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Chromatin is a fundamental and highly conserved structure that carries genetic and
epigenetic information in eukaryotic cells [1]. When claiming evolutionary conservation,
we often express it in terms of “yeasts to humans”; however, yeasts and humans belong to
the same taxonomic supergroup, Opisthokonta, within a narrow range of eukaryotes [2].
This Special Issue, “Chromatin Unlimited”, aims to provide insights into the essential
aspects of chromatin in a wider range of eukaryotes.

Chromatin is composed of DNA, histones, and other non-histone proteins. The
minimum unit of canonical chromatin is the nucleosome, in which DNA is wrapped
around the histone octamer [3]. Histones are among the most highly conserved proteins
in eukaryotes [4]. However, several organisms have produced non-canonical forms of
chromatin through evolution. A striking example is found in dinoflagellates, which express
very low levels of histone proteins despite the fact that respective histone-coding genes are
present in the genome and are transcribed [5–8]. In these organisms, histones are replaced
by virus-derived non-histone proteins for the packing of DNA into chromatin. Another
example of non-canonical chromatin stems from ciliated protozoans, which have two
distinct nuclei (a somatic macronucleus and a germline micronucleus) that bear different
types of chromatin, which are reorganized when the macronucleus is differentiated from
the micronucleus [9–11]. It is possible that non-canonical forms of chromatin exist in more
types of organisms than is presently known.

Non-canonical chromatins have also been found in more common organisms, such as
sperm chromatin in mammals and erythrocyte chromatin in non-mammalian vertebrates.
Except for limited regions, mammalian sperm chromatin contains no histones [12]. Sperm
chromatin is packed with protamine, which is replaced by histones in an egg upon fertiliza-
tion. Erythrocyte chromatin, which is transcriptionally inactive except for the globin gene
locus, contains mainly histones as well as limited non-histone proteins [13]. Such examples
have raised questions about the roles of histone proteins in chromatin functionality.

Additionally, it has been demonstrated through their in vitro reconstitution with
purified proteins that chromosomes can be shaped with condensins and no histones [14,15].
Condensins are members of the structural maintenance of chromosomes (SMC) protein
family. Because condensins are widespread in bacteria, archaea, and eukaryotes, chromatin
with these SMC proteins may be of a more primitive form [16]. Therefore, although histones
play a role in modulating the functions of chromatins, they may be dispensable in shaping
the chromatin structures.

Finally, I wish to emphasize that chromatins can only be understood in light of evolu-
tion. Present-day organisms have survived selection through evolution. A phylogenic tree
represents the evolutionary trails of present-day organisms originating from their ancestors.
Evolution has never occurred directionally toward the branches of the tree and, instead, has
been driven toward all unbiased directions and biased by the survival of the fittest. Thus, a
phylogenic tree is a meshwork of the species left over after extinction removed the areas
between the branches. We will never know the types of chromatin that existed in organisms
that failed to survive. All we can do is comprehensively analyze and compare present-day
organisms and trace them back to a common ancestor [17–19]. A deeper understanding of
the non-canonical forms of chromatin will paradoxically shed light on the essential aspects
of the most common canonical ones.
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