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Abstract
Purpose  The proto-oncogene forkhead box M1 (FOXM1) is associated with poor survival in many cancers. The impact of 
FOXM1 expression on progression-free survival (PFS) of non-muscle invasive bladder cancer (NMIBC) has not yet been 
investigated. The differential expression of FOXM1 between the different molecular NMIBC subtypes has further been 
assessed.
Methods  Transcript levels of FOXM1 and MKI67 were determined in 460 NMIBC patients (UROMOL cohort) by RNA-
Seq and validated in silico by the Chungbuk and Lund cohort (n = 277). FOXM1 and MKI67 cutoffs were identified by the 
minimal p value method. Variables were evaluated by multivariable Cox regression analyses in order to identify independent 
predictors.
Results  FOXM1 is an independent predictor for PFS superior to current histological, clinical and molecular staging methods. 
Patients with high FOXM1 expression have a 6- to 8-fold higher risk of progression in multivariable analysis (p < 0.03). 
Highest transcript levels were found in the Class 2 and genomically unstable molecular NMIBC subtype (p < 0.03). The 
proto-oncogene further positively correlated with tumor grade and stage. NMIBCs with high FOXM1 expression showed a 
PFS advantage when treated with intravesical BCG instillation.
Conclusion  FOXM1 is a highly prognostic marker for disease progression of NMIBC superior to current histological, clinical 
and molecular staging methods and MKI67. It is mainly expressed in the Class 2 and genomically unstable molecular bladder 
cancer subtypes. Its role in drug resistance development makes FOXM1 valuable biomarker for NMIBC risk stratification.
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Background

Non-muscle invasive tumors represent 75% of patients diag-
nosed with transitional cell carcinoma. Transurethral resec-
tion of bladder tumors (TURB), intravesical mitomycin C 
and bacillus Calmette–Guerin (BCG) instillation represent Philipp Erben: On behalf of the BRIDGE Consortium (Bladder 
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the current standard treatments for non-muscle invasive 
bladder cancer (NMIBC) (Babjuk et al. 2017). As 50–80% 
of pTa NMIBC have cancer recurrence and 10–30% of pT1 
and CIS patients show disease progression, clinicopatho-
logic parameters are insufficient for disease prediction (Prout 
et al. 1992; Ark et al. 2014). Given the biologic heteroge-
neity of bladder cancer, survival and progression varies 
even within the same stage. Thus molecular biomarkers are 
needed to improve prediction of treatment response or even 
for clinical decision-making in the sense of preemptive bio-
markers (Youssef and Lotan 2011; Kluth et al. 2015). Based 
on recent data, the most promising results were provided by 
gene expression signatures of TURB samples and by liquid 
biopsies from urine or blood (Contreras-Sanz et al. 2017; 
Robertson et al. 2017). The elucidation of valuable inva-
sive or non-invasive biomarkers or drug targets is still at its 
beginning.

The role of the proto-oncogene forkhead-box M1 
(FOXM1) in carcinogenesis and drug resistance develop-
ment is already well established and has been validated in 
many cancer types (Dai et al. 2015). FOXM1 originates from 
the forkhead gene family, was first identified in Drosophila 
and is characterized by a conserved 100-amino acid DNA-
binding motif. It is involved as regulator in embryogenesis 
and numerous developmental processes (Ye et al. 1997). In 
adult organs, FOXM1 is mainly expressed in proliferating 
cells or induced by growth factor release. In this context, it 
is not surprising that FOXM1 serves as proto-oncogene in 
most cancers and aberrant expression or mutations constitute 
the origin of many treatment resistance mechanisms (Kwok 
et al. 2010; Kalin et al. 2011; Saba et al. 2016). Although 
FOXM1 is exclusively expressed in dividing cells, its target-
ing may result in many side effects given its involvement in 
angiogenesis, cell migration and epithelial–mesenchymal 
transition (Halasi and Gartel 2013). We have recently shown 
that FOXM1 is a predictor for overall and disease-specific 
survival in muscle invasive bladder cancer (MIBC) superior 
to the TNM staging system and MKI67 (Rinaldetti et al. 
2017). A recent TCGA study further underlined the role of 
FOXM1 as regulator in MIBC (Robertson et al. 2017). As 
MKI67 is considered as the gold standard biomarker for 
proliferation and prognosis, the impact of FOXM1 needs 
yet again to be compared with the later (Rodríguez-Alonso 
et al. 2002).

Recent findings showed that bladder cancer can be sub-
classified in molecular subtypes with some similarities to 
breast cancer subtypes (Choi et al. 2014; Hedegaard et al. 
2016; Robertson et al. 2017). These findings open the doors 
for personalized treatment concepts similar to those in 
breast cancer. That is why the subtype-specific expression 
of FOXM1 will be analyzed in this study. As the FOXM1 
signaling network represents a valuable and promising tar-
get for further cancer treatment personalization, we here 

investigate its clinical impact in three cohorts with a total of 
737 NMIBC patients.

Methods

Clinicopathologic characteristics

Patients and clinicopathologic data of 460 NMIBC patients 
from a European multicenter prospective study (URO-
MOL cohort) were investigated (Hedegaard et al. 2016). 
All samples have a carcinoma cell percentage > 50. Clin-
icopathologic characteristics are summarized in Tables 1 
and 2. Sample collection procedures were published before 
(Hedegaard et al. 2016). All patients gave informed consent 
and the study was approved in all countries by institutional 
review boards or ethical committees. Expression data and 
clinicopathologic information from the Chungbuk (n = 104, 
GSE13507) and Lund (n = 173, GSE32894) cohort were 
used for validation (Kim et al. 2010; Sjödahl et al. 2012). 
All MIBC (T2–T4) patients were excluded.

Gene expression analyses

Gene expression analyses of FOXM1 and MKI67 are based 
on paired-end RNA-Seq (101 + 7 + 101 bp) analysis on an on 
an Illumina HiSeq 2000. Data were normalized as described 
before and log2 transformed. Cluster assignments were per-
formed by ConsensusClusterPlus using the programming 

Table 1   Clinicopathologic characteristics of the UROMOL cohort

UROMOL cohort: clinicopathologic charac-
teristics (n = 460)

Median value (range) 
or absolute value (%)

Age 69 (23–96)
Male 357 (78%)
Grade
 High grade 176 (38%)
 Low grade 277 (60%)
 PUNLMP 7 (2%)

Stage
 CIS 3 (1%)
 Ta 345 (75%)
 T1 112 (24%)

Growth pattern
 Papillary 414 (97%)
 Other (mixed, solid, unknown) 11 (3%)

BCG treatment 88 (20%)
FOXM1 expression 1.67 (0–5.7)
MKI67 expression 2.74 (0.26–6.24)
Follow-up duration (months) 33 (0–75)
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software R (version 3.2.2, R Foundation for Statistical Com-
puting, Vienna, Austria) (Hedegaard et al. 2016).

Expression data of the Chungbuk and Lund cohort were 
based on Illumina human-6 v2.0 expression beadchip and 
Affymetrix Human Gene 1.0 ST Array analyses, respec-
tively. Processed gene expression data, as used in the respec-
tive studies, were downloaded from the Gene Expression 
Omnibus database (Kim et al. 2010; Sjödahl et al. 2012).

Statistical analyses

Cutoffs for FOXM1 and MKI67 were identified by the mini-
mum p value method in order to stratify patients in a high- 
and low-risk group (Budczies et al. 2012). The hazard ratio 
of the cutoffs was estimated by multivariable Cox regres-
sion analysis. The Wald forward algorithm was used for 
testing significance. The stepwise entry criterion for covar-
iates was p < 0.05 and the removal criterion consisted in 
p > 0.10. Association between variables was analyzed using 
Kruskal–Wallis test, Mann–Whitney U test or Spearman’s 
rank correlation. Kaplan–Meier estimates together with the 
log-rank test were used for survival analysis. In case the 
median survival rates could not be determined, they were 
specified as mean survival rates. The unadjusted significance 
level of 0.05 was considered for all statistical tests. Statisti-
cal analyses were performed using SPSS (version 20, IBM, 
Armonk, NY, USA).

Results

High correlation of FOXM1 with stage, grade 
and MKI67 expression

In both the UROMOL and Lund cohort FOXM1 was 
significantly higher in T1 vs Ta NMIBCs (Figs. 1a, 3, 
p < 0.001). Further, the expression correlated positively 
with tumor grade in the UROMOL, Chungbuk and Lund 
cohort (Figs. 1a, 2a, p < 0.001). The same tendency was 
observed for MKI67 (data not shown). This is in accord-
ance with the high spearman correlation between FOXM1 
and MKI67 of the UROMOL, Chungbuk and Lund cohorts 
(Spearman coefficient: 0.88 / 0.86 / 0.77, respectively, 
p < 0.001). The 12-gene risk score developed for predict-
ing progression (Dyrskjøt et al. 2017) positively correlated 
with the FOXM1 expression (p < 0.001, Fig. 1a).

FOXM1 is superior in predicting PFS than MKI67 
and TNM

The cutoff levels for FOXM1 and MKI67 have been opti-
mized for progression-free survival (PFS). For the Lund 
cohort no cutoff could be determined as duration data for 
PFS were not available. Poor PFS correlated with high 
FOXM1 or MKI67 expression. Cutoff values for risk strat-
ification were calculated by the minimal p value method. 
A FOXM1 cutoff of 2.41 (median 1.66, 95% CI 1.72–1.91, 
Fig. 1c) and an MKI67 cutoff of 5.1 (median 1.67, 95% CI 
1.72–1.91, figure not shown) have been determined for the 
UROMOL cohort. A FOXM1 cutoff of 8.27 (median 8.07, 
95% CI 8.20–8.47) and a MKI67 cutoff of 8.04 (median 
7.6, 95% CI 7.68–7.92, figure not shown) were chosen 
for the Chungbuk cohort (Fig. 2b, Kaplan–Meier plot for 
MKI67 not shown). In both the UROMOL and Chungbuk 
cohort, these FOXM1 and MKI67 cutoffs allowed a dis-
tinct risk stratification.

The molecular and clinicopathologic parameters of the 
UROMOL cohort, tested by univariable Cox regression 
analysis, are summarized in Table 3. The single variables 
retained by the multivariable Cox regression model as 
independent PFS predictors were age, stage and FOXM1 
with a hazard ratio (HR) of 5.7 (95% CI 2.45–12.31, 
p < 0.001, Table  3). Indeed, the FOXM1 high-risk 
group showed a mean PFS of 57 months (n = 114, 95% 
CI 51.78–61.90) in contrast to the prolonged mean PFS 
of 73 months from the low-risk group (n = 346, 95% CI 
72.08–74.35, p < 0.001, Fig. 1c).

The impact of FOXM1 has further been validated in 
silico by the independent Chungbuk cohort. The covari-
ates age, grade, BCG instillation therapy, FOXM1 and 

Table 2   Clinicopathologic characteristics of the Chungbuk cohort

Chungbuk cohort: clinicopathologic charac-
teristics (n = 104)

Median value (range) 
or absolute value (%)

Age 67 (24–88)
Male 87 (84%)
Grade
 High grade 18 (17%)
 Low grade 86 (83%)

Stage
 Ta 24 (23%)
 T1 80 (77%)

Intravesical therapy 56 (54%)
FOXM1 expression 8.08 (7.25–10.34)
MKI67 expression 7.62 (6.92–9.66)
Follow-up duration (months) 55 (2–137)
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MKI67 cutoff were included in the multivariable analy-
sis (Table 4). However, the only covariate retained by 
the Cox regression model was the FOXM1 cutoff with an 
HR of 8.53 (95% CI 1.79–40.72, p = 0.007). The FOXM1 
high-risk (n = 44) versus low-risk group (n = 60) showed 
a mean PFS of 98 months (95% CI 80.78–116.12) ver-
sus 132 months (95% CI 125.68–138, Fig. 2b). The same 
cutoff was tested for overall survival. The FOXM1 high-
risk vs low-risk group (n = 60) showed a median OS of 70 
months (95% CI 51.82–89.64) versus 135 months (95% CI 
72.16–197.78, Fig. 2b).

Aberrant expression of FOXM1 within molecular 
subtypes

The NMIBC subtypes developed by the UROMOL cohort 
were described recently by Hedegaard et al. They subclas-
sified the NMIBC into three molecular subtypes: Class 1 
(luminal), Class 2 (luminal CIS-like) and Class 3 (basal-
like). FOXM1 was exclusively overexpressed in the Class 
2 subtype (Fig. 1b, p < 0.001). The classification into lumi-
nal and basal based on the BASE47 signature from Dam-
rauer et al. (2014) showed an overexpression of FOXM1 

Fig. 1   UROMOL cohort: a differential expression of FOXM1 based 
on tumor stage, grade and the 12-gene risk stratification. b Differ-
ential expression of FOXM1 based on the molecular bladder cancer 

subtype. c Kaplan–Meier plot for progression-free survival based on 
the FOXM1 risk stratification
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Fig. 2   Chungbuk cohort: a differential expression of FOXM1 based on tumor stage and grade. b Kaplan–Meier plots of the Chungbuk cohort for 
progression-free survival and overall survival associated with the FOXM1 risk stratification

Table 3   Uni- and multivariable 
analyses of the UROMOL 
cohort with progression-free 
survival as endpoint

Bold values indicate statistical significiance (p < 0.05)
HR hazard ratio, CI confidence interval

Variables Univariable Cox regression 
analyses

Multivariable Cox regression 
analyses

HR 95% CI p value HR 95% CI p value

UROMOL cohort
 FOXM1 high vs low risk 9.8 4.40–22.03 < 0.001 5.71 2.45–12.31 < 0.001
 MKI67 high vs low risk 10.6 4.07–27.72 < 0.001
 Subtype (luminal cis-like vs rest) 5.5 1.21–8.30 0.019
 BASE47 0.88 0.43–1.78 0.717
 CIS signature 4.50 1.73–11.73 0.002
 Gene 12 risk signature 2.85 1.31–6.18 0.008
 Lund subtype (infiltrated vs rest) 0.14 0.04–0.46 0.001
 Stage (Ta, CIS vs T1) 9.22 4.24–20.05 < 0.001 5.28 2.36–11.82 < 0.001
 Grade (low grade vs rest) 0.23 0.11–0.50 < 0.001
 Age 1.06 1.02–1.10 0.005 1.04 1.00–1.08 0.04
 Sex 0.82 0.37–1.83 0.630
 BCG treatment 0.57 0.20–1.64 0.300
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in the luminal subtype (Fig. 1b, p = 0.005). The molecular 
subtypes previously defined by Sjödahl et al. on the Lund 
cohort, included the subtypes described in Fig. 3. FOXM1 
showed a distinct overexpression in the genomically unstable 
and SCC-like molecular subtype (p < 0.001). The NMIBC 

samples from the UROMOL cohort had additionally been 
clustered according to the main Lund subtypes: urobasal, 
infiltrated and genomically unstable. Also in the UROMOL 
cohort, the genomically unstable subtype showed highest 
FOXM1 transcript levels (Fig. 1b, p < 0.001).

Table 4   Uni- and multivariable 
analyses of the Chungbuk 
cohort with progression-free 
survival as endpoint

Bold values indicate statistical significiance (p < 0.05)
HR hazard ratio, CI confidence interval

Variables Univariable Cox regression analyses Multivariable Cox regression 
analyses

HR 95% CI p value HR 95% CI p value

Chungbuk cohort
 FOXM1 high vs low risk 8.53 1.79–40.72 0.007 8.53 1.79–40.72 0.007
 MKI67 high vs low risk 6.07 1.69–21.80 0.006
 Intravesical therapy 3.61 0.94–13.83 0.061
 Stage (Ta vs T1) 1.41 0.35–5.64 0.625
 Grade (low vs high grade) 3.53 0.88–14.17 0.075
 Age 1.06 0.10–1.12 0.060
 Sex 27.78 0.02–3.24 × 10E4 0.356

Fig. 3   Lund cohort: correlation of FOXM1 with clinical and molecular characteristics of the Lund cohort
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FOXM1 serves as prognostic marker for BCG 
instillation therapy

Following the FOXM1 risk stratification, NMIBCs were 
further divided in patients with and without intravesical 
BCG instillation treatment (p < 0.001, Fig. 4). Patients with 
poorest PFS received no instillation treatment and had high 
FOXM1 expression. However, patients with FOXM1 overex-
pression benefited most from BCG instillation treatment and 
constitute an intermediate risk group. However, the BCG 
therapy had no impact on NMIBC patients with low FOXM1 
transcript levels. The Kaplan–Meier estimates showed no 
differences in PFS in FOXM1 low-risk patients with and 
without BCG treatment (Fig. 4).

Discussion

In this study, the prognostic and clinical impact of FOXM1 
has been investigated retrospectively in a multicenter study 
and has been validated in published datasets. In order to 
evaluate its translational benefit, FOXM1 has been com-
pared with MKI67 and relevant clinicopathologic param-
eters in multivariable analyses. Validation was performed 
by in silico data based on the Lund and Chungbuk cohort. 
FOXM1 showed a high correlation with MKI67, underlining 
its known role in cell proliferation and migration (Hamurcu 
et al. 2016). High FOXM1 transcript levels correlated with 
high tumor stage and grade. However, we managed to dem-
onstrate that FOXM1 is an independent predictor for PFS 
superior to the TNM staging system and MKI67. Indeed, 
patients of the high-risk group characterized with high 

FOXM1 expression showed a 6- to 8-fold higher risk of 
progression (p < 0.001).

The UROMOL low-risk group comprised 75% of the 
patients, whereas in the Chungbuk cohort 58% of patients 
were included. This can be explained by the significantly 
higher portion of T1 NMIBCs of the Chungbuk cohort.

FOXM1 showed a distinct subtype-specific overexpres-
sion in the Class 2, genomically unstable and SCC-like 
subtypes (p < 0.001, Figs.  1b, 3). As published previ-
ously, the Class 2 subtype from Hedegaard at al. over-
lapped with the Lund subtypes ‘genomically unstable’ and 
‘SCC-like’ (Hedegaard et al. 2016). FOXM1 is suspected 
to play a phenotype-determining role in the development 
of the molecular bladder cancer subtypes and promote its 
aggressiveness (Eriksson et al. 2015). The Class 2 subtype, 
characterized by an APOBEC-related mutational signa-
ture and the upregulation of the ERBB gene family, is 
known to have poorest PFS rate in NMIBCs (Hedegaard 
et al. 2016). Thus the overexpression of FOXM1 in this 
specific subtype seems plausible. FOXM1 is well known 
for its resistance development against many chemothera-
pies especially cisplatin. Thus, patients with progression 
of Class 2 tumors may not benefit from platinum-based 
chemotherapies. Patients with high FOXM1 expression 
seemed to profit most from BCG instillation therapy. 
However, only 8 patients of 346 patients from the low-risk 
FOXM1 group experienced progression, limiting the sta-
tistical power for the low-risk group. Thus, further studies 
for investigating the impact of BCG instillation therapy on 
patients with low FOXM1 expression are required.

In recent data, FOXM1 has also been shown to be an 
independent predictor for OS and disease-specific survival 
in muscle-invasive bladder cancer, with a subtype-specific 
expression in the luminal subtype (Rinaldetti et al. 2017). 
Thus FOXM1 has global impact on bladder cancer given 
its role in both muscle invasive and non-muscle invasive 
tumors. Up- and downstream FOXM1 regulators (e.g., 
FOXO3, PI3k, AKT) may be valuable drug targets and 
should be further explored also in bladder tumors (Yao 
et al. 2017).

This study has an exploratory character. FOXM1 needs 
to be further validated in prospective clinical studies in 
order to evaluate its impact in MIBC resistance develop-
ment against platinum-based chemotherapies and to vali-
date its prognostic role in NMIBC BCG instillation treat-
ment. In this study two different quantification platforms 
(RNA-Seq vs microarray) allowed a distinct FOXM1 risk 
stratification. In order to translate these findings into clin-
ics, a standardizable FOXM1 qPCR screening is needed 
for future studies (Rinaldetti et al. 2017).

The impact on MIBC and NMIBC as prognostic 
biomarker superior to clinicopathologic parameters 
and MKI67, raises FOXM1 to a crucial biomarker for 

Fig. 4   Kaplan–Meier plot of the UROMOL cohort for progression-
free survival stratified by the FOXM1 expression and BCG treatment
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molecular grading and to valuable drug target in bladder 
cancer (Radhakrishnan and Gartel 2008).

Conclusions

FOXM1 is a highly prognostic marker for bladder cancer 
disease progression. It is mainly expressed in Class 2 and 
genomically unstable molecular bladder cancer subtype. As 
FOXM1 is a druggable proto-oncogene, the elucidation of 
its impact on bladder cancer survival may contribute to a 
further personalization of future NMIBC or MIBC therapy.
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