (4.2). From Lemma 4.1 it follows that P H Q has
exactly one row and exactly one column without a self-coupling entry. Hence, if Bη

has more than k self-couplings, then Bη and hence H have a row with at least two
self-couplings, which is not allowed.

We show by contradiction that Bη has at least k − 1 self-couplings. Suppose Bη

has � ≤ k − 2 self-coupling entries. Note that there are � self-couplings in Bη by
assumption, and there are no self-couplings in the 0 block. Let b be the number
of self-couplings in B. Then b + � is the number of self-couplings in [B Bη 0]t .
Now, either every column or every column but one in [B Bη 0]t has a self-coupling.
Therefore,

k − 1 ≤ b + � ≤ k or k − � − 1 ≤ b ≤ k − �

We consider the two cases:

– Assume b = k − � − 1. Then there exists one column in [B Bη 0]t that has no
self-couplings. Therefore, every column in A has a self-coupling. Since B has
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a self-coupling, it follows that one row in [A B C] has two self-couplings—a
contradiction.

– Assume b = k −�. Since [B Bη 0]t has self-couplings in every column, it follows
that A has a self-coupling in every column save at most one. It then follows that
A has a self-coupling in every row save at most one. Since k − � ≥ 2, at east one
row in [A B C] has two self-couplings—also a contradiction.

Therefore, � = k − 1 or � = k. 	

We build on Theorem 4.4 by putting Bη into a standard form of type (4.6). Its proof

uses the next two lemmas about shapes and summands. A shape E is a subspace of
m × n matrices E = (ei j ), where ei j = 0 for some fixed subset of indices i, j . A
square shape D is nonsingular if det(D) �= 0 for some D ∈ D. A summand of a
nonsingular shape D is a nonzero product in det(D) for some D ∈ D.

Lemma 4.5 The nonzero summands of det(P H Q) and det(H) are identical.

Proof Since det(P) = det(Q) = ±1, it follows that det(P H Q) = ± det(H). Hence,
the nonzero summands must be identical. 	

Lemma 4.6 Suppose B and C are nonsingular shapes. Let E be the shape whose size
is chosen so that D is the shape consisting of matrices

D =
[

B E
0 C

]

where B ∈ B, C ∈ C, E ∈ E . Then each summand of D is the product of a summand
of B with a summand of C.

Proof Suppose d is a summand of D. The product d cannot have any entries in the 0
block of D. Hence, d = bc. Moreover, there is a matrix B ∈ B such that det(B) = b
and a matrix C ∈ C such that det(C) = c. In fact, we can assume that the nonzero
entries of B are precisely the entries in the nonzero product b. Similarly for c. Since
det(D) �= 0 and det(D) = det(B) det(C), it follows that det(B) = b �= 0 and
det(C) = c �= 0. Therefore, b and c are summands of B and C, respectively. Con-
versely, assume that b and c are summands and conclude that d is also a summand.

	

It follows from Lemma 4.1 that the number of each type of entry in P H Q is

the same as the number in H . Moreover, generically, the coupling and self-coupling
entries are nonzero. It follows from (1.6) that the n superdiagonal entries of H are
self-coupling entries and these are the only self-coupling entries in H . In addition, H
has one self-coupling entry in each row except the last row, and one self-coupling in
each column except the first column. By Lemma 4.1 there are exactly n self-coupling
entries in P H Q with one in each row but one, and one in each column but one. We
use these observations in the proof of Theorem 4.7.

Theorem 4.7 Let H be an (n + 1) × (n + 1) homeostasis matrix. Suppose det(H)

has a degree k ≥ 1 irreducible factor det(Bη), where Bη be a k × k block diagonal
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submatrix of the matrix P H Q given in (4.1) and P and Q are permutation matrices.
If Bη has k − 1 self-coupling entries, then we can assume that Bη has the form

⎡

⎢⎢⎢
⎣

fρ1,xρ1
· · · fρ1,xρk−1

fρ1,x�

...
. . .

...
...

fρk−1,xρ1
· · · fρk−1,xρk−1

fρk−1,x�

f j,xρ1
· · · f j,xρk−1

f j,x�

⎤

⎥⎥⎥
⎦

(4.3)

and if Bη has k self-coupling entries, then we can assume that Bη has the form

⎡

⎢
⎣

fρ1,xρ1
· · · fρ1,xρk

...
. . .

...

fρk ,xρ1
· · · fρk ,xρk

⎤

⎥
⎦ (4.4)

Proof Theorem 4.4 implies that Bη has either k − 1 or k self-couplings. Since Bη is a
k × k submatrix of P H Q (a matrix that has the same set of rows and the same set of
columns as H ), Bη must consists of k2 entries of the form

Bη =
⎡

⎢
⎣

fρ1,xτ1
· · · fρ1,xτk

...
. . .

...

fρk ,xτ1
· · · fρk ,xτk

⎤

⎥
⎦ (4.5)

Since self-couplings must be in different rows and different columns we can use
permutation matrices of the form

⎡

⎣
Ip 0 0
0 S 0
0 0 Iq

⎤

⎦

where S is a k × k permutation matrix to put Bη in the form:

⎡

⎢
⎢⎢⎢
⎣

∗ sc · · · ∗
∗ ∗ . . .

...
...

...
... sc

∗ · · · · · · ∗

⎤

⎥
⎥⎥⎥
⎦

or

⎡

⎢
⎣

sc ∗ ∗
∗ . . . ∗
∗ ∗ sc

⎤

⎥
⎦ (4.6)

where sc denotes a self-coupling entry and ∗ denotes either a 0 entry or a coupling
entry. Note that we could just as well have put the self-coupling entries along the
diagonal in (4.6) (left).

If Bη has k − 1 self-couplings, as in (4.6) (left), then ρk �= τk and ρ j = τ j for
1 ≤ j ≤ k − 1. If Bη has k self-couplings, as in (4.6) (right), then we may assume
ρ j = τ j for all j . It follows that the matrices in (4.6) have the form (4.3) or (4.4). 	
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Remark 4.8 We use Theorem 4.7 to associate a subnetworkKη with each homeostasis
k ×k block Bη. This construction implements the one in Definition 1.14 for appendage
and structural homeostasis blocks. The network Kη will be an input–output subnet-
work with k + 1 nodes when Bη is structural and the network Kη will be a standard
subnetwork with k nodes when Bη is appendage.

If Bη is appendage, then the k nodes in Kη will correspond to the k self-couplings
in Bη and the arrows in Kη will be τi → τ j if hτ j ,xτ j

is a coupling entry in (4.4).
If Bη is structural, then the k − 1 regulatory nodes of Kη will correspond to the

self-couplings in Bη and the input node � and the output node j of Kη will be given
by the coupling entry in (4.3). The arrows in Kη are given by the coupling entries of
Bη.

Note that the constructions of K from H do not require that H is a homeostasis
block; the constructions only require that H has the form given in either (4.3) or (4.4).

5 Appendage homeostasis blocks

An appendage block Bη has k self-couplings and the form of a k × k matrix (4.4), that
is rewritten here as:

Bη =
⎡

⎢
⎣

fτ1,xτ1
· · · fτ1,xτk

...
. . .

...

fτk ,xτ1
· · · fτk ,xτk

⎤

⎥
⎦ (5.1)

As discussed in Remark 4.8 this homeostasis block is associated with a subnetwork
Kη consisting of distinct nodes τ1, . . . , τk and arrows specified by Bη that connect
these nodes. In this section we show that Kη satisfies three additional conditions:

(a) Each node τ j ∈ Kη is an appendage node (Lemma 5.2).
(b) For every ιo-simple path S, nodes inKη do not form a cycle with nodes in CS\Kη

(Theorem 5.4(a)).
(c) Kη is a path component of the subnetwork of appendage nodes of G (Theo-

rem 5.4(b)).

Lemma 5.1 Suppose a nonzero summand β of det(Bη) in (5.1) has fτ j ,xτi
as a factor,

where τ j �= τi . Then the arrow τi → τ j is contained in a cycle in Kη.

Proof To simplify notation we drop the subscript η below on H̃ , K, and K̃. Let H̃ be
the (k −1)×(k −1) submatrix obtained by eliminating the j th row and the i th column
of Bη in (5.1). Since τi �= τ j , H̃ has k − 2 self-coupling entries. Specifically, the two
self-couplings fτi ,xτi

and fτ j ,xτ j
have been removed when creating H̃ from Bη.

It follows from Remark 4.8 that since H̃ has the form (4.3), we can associate an
input–output network K̃ with H̃ , where the input node is τ j since it does not receive
any input and the output node is τi since it does not output to any node in K̃. By
Lemma 3.1, every nonzero summand in det(H̃) corresponds to a simple path from
τ j → τi . Hence, the nonzero summand β is given by fτ j ,xτi

times a nonzero summand
corresponding to a simple path from τ j → τi . Therefore, the arrow τi → τ j coupled
with the path τ j → τi forms a cycle in K. 	
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Lemma 5.2 Let Kη be a subnetwork of G associated with an appendage homeostasis
block Bη that consists of a subset of nodes τ1, · · · , τk ofG. Then Bη equals the Jacobian
JKη

of the network Kη and each node τ j is an appendage node.

Proof Admissible systems associated with the network Kη have the form

ẋτ1 = fτ1
(
xτ1 , . . . , xτk

)

...

ẋτk = fτk

(
xτ1 , . . . , xτk

)

where the variables that appear on the RHS of each equation correspond to the cou-
plings in (5.1). It follows that the matrix Bη in (5.1) equals the Jacobian JKη

, as
claimed.

We show that τ j ∈ Kη is an appendage node for each j . More specifically, we show
that τ j is in the complementary subnetwork CS of each ιo-simple path S. We now fix
τ j and S.

We make two claims. First, every nonzero summand α of det(H) either contains
the self-coupling fτ j ,xτ j

as a factor or a coupling fτ j ,xτi
for some i �= j as a factor.

Second, this dichotomy is sufficient to prove the theorem.
First claim. It follows from Lemma 4.6 that each summand of det(P H Q) has a

summand of det(Bη) as a factor. Therefore, each summandα of det(H) has a summand
β of det(Bη) as a factor. The claim follows from two facts. The first is that Bη is the
Jacobian JKη

and hence either the self-coupling is in β or the off diagonal entry is in
β; and the second is that once these entries are in β, they are also in α.

Second claim. Recall that Theorem 3.2 (the determinant theorem) implies that the
summandα has the form FSgCS where S is an ιo-simple path,CS is the complementary
subnetwork to S, FS is the product of the coupling strengths within S, JCS is the
Jacobian matrix of the admissible system corresponding to CS , and gCS is a summand
in det(JCS ).

If the summand α has fτ j ,xτ j
as a factor, it follows that fτ j ,xτ j

is a factor of gCS

since it is a self-coupling and cannot be a factor of FS . Hence, node τ j is a node in
CS .

If the summand α has fτ j ,xτi
as a factor, then fτ j ,xτi

is either not a factor of FS

or is a factor of FS . In the first case, fτ j ,xτi
is a factor of gCS . It follows that τ j is a

node in CS . In the second case, the arrow τi → τ j is on the simple path S. Recall
that fτ j ,xτi

is also a factor of the summand β. It follows from Lemma 5.1 applied to β

that τi → τ j is contained in a cycle in Kη. This is a contradiction since we show that
τi → τ j cannot be contained in both the simple path S and a cycle in Kη.

Since τi → τ j is contained in a cycle in Kη, there exists an arrow τk → τi where
τk is a node in Kη (τk can be τ j ). Since every nonzero summand of det(H) has a
summand of det(Bη) as a factor, there exists a summand FSgCS having both fτ j ,xτi
and fτi ,xτk

as factors. Note that fτ j ,xτi
is a factor of FS and gCS is a summand in

det(JCS ). Since τk → τi cannot be contained in S it must be a factor of gCS . However,
CS is the complementary subnetwork to S that does not contain any arrow connecting
to τi in the simple path S. 	
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Lemma 5.3 Let K be a proper subnetwork of a subnetwork C of G. If nodes in K do
not form a cycle with nodes in C\K, then upon relabelling nodes JC is block lower
triangular.

Proof The no cycle condition implies that we can partition nodes in C into three
classes:

(i) nodes in C\K that are strictly upstream from K,
(ii) nodes in K,
(iii) nodes in C\K that are not upstream from K.

By definition nodes in sets (i) and (iii) are disjoint from nodes in (ii). Also, nodes in
sets (i) and (iii) are disjoint because nodes in K do not form a cycle with nodes in
C\K. Finally, it is straightforward to see that C = (i)∪ (ii)∪ (iii). Using this partition
of C, we claim that the Jacobian matrix of C has the desired block lower triangular
form:

JC =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

∗ · · · ∗ 0 0 · · · 0
...

...
...

...
...

...
...

∗ · · · ∗ 0 0 · · · 0
∗ · · · ∗ JK 0 · · · 0
∗ · · · ∗ ∗ ∗ · · · ∗
...

...
...

...
...

...
...

∗ · · · ∗ ∗ ∗ · · · ∗

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

(5.2)

Specifically, observe that there are no connections from (i) to (iii) because then a node
in (iii) would be strictly upstream fromK. By definition there are no connections from
(ii) to (iii). Finally, the cycle condition implies that there are no connections from (i)
to (ii). 	

Theorem 5.4 Let Kη be a subnetwork of G associated with an appendage homeostasis
block Bη. Then:

(a) For every ιo-simple path S, nodes in Kη do not form a cycle with nodes in CS\Kη.
(b) Kη is a path component of AG .

Proof By Lemma 5.2,Kη ⊂ AG is an appendage subnetwork that is contained in each
complementary subnetwork CS , Bη = JKη

and det(JKη
) is a factor of det(H). To

simplify notation in the rest of the proof, we drop the subscript η and use K to denote
the appendage subnetwork.

Proof of (a) We proceed by contradiction and assume there is a cycle. Let S be an
ιo-simple path. Let B ⊂ CS\K be the nonempty subset of nodes that are on some
cycle connecting nodes in K with nodes in CS\K. It follows that nodes in K do not
form any cycle with nodes in (CS\K) \ B = CS\(K ∪ B). Since K ∪ B ⊂ CS and
nodes in K∪B do not form a cycle with nodes in CS\(K∪B), by Lemma 5.3 we see
that the Jacobian matrix of CS has the form

JCS =
⎡

⎣
U 0 0
∗ JK∪B 0
∗ ∗ D

⎤

⎦ (5.3)
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where

JK∪B =
[

JK fK,xB
fB,xK JB

]

Note that fK,xB �= 0 and fB,xK �= 0, since there is a cycle containing nodes in K and
B. We claim that the polynomial det(JK) does not factor the polynomial det(JK∪B).
It is sufficient to verify this statement for one admissible vector field.

Relabel the nodes so that there is a cycle of nodes 1 → 2 → · · · → p → 1 where
the first q nodeas are in K. We can choose the cycle so that the remaining nodes are
in B. An admissible system for this cycle has the form

(
f1, f2, . . . , f p

)
(x) = (

f1
(
x1, x p

)
, f2 (x2, x1) , · · · , f p

(
x p, x p−1

))

and all other coordinate functions fr (x) = xr . Hence the associated Jacobian matrix
is

JK∪B =

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

f1,x1 0 · · · 0 0 · · · f1,x p · · · · · · 0
f2,x1 f2,x2 · · · 0 0 · · · · · · · · · · · · 0
...

. . .
. . .

...
...

...
...

...
...

...

∗ · · · fq,xq−1 fq,xq 0 · · · · · · · · · · · · 0
0 · · · 0 fq+1,xq fq+1,xq+1 · · · · · · · · · · · · 0
...

...
...

...
. . .

. . .
...

...
...

...

0 · · · 0 0 0 f p,x p−1 f p,x p · · · · · · · · ·
0 · · · 0 0 0 · · · 0 1 · · · 0
...

...
...

...
...

...
...

...
. . . 0

0 · · · 0 0 0 · · · · · · 0 · · · 1

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

(5.4)

where the upper left block is JK. It follows from direct calculation that the determinant
of the JK∪B is

det (JK∪B) = f1,x1 f2,x2 · · · f p,x p

+ (−1)(p−1) f1,x2 f2,x3 · · · f p,x1

(5.5)

Hence

det (JK) = f1,x1 f2,x2 · · · fq,xq

is not a factor of det(JK∪B), given in (5.5).We claim that det(JK) is also not a factor of
det(JCS ) because by (5.3), det(JCS ) = det(U ) det(JK∪B) det(D). Suppose det(JK)

is a factor of det(JCS ), then it must be a factor of det(JK∪B), which is a contradiction.
Thus det(JK) is not a factor of det(JCS ), which contradicts the fact that Kη is an
appendage homeostasis block. Hence, nodes in K cannot form a cycle with nodes in
CS\K. 	
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Proof of (b) We begin by showing thatK is path connected; that is, there is a path from
τi to τ j for every pair of nodes τi , τ j ∈ K. Suppose not, then the path components of
K give K a feedforward structure. It follows that we can partition the set of nodes in
K into two disjoint classes: A and B where nodes in B are strictly downstream from
nodes in A. Thus, there exist permutation matrices Pη and Qη such that

Pη Bη Qη =
[

JA 0
∗ JB

]

which contradicts the fact that Bη is irreducible. Therefore, K is path connected.
Next, we show thatK is a path component ofAG . Suppose that the path component

W ⊂ CS of AG that contains K is larger than K. Then there would be a cycle in
W ⊂ CS that starts and ends in K, and contains nodes not in K. This contradicts (a)
and W = K. 	


Recall from Definition 1.18 that SG is a subnetwork of G that can be obtained by
removing all appendage path components that satisfy the no cycle condition.

Lemma 5.5 Let G be an input–output network with homeostasis matrix H. Then the
structural subnetwork SG is an input–output network with homeostasis matrix H ′ and
det(H ′) is a factor of det(H).

Proof By Theorem 5.2, if Bη is an appendage homeostasis block, then the associated
subnetwork Kη consists of appendage nodes, and Bη = JKη

. Relabel the blocks so
that B1, · · · , Bp are appendage homeostasis blocks. We can write

P H Q =

⎡

⎢⎢⎢⎢
⎣

JK1 ∗ · · · ∗
0

. . . ∗ ...
... 0 JKp ∗
0 · · · 0 H ′

⎤

⎥⎥⎥⎥
⎦

Hence det(H ′) is a factor of det(H).
Recall H is an (n + 1) × (n + 1) matrix with n self-couplings. Since the main

diagonal entries of JKi are all self-couplings, H ′ is a (n +1−γ )× (n +1−γ )matrix
where γ is the total number of self-couplings in K1, · · · ,Kp . It follows that H ′ has
n − γ self-couplings. By Theorem 4.7 we can assume H ′ has the homeostasis matrix
form and is associated with an input–output subnetwork SG of G.

It follows from the upper triangular formof P H Q thatSG does not contain any node
in appendage blocks or any coupling whose head or tail is a node in an appendage
block. Moreover, a node that is not associated with any appendage block must be
contained in SG . Otherwise, the self-coupling of this node will appear in some JKi ,
which is a contradiction.

Hence, SG is an input–output network that consists of all nodes not associated with
any appendage block and all arrows that connect nodes in SG . 	
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Remark 5.6 Suppose Kη is an input–output subnetwork of G associated with an irre-
ducible matrix Bη in (4.3). Then, it follows from Lemma 5.5 that Bη is a structural
block of G if and only if Bη is a structural block of SG .

6 Structural homeostasis blocks

In this section we give a combinatorial description of SG in terms of input–output
subnetworks defined by super-simple nodes. We do this in four stages.
§6.1 shows that the super-simple nodes in G can be ordered by ι > ρ1 > · · · > ρq > o
where a > b if b is downstream from a. See Lemma 6.1.
§6.2 defines the sets L of simple nodes that lie between adjacent super-simple nodes.
See Definition 1.19 and Lemma 6.2.
§6.3 shows how to assign each appendage node in SG to a unique L, thus forming
combinatorially the subnetwork L′. See Definition 1.20.
§6.4 shows that the homeostasis matrix of SG can be put in block upper trimngular
form with blocks given by the homeostasis matrices of the L′. See Corollary 6.7.

6.1 Ordering of super-simple nodes

Lemma 6.1 Super-simple nodes in G are ordered by ιo-simple paths.

Proof Let ρ1 and ρ2 be distinct super-simple nodes and let S and T be two ιo-simple
paths. Suppose ρ2 is downstream from ρ1 along S and ρ1 is downstream from ρ2 along
T . It follows that there is a simple path from ι to ρ2 along T that does not contain ρ1
and a simple path from ρ2 to o along S that does not contain ρ1. Hence, there is an
ιo-simple path that does not contain ρ1 contradicting the fact that ρ1 is super-simple.

	


6.2 Simple nodes between adjacent super-simple nodes

A super-simple subnetwork L(ρ1, ρ2) is a subnetwork consisting of all simple nodes
between adjacent super-simple nodes ρ1 and ρ2 (see Definition 1.19). The following
Lemma shows that each non-super-simple simple node belongs to a unique L.

Lemma 6.2 Every non-super-simple simple node lies uniquely between two adjacent
super-simple nodes.

Proof Let ρ be a simple node that is not super-simple. By definition ρ is on an ιo-
simple path S and ρ lies between two adjacent super-simple nodes ρ1 and ρ2 on S.
Suppose ρ is also on an ιo-simple path T . Then, by Lemma 6.1 ρ1 and ρ2 must be
ordered in the same way along T and ρ1 and ρ2 must be adjacent super-simple nodes
along T . If ρ is downstream from ρ2 along T , then there would be an ιo-simple path
that does not contain ρ2, which is a contradiction. A similar comment holds if ρ is
upstream from ρ1 along T . Therefore, ρ is also between ρ1 and ρ2 on T . 	
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Definition 1.19 implies that if ρ3 is downstream from ρ2 then

L (ρ1, ρ2) ∩ L (ρ3, ρ4) =
{ ∅ if ρ3 �= ρ2

{ρ2} otherwise (6.1)

Lemma 6.3 identifies several properties of the subnetworks L.
Lemma 6.3 Let the pairs of super-simple nodes ρ1, ρ2 and ρ3, ρ4 be adjacent.

(a) No arrow connects an upstream node ρ in the subnetwork L(ρ1, ρ2) to a down-
stream node τ in the subnetwork L(ρ3, ρ4) unless ρ = ρ2, τ = ρ3 and ρ2 and ρ3
are adjacent super-simple nodes.

(b) No arrow connects an upstream node ρ in the subnetwork L(ρ1, ρ2) to a down-
stream node τ in the subnetwork L(ρ2, ρ4) unless ρ = ρ2 or τ = ρ2.

(c) Suppose that a path of appendage nodes connects L(ρ1, ρ2) to L(ρ3, ρ4). Then
ρ4 is upstream from ρ1.

(d) Suppose that the appendage path component B fails the no cycle condition and
there is a cycle that connects nodes in B with nodes in CS\B, where CS is a
complementary subnetwork. Then the nodes in CS\B that are in the cycle are
non-super-simple simple nodes that are contained in a unique super-simple sub-
network.

Proof (a) Suppose an arrow connects a node ρ �= ρ2 in L(ρ1, ρ2) to a node τ in
L(ρ3, ρ4) where ρ3 is downstream from ρ2. Then there would be an ιo-simple
path that connects ρ1 to ρ to τ to ρ4 in that order. That ιo-simple path would
miss ρ2, contradicting the fact that ρ2 is super-simple. A similar statement holds
if τ �= ρ3 or ρ2 and ρ3 are not adjacent. This proves (a).

(b) Suppose an arrow connects a node ρ �= ρ2 in L(ρ1, ρ2) to a node τ �= ρ2 in
L(ρ2, ρ4). Then there would be an ιo-simple path that connects ρ1 to ρ to τ to ρ4
in that order. That ιo-simple path would miss ρ2, contradicting the fact that ρ2 is
super-simple.

(c) Suppose ρ4 is strictly downstream from ρ1. Then there is an ιo-simple path from
ι to ρ1 to some nodes in AG to ρ4 to o. Therefore, at least one node in AG is not
an appendage node. A contradiction.

(d) If the cycle contains a super-simple node, then the cycle cannot be in CS . Since
the cycle must contain simple nodes that simple node cannot be super-simple.

Suppose the cycle contains a simple node τ1 in L(ρ1, ρ2) and another simple
node τ2 in L(ρ3, ρ4) where ρ3 is downstream from ρ1, then there would be a
path connecting τ1 to τ2 that does not contain any super-simple node. This would
lead to an ιo-simple path from ρ1 to τ1 to τ2 to ρ4 that misses ρ2 and ρ3. Hence,
the simple nodes contained in the cycle must come from a single super-simple
subnetwork.

	

Remark 6.4 Lemma 6.3 (a, b) implies that two different super-simple subnetworks
L(ρ1, ρ2) and L(ρ3, ρ4) where ρ2 is upstream from ρ3 can only be connected by
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either having a common super-simple node (ρ2 = ρ3) or by having an arrow ρ2 → ρ3
where ρ2 and ρ3 are adjacent super-simple nodes.

6.3 Assignment of appendage nodes toL

By Lemma 6.3 (d) any appendage path component that fails the cycle condition forms
cycles with non-super-simple simple nodes in a unique super-simple subnetwork.
We can therefore expand a super-simple subnetwork L to a super-simple structural
subnetwork L′ by recruiting all appendage nodes that form cycles with nodes in L
(see Definition 1.20).

It follows that if ρ3 is downstream from ρ2, then

L′ (ρ1, ρ2) ∩ L′ (ρ3, ρ4) =
{ ∅ if ρ3 �= ρ2

{ρ2} otherwise (6.2)

In particular, each appendage node in G is attached to at most one L.
Remark 6.5 Suppose ρ3 is downstream from ρ2. By Lemma 6.3 (c) andRemark 6.4, no
arrow connects a node ρ in L′(ρ1, ρ2)\{ρ2} to a node τ in L′(ρ3, ρ4) unless ρ2 = ρ3
and τ = ρ2.

6.4 RelatingSG withL′

Proposition 6.6 Let K be an input–output core subnetwork of SG with q + 1 super-
simple nodes ρ1, . . . , ρq+1 in downstream order in G. Then the homeostasis matrix
HK of K can be written in an upper block triangular form

HK =

⎡

⎢⎢
⎢
⎣

HL′
1

∗ · · · ∗
0 HL′

2
· · · ∗

...
. . .

...

0 0 0 HL′
q

⎤

⎥⎥
⎥
⎦

(6.3)

where for � = 1, . . . , q, HL′
�

is the homeostasis matrix of the super-simple structural

subnetwork L′
� = L′(ρ�, ρ(�+1)).

Proof SinceK is an input–output core subnetwork of SG , it follows thatK consists of
all simple nodes between adjacent super-simple nodes ofK and appendage nodes that
form cycles with non-super-simple simple nodes in K. Hence, K consists of nodes
and arrows inL′(ρ1, ρ2)∪· · ·∪L′(ρq , ρq+1) plus backward arrows between different
super-simple structural subnetworks. Hence, for � = 1, . . . , q, nodes in K can be
partitioned into disjoint classes: (�) = L′

�\{ρ�+1}. We claim that the homeostasis
matrix HK of K is given by (6.3).

It follows from Remark 6.5 that an arrow from a node in one class (�) to a node in
another class (j) where j > � can exist only when the two classes are adjacent (that is,
j = � + 1) and the head of this arrow is the input node ρ�+1 of the downstream class
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(� + 1). Since entries below HK�
denote the arrows from nodes in class (�) to nodes

in classes (� + 1) through (q) except the input node ρ�+1 in class (� + 1). It follows
that all entries below HK�

are zero and hence HK has the upper block triangular form
shown in (6.3). 	

Corollary 6.7 Suppose that τ1, . . . , τp+1 are the super-simple nodes of G in down-
stream order. Then the homeostasis matrix H ′ of SG can be written in upper block
triangular form

H ′ =

⎡

⎢⎢
⎢
⎣

B ′
1 ∗ · · · ∗
0 B ′

2 · · · ∗
...

...
. . .

...

0 0 0 B ′
p

⎤

⎥⎥
⎥
⎦

(6.4)

where B ′
� is the homeostasis matrix of the super-simple structural subnetwork

L′(τ�, τ�+1) for 1 ≤ � ≤ p. In addition, p is less than or equal to the number m
of structural blocks Kη.

Proof It follows from Definition 1.18 that SG has the same super-simple nodes as G
and SG is a core subnetwork. By Proposition 6.6, the homeostasis matrix H ′ of SG is
given by (6.4). The number of irreducible blocks is the number of Kη and that is m.
Since m is the maximum number of blocks in H ′, it follows that m ≥ p by (6.4). 	


If we can show that the number of super-simple nodes in Kη is two, then we will
show that Kη is core equivalent to one of the L′.

6.5 Relation between structural homeostasis andL′

This section shows that each structural subnetwork Kη is core equivalent to the L′
having the same input node. Specifically, we show that the input and output nodes in
Kη are adjacent super-simple and that no other nodes in Kη are super-simple.

Proposition 6.8 Let Kη be an input–output subnetwork of G associated with an irre-
ducible structural homeostasis matrix Bη in (4.3). Then the input and output nodes of
Kη are super-simple nodes.

Proof We prove this theorem by proving that both the input and output nodes � and
j of Kη are on the ιo-simple path associated with α for all summands α of det(H).
Theorem 3.2 (the determinant theorem) implies that α has the form FSgCS where S
is an ιo-simple path, CS is the complementary subnetwork to S, FS is the product of
the coupling strengths within S, JCS is the Jacobian matrix of the admissible system
corresponding to CS , and gCS is a summand in det(JCS ).

It follows from Lemma 4.6 that the summands of form (4.2) are the summands
of A times the summands of Bη times the summands of E. Hence, every nonzero
summand of det(H) contains a nonzero summand of det(Bη) as a factor. Since �

and j are the input output nodes for the homeostasis matrix Bη, it follows that every
nonzero summand of det(Bη), and hence det(H), has both fm,x�

(where m is one of
ρ1, . . . , ρk−1, j) and f j,xn (where n is one of ρ1, . . . , ρk−1, �) as factors.
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From the form of P H Q (and hence H ) we see that f�,x�
and f j,x j are not factors

of nonzero summands of det(H). Suppose the summand α has fm,x�
as a factor, then

fm,x�
is either a factor of FS or not a factor of FS . In the first case, it follows that the

arrow � → m is on the simple path S. Hence, the node � is contained in S. In the
second case, suppose fm,x�

is not a factor of FS , then it must be a factor of gCS . That
implies that � is a node in CS . It follows that there exists another nonzero summand
α′ of det(H) which contains f�,x�

as a factor, which is is a contradiction. Therefore,
we conclude every ιo-simple path contains node �. By the same type of argument we
can also conclude that every ιo-simple path contains node j . 	

Proposition 6.9 If a structural block Bη of G is irreducible, then Kη is an input–output
subnetwork that has exactly two super-simple nodes.

Proof By Remark 5.6, Kη is an input–output subnetwork of SG and Kη is a core
subnetwork because it is irreducible. Suppose in addition to the input and output
nodes there are other q > 1 super-simple nodes in Kη, then by Proposition 6.6, the
homeostasis matrix Bη of Kη can be written in an upper block triangular form with
q + 1 > 2 diagonal blocks and hence Kη is reducible, a contradiction. 	

Corollary 6.10 The input and output nodes of a structural homeostasis block are adja-
cent super-simple nodes.

Proof Super-simple nodes can be well-ordered. The proof then follows from Propo-
sition 6.9. 	

Theorem 6.11 In G, there is a 1:1 correspondence between structural homeostasis
blocks Kη and super-simple structural subnetworks L′ and that correspondence is
given by having the same input node. Moreover, the corresponding Kη and L′ are core
equivalent.

Proof By Corollary 6.10, the input and output nodes of each Kη are adjacent super-
simple nodes and hence each Kη leads to a unique L′ that has the same input node.
Therefore, the number of Kη (equal to m) is less than or equal to the number p of L′.
Corollary 6.7 states that p ≤ m; hence, p = m. That is, there is a 1:1 correspondence
between Kη and L′.

Let � and j be the input and output nodes of the structural block Kη. Then the
corresponding super-simple structural subnetwork is L′(�, j). By Definition 1.14,
Kη consists of simple nodes between the two adjacent super-simple nodes � and j
and appendage nodes that form cycles with non-super-simple simple nodes in Kη.
Arrows in Kη are non-backward arrows that connect nodes in Kη. It follows from
Definition 1.20 that L′(�, j) is the union of Kη and arrows whose head is � or whose
tail is j . By Corollary 1.10, Kη is core equivalent to L′(�, j). 	


7 Classification and construction

In the Introduction we showed how Cramer’s rule coupled with basic combinatorial
matrix theory can be applied to the homeostasis matrix H to determine the different
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types of infinitesimal homeostasis that an input–output network G can support. Specif-
ically the zeros of det(H), a homogeneous polynomial in the linearized couplings and
self-couplings, can be factored into det(B1) · · · det(Bm). In this paper we show that
there are two types of factors that depend on the number of self-couplings: one we
call appendage and the other we call structural. Each factor corresponds to a type of
homeostasis in subnetworks Kη for η = 1, . . . , m that can be read directly from G.
Appendage blocks Theorem 5.4 shows that an appendage block Bη leads to a subnet-
work Kη that is a path component of the appendage network AG ⊂ G. Moreover, the
nodes in Kη do not form a cycle with other nodes in the complementary subnetwork
CS for every ιo-simple path S. The factors of det(H) that stem from appendage nodes
are det(JA), the determinant of the Jacobian of the appendage path components A.
The converse is also valid as shown in Theorem 7.1.

Theorem 7.1 SupposeKη is an appendage path component. IfKη satisfies the no cycle
condition, then det(JKη

) is an irreducible factor of det(H).

Proof Let CS be the complementary subnetwork of an ιo-simple path S. By Defini-
tion 1.15(c),Kη ⊂ CS . Since nodes inKη do not form a cycle with other nodes in CS ,
by Lemma 5.3, JCS has the following block lower triangular form:

JCS =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

∗ · · · ∗ 0 0 · · · 0
...

...
...

...
...

...
...

∗ · · · ∗ 0 0 · · · 0
∗ · · · ∗ JKη

0 · · · 0
∗ · · · ∗ ∗ ∗ · · · ∗
...

...
...

...
...

...
...

∗ · · · ∗ ∗ ∗ · · · ∗

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(7.1)

Hence det(JKη
) is a factor of det(JCS ), and so a factor of det(H). Since Kη is a path

component and hence is path connected, it follows that JKη
is irreducible. 	


It follows that we can construct appendage blocks as follows. First we determine
the path components of the appendage subnetwork of G and second we determine
which of these components Kη satisfy the cycle condition in Theorem 5.4.
Structural blocksNext, we form the subnetworkSG that is obtained fromG by deleting
the appendage path components identified above. The last result that is needed is:

Theorem 7.2 Let � and j be adjacent super-simple nodes in SG , then det(L′(�, j)) is
an irreducible factor of det(H).

Proof It follows from Corollary 6.7 that det(L′(�, j)) is a factor of det(H ′) and hence
a factor of det(H) by Lemma 5.5. Theorem 6.11 states that L′(�, j) is core equivalent
to a unique Kη that is irreducible. Hence, det(L′(�, j)) is an irreducible factor of
det(H). 	


Next, we compute the super-simple nodes in SG in downstream order, namely,

ι = ρ1 > ρ2 > · · · > ρq > ρq+1 = o
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It follows that the subnetworks L′(ρi , ρi+1) are core equivalent to the structural net-
worksKη. Let Bi be the homeostasis matrix associatedwith the input–output networks
L′(ρi , ρi+1) and det(Bi ) is a factor of det(H).
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