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A B S T R A C T   

SARS-CoV-2 infection generally begins in the respiratory tract where it can cause bilateral pneumonia. The 
disease can evolve into acute respiratory distress syndrome and multi-organ failure, due to viral spread in the 
blood and an excessive inflammatory reaction including cytokine storm. Antiviral and anti-cytokine drugs have 
proven to be poorly or in-effective in stopping disease progression, and mortality or serious chronic damage is 
common in severely ill cases. The low efficacy of antiviral drugs is probably due to late administration, when the 
virus has triggered the inflammatory reaction and is no longer the main protagonist. The relatively poor efficacy 
of anti-cytokine drugs is explained by the fact that they act on one or a few of the dozens of cytokines involved, 
and because other mediators of inflammation – reactive oxygen and nitrogen species – are not targeted. When 
produced in excess, reactive species cause extensive cell and tissue damage. The only drug known to inhibit the 
excessive production of reactive species and cytokines is methylene blue, a low-cost dye with antiseptic prop
erties used effectively to treat malaria, urinary tract infections, septic shock, and methaemoglobinaemia. We 
propose testing methylene blue to contrast Covid-related acute respiratory distress syndrome, but particularly 
suggest testing it early in Covid infections to prevent the hyper-inflammatory reaction responsible for the serious 
complications of the disease.   

Background 

SARS-CoV-2 enters the human host mainly through the respiratory 
tract, although faecal transmission could also occur [1]. In some cases 
the infection evolves to acute respiratory distress syndrome (ARDS) [2], 
a form of respiratory failure that develops rapidly in critically ill patients 
[3]. ARDS is often associated with multi-organ damage (mainly lung, 
heart, brain, kidney, liver and small intestine) and septic or vasoplegic 
shock [4]. The lungs are affected early as they are the first structures 
encountered by the virus after entry through the respiratory tract, and 
because alveolar epithelial cells abundantly express ACE2 receptors that 
the virus uses to enter cells [5]. Pervasive alveolar injury is accompanied 
by severe damage to the vascular endothelium [6] allowing the virus to 
enter the bloodstream. Viraemia and high viral RNA titres in liver, 
kidney, and heart, have been found of patients who died of Covid-19 [7]. 

It is unclear whether the blood-brain barrier can prevent viral access 
to the central nervous system. However capillary endothelial cells- 
fundamental constituent of the blood-brain barrier-express abundant 
ACE2 receptors and could well be a CNS entry route. Direct viral 

invasion of the brain through the olfactory pathways is also a possibility 
[8]. 

ACE2 receptors are present on the vascular endothelial cells of all 
organs [9], which would account for the endothelial inflammation 
across vascular beds of different organs reported in a series of autoptic 
Covid-19 cases [10]. After entering cells, the virus triggers an inflam
matory reaction by activating signal transduction pathways, including 
transcription factor NF-kB, that stimulate the production of cytokines to 
counteract viral replication and spread [11]. 

What Didn’t work 

Evolution to ARDS and multi-organ failure occurs, on average, seven 
or so days after symptoms onset, when the viral load has decreased 
significantly [12,13], and correlates with a violent systemic inflamma
tory reaction-accompanied by a cytokine storm – in excess of what is 
necessary to eliminate the virus. Antiviral drugs, assuming they work 
against Covid-19, are only likely to be effective against ARDS/multi- 
organ failure if administered early, at the onset of symptoms, before 
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the inflammatory reaction has started. Thus they should be administered 
to all infected patients, at a cost of several thousand dollars per patient. 

Anti-cytokine drugs have been tried, but the results have been 
disappointing, probably for two main reasons: first, these drugs inhibit 
just one or a few of the fifty or more cytokines involved; second, there 
are other protagonists in the complicated inflammatory scenario, 
including free radicals (reactive oxygen and nitrogen species, ROS and 
RNS), that have not been taken into account [14,15]. The role of kinins 
in ARDS from Covid-19 has also been underestimated. There is strong 
evidence supporting the role of bradikinin, histamine, and serotonin, as 
key mediators of acute lung inflammation and respiratory distress [16]. 

Free radicals 

Free radicals are produced during intracellular redox reactions in 
mitochondria, peroxisomes, and endoplasmic reticulum, and are 
involved in many physiological functions including signal transduction, 
gene expression and apoptosis. Bronchial, alveolar and endothelial cells 
also produce abundant free radicals (ROS and RNS) to kill pathogens but 
which may also damage endogenous proteins, lipids and nucleic acids. 
Activated phagocytes (neutrophils, monocytes and macrophages) are 
recruited to sites of inflammation where they adhere to endothelium and 
also release a range of ROS to contribute to pathogen destruction and 
organ damage. The inflammatory response, initially local and subse
quently systemic, is driven by ROS [17] whose production increases 
following viral infection to activate NF-kB and other transcription fac
tors that control inflammation-related genes. NF-kB moves from the 
cytoplasm to the nucleus and binds DNA to trigger cytokine synthesis 
[17,18]. The role of ROS in inducing cytokine synthesis has been high
lighted in experimental models of systemic inflammation [19,20]. In 
physiological conditions, the superoxide anion (progenitor of ROS) is 
rapidly inactivated by superoxide dismutase. However, following spe
cific inflammatory or septic stimuli, superoxide production exceeds the 
scavenging capacity of superoxide dismutase and it undergoes reactions 
leading to more reactive ROS, such as the hydroxyl radical [21]. Nitric 
oxide (progenitor of RNS) is also formed in excess in response to in
flammatory/septic stimuli [22] and reacts with the superoxide anion to 
form peroxynitrite, which is highly toxic. All these reactive species 
damage cell membranes and DNA, and can lead to cell death [23]. 

Lowest common denominator: endothelial damage 

Lung and vascular endothelium are most affected in severe Covid-19, 
whose cells are rich in the ACE2 receptors used by the virus to effect cell 
entry. When the production of ROS, RNS and cytokines exceeds the 
ability of tissues to neutralize them, they invade the interstitial space 
and induce oxidative stress, causing necrosis or apoptosis, and damaging 
lung alveoli and vascular endothelium [10,24]. Cytokines, ROS and RNS 
can also spill over into the systemic circulation to cause endothelial 
injury in distant organs [25,26]. The endothelium of distant organs is 
therefore the target of both circulating virus and mediators of systemic 
inflammation, and, at the same time, is the source of inflammatory 
mediators. 

Several lines of evidence suggests that vascular endothelial damage 
and subsequent thrombophilia [27] are the central factors in Covid- 
related multi-organ failure. For example, endothelialitis and throm
bosis have been identified as the cause of skin lesions in the form of 
chilblains in pediatric Covid-19 patients [28]. Furthermore, histologic 
involvement of the digestive system has been observed in a limited 
number of autoptic Covid cases; and ischemic necrosis from recent 
thrombosis and severe inflammatory infiltration of the endothelium of 
mesenteric vessel were observed in an autoptic case [29]. In addition, a 
high incidence of thromboembolic events in deep veins of the lower 
extremities was found in another series of autoptic Covid cases [7]. 
Cardiovascular complications such as myocarditis, pericarditis, vascu
litis, and heart failure are frequently observed in Covid-19 patients. 

However, SARS-CoV-2 has not always been isolated from the myocar
dium of patients who have died of Covid-19, suggesting that myocardial 
damage is due to altered microcirculation caused by endothelial 
dysfunction and hyper-inflammatory reaction [30]. 

It is also noteworthy that Covid cases with neurological disorders 
caused by ischemic stroke, hemorrhage and diffuse microbleeds, sug
gesting secondary microangiopathy, have been reported [31]. Endo
thelial rupture of cerebral microvessels with bleeding into brain 
parenchyma can have serious consequences. Red blood cells spilled into 
brain release iron, which reacts with endogenous hydrogen peroxide to 
afford the highly reactive hydroxyl radical [32]. The persistence of iron 
perpetuates hydroxyl radical production, 

What could work 

Thus, radicals and cytokines are intimately involved in the genesis of 
the endothelial damage, which is the common denominator of multi- 
organ failure in Covid-19. When ARDS occurs, ROS, RNS and cytokine 
production is out of control, and attempting to contrast all with a single 
cytokine inhibitor is doomed to fail. To our knowledge, only one drug is 
capable of inhibiting the production of all three of these classes of 
substance: methylene blue. Methylene blue inhibits the formation of 
superoxide anion (ROS precursor) by blocking the xanthine oxidase 
pathway [33]; it counteracts the synthesis of nitric oxide (RNS precur
sor) by direct inhibition of NO-synthase [34], and inhibits cytokine 
expression via attenuation of NF-kB signaling [35,36]. 

Methylene blue is a tricyclic phenothiazine, approved by the FDA 
and EMA for the treatment of methaemoglobinaemia and malaria. It is 
also used to inactivate viruses in blood products for transfusion, in the 
presence of UV light. Recent (non peer-reviewed) in vitro studies indi
cate that it has antiviral activity in the absence of UV light [37,38], 
strengthening the rationale for its use in Covid-19. However methylene 
blue use in patients with glucose-6-phosphate dehydrogenase deficiency 
is contraindicated due to increased risk of haemolytic anemia [39]. Its 
concomitant use with serotonin reuptake inhibitors is also contra
indicated. Methylene blue is a potent reversible inhibitor of monoamine 
oxidase A-the enzyme that catalyses serotonin breakdown- and 
concomitant use with serotonin reuptake inhibitors can inhibit the 
degradation of serotonin and increase its concentration to toxic levels 
(serotonin syndrome) [40]. 

Administered intravenously at doses not exceeding 2–3 mg/kg, 
methylene blue has been successfully and safety used against septic 
shock [41,42], also in pediatric patients [43]. Methylene blue can also 
be administered intravenously in severely affected Covid-19 patients. 
Studies conducted in small groups of critically ill patients appear to 
demonstrate the efficacy of methylene blue combined with other anti
oxidants [44]. “However, since it is impossible to reverse tissue 
destruction that has already developed, it is important to start treatment 
early. We suggest starting oral treatment with methylene blue at first 
Covid-19 symptoms with the aim of preventing the excessive inflam
matory reaction. The usual daily oral dose is 200 mg [45], although 300 
to 1000 mg/day in divided oral doses for 7–23 days used to be given to 
malaria cases [46]. 

We suggest trying oral methylene blue at 2–3 mg/kg body weight/ 
day divided into three daily doses for seven to ten days in patients newly 
infected with SARS-CoV-2. However, optimal dosage should also be 
object of a clinical study. 
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