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A B S T R A C T

Coronary heart disease (CHD) is a complex human disease associated with inflammation and oxidative stress.
The underlying mechanisms and diagnostic biomarkers for the different types of CHD remain poorly defined.
Metabolomics has been increasingly recognized as an enabling technique with the potential to identify key
metabolomic features in an attempt to understand the pathophysiology and differentiate different stages of CHD.
We performed comprehensive metabolomic analysis in human plasma from 28 human subjects with stable
angina (SA), myocardial infarction (MI), and healthy control (HC). Subsequent analysis demonstrated a uniquely
altered metabolic profile in these CHD: a total of 18, 37 and 36 differential metabolites were identified to
distinguish SA from HC, MI from SA, and MI from HC groups respectively. Among these metabolites,
glycerophospholipid (GPL) metabolism emerged as the most significantly disturbed pathway. Next, we used a
targeted metabolomic approach to systematically analyze GPL, oxidized phospholipid (oxPL), and downstream
metabolites derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid and linoleic acid.
Surprisingly, lipids associated with lipid peroxidation (LPO) pathways including oxidized PL and isoprostanes,
isomers of prostaglandins, were significantly elevated in plasma of MI patients comparing to HC and SA,
consistent with the notion that oxidative stress-induced LPO is a prominent feature in CHD. Our studies using the
state-of-the-art metabolomics help to understand the underlying biological mechanisms involved in the
pathogenesis of CHD; LPO metabolites may serve as potential biomarkers to differentiation MI from SA and HC.

1. Introduction

Coronary heart disease (CHD), one of the leading causes of death in
the world, is closely associated with atherosclerosis, characterized by
the formation of plaques consisting of oxidized lipids inside the
coronary arteries [1–4]. Over time, the atherosclerotic plaque hardens
and narrows the arteries, reducing the blood flow to the heart; once the
plaque ruptures, it produces a blood clot on the surface of arteries,
blocking the blood flow and leading to angina or myocardial infarction

[5].
Mounting evidence has demonstrated that atherosclerosis is the

leading cause for CHD [3,4]. Atherosclerosis is a chronic process
initiated from the deposition of oxidized low density lipoprotein
(LDL) underneath the artery wall [6,7]. It has been well established
that oxidation of phospholipids and cholesterol in LDL plays an
important role in the progression of atherosclerosis and recent studies
suggested that oxidized phospholipids (oxPLs) can be considered as
biomarkers and therapeutic targets of CHD [6,8]. However, it remains
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poorly understood how LDL is oxidized and the interplays between
oxidative stress and inflammatory responses in this process [9,10]. It is
generally accepted that polyunsaturated fatty acids (PUFA), such as
arachidonic acid (AA) and linoleic acid (LA), esterified to phospholipids
and cholesterol in LDL are primary targets for free radical-induced lipid
peroxidation (LPO)[11,12] and oxidation of LDL exacerbates inflam-
matory responses in macrophages and endothelial cells in the artery,
causing lipid deposition and endothelial dysfunctions during athero-
sclerosis [13]. During this process, reactive nitrogen species generated
by myeloperoxidase (MPO) may convert LDL into an atherogenic form
through LPO and nitration of apoB 100 [14,15]. Furthermore, hypo-
chlorous acid (HOCl)-induced LPO also contributes to the modification
of LDL [16,17]. More than 30 different oxPLs have been found in
atherosclerotic lesions [9]. PAPC (1-palmitoyl-2-arachidonoyl-sn-gly-
cero-3-phosphocholine), a major phospholipid in LDL and cell mem-
brane, is susceptible to oxidation by free radicals, generating multiple
oxidative products including D2/E2-IsoP-PC, PECPC, POVPC as shown
in Fig. 1A [11]. These esterified oxidation products can be hydrolyzed
primarily by platelet activating factor (PAF) acetyl hydrolase (AH) to
generate isoprostanes (IsoPs) and lysoPC [18]. Isoprostanes (IsoP) are
isomers of prostaglandins, which are derived from ROS-induced LPO
under oxidative stress [19]. On the other hand, AA released from
esterified phospholipids under inflammatory stimuli can be subse-
quently converted into prostaglandins (PGs), hydroxyeicosatretraenoic
acids (HETEs), and epoxyeicosatetraenoic acids (EETs) by cyclooxy-
genases (COXs), lipoxygenases (LOXs), and cytochrome P450s respec-
tively (Fig. 1B) [20,21]. Thus, metabolism of the PUFA-containing GPL,
especially PAPC, bridges the two major contributing factors – oxidative
stress and inflammation – to the onset and progression of athero-
sclerosis [22].

CHD is a complex metabolic disorder resulting from genetic and
environmental interactions. Metabolomics，a powerful technique to
systematically study the entire metabolic pathways in a given biological
system, has been increasingly employed to identify metabolic biomar-
kers and improve clinical diagnosis and treatment of diseases [23].
Emerging studies demonstrated altered metabolite profiles that re-
flected the onset and progression of CHD [24,25]. Some of metabolic
biomarkers identified through metabolomics have a potential to
provide diagnostic and predictive values of CHDs [26–30]. However,
substantial amounts of validation remain to be carried out before these
putative “biomarkers” can be applied for CHD diagnosis due to the
inherent caveats of untargeted metabolomics [31]. Furthermore, it is a
tremendous clinical challenge to differentiate myocardial infraction
(MI) from stable angina (SA).

In the present study, we performed an untargeted metabolomics
evaluation in plasma of SA (stable angina), MI (myocardial infarction)
and HC (health controls) and identified unique features of metabolites

that can be used to differentiate these three groups. In the subsequent
pathway analysis, glycerophospholipid (GPL) pathway emerged at the
top of these significantly altered metabolic pathways. We then applied a
targeted lipidomic analysis of all the metabolites associated with GPL
pathway including oxidized PL and the downstream lipid mediators.
Surprisingly, the oxidized lipids, presumably derived from LPO, repre-
sent a prominent feature to differentiate MI from SA and HC, suggesting
a potential to be biomarkers for CHD once validated in the future
studies.

2. Materials and methods

2.1. Reagents and materials

Liquid chromatography-Mass Spectrometry (LC-MS) grade water
(H2O), methanol (MeOH), acetonitrile (ACN), 0.1% formic acid (FA) in
water, 0.1% FA in ACN and HPLC grade chloroform (CHCl3) and
isopropanol (IPA) were purchased from Honeywell (Muskegon, MI,
USA). Ammonium fluoride (NH4F), ammonium hydroxide (NH3·H2O)
was purchased from Sigma-Aldrich (St. Louis, USA).

2.2. Plasma samples collection

A total of 28 human subjects (10 HC, 10 SA and 8 MI) were enrolled
at Beijing Tian Tan Hospital (Beijing, China). All the participants
recruited in this study were diagnosed and classified based on
symptoms and coronary angiography [22]. Plasma samples collected
were frozen immediately for analysis. The Institutional Review Board at
Tian Tan Hospital approved the study and all participants provided
written informed consent.

2.3. Sample preparation for metabolomics

Plasma samples were thawed at 4 °C on the ice. An aliquot of 50 μl
plasma sample was precipitated by adding 150 μl precooled methanol,
vortexing for 30 s, sonicating for 10 min at 4 °C, and then incubating for
1 h at −20 °C. Precipitated protein was removed by centrifugation
(13,000 rpm, 20 min) at 4 °C. Subsequently, the supernatants were
transferred to LC-MS vials and stored at −80 °C until the Ultrahigh
Performance Liquid Chromatography – Quadrupole Time-of-Flight
Mass Spectrometry (UHPLC-QTOF/MS) analysis. To ensure data quality
for metabolic profiling, pooled quality control samples were prepared
by mixing 5 μl supernatant from each sample.

2.4. UHPLC-QTOF/MS analysis

Metabolomics performed were described in a previous study [32].

Fig. 1. Schematic outline of major pathways of PAPC metabolism: ROS induced-LPO of PAPC oxidation (A) and enzyme-catalyzed AA oxidation (B).
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In brief, plasma samples were randomly injected into a Waters
ACQUITY UHPLC HSS T3 column (100×2.1 mm, 1.8 µm) maintained
at 25 °C using an Agilent 1290 series UHPLC system coupled to an
Agilent 6550 iFunnel QTOF mass spectrometer. During acquisition, one
quality control sample was run after every eight injections. QC samples
were also used for MS/MS data acquisition by using a Triple TOF 6600
mass spectrometer (AB SCIEX, USA).

2.5. Data preprocessing

Data preprocessing procedures were described in previous publica-
tions including nonlinear retention time alignment, peak discrimina-
tion, filtering, alignment, matching, and identification. The acquired
mass spectrometry data (.d) were converted to the mzXML format using
ProteoWizard and preprocessed by R package XCMS and R package
CAMERA (version 3.2) generating a data matrix consisted of the
retention time (RT), mass to charge ratio (m/z) values, and peak
intensity [33]. A LOESS regression model was used to normalize each
metabolite peak in all samples based on QC samples [34].

Subsequently, metabolites annotated were subjected to further
statistical analysis by using Metaboanalyst 3.0 (http://www.metabo
analyst.ca/MetaboAnalyst/faces/home.xhtml). Firstly, Principal com-
ponent analysis (PCA) was used to view the clustering trend for the
multidimensional data. Partial least-squares discriminant analysis (PLS-
DA) was then performed to further investigate the metabolic changes
and screen for potential marker metabolites. In addition to the multi-
variate statistical method, the nonparametric test (Wilcoxon rank-sum
test) was applied to determine the significance of each metabolite.
Potential metabolic biomarkers were selected with VIP value more than
1 and p value less than 0.05. The differential metabolites were used to
conduct hierarchical cluster analyses (HCA) and mapped into their
biochemical pathways.

2.6. Lipid extraction of human plasma

Lipids were extracted using the Folch method following the
previously published protocols [35]. To avoid oxidation during extrac-
tion, butylated hydroxytoluene (BHT) and PPh3 were added into Folch
solution to make a final concentration of 0.005% (wt/vol) and
0.0025 mg/ml respectively. PC internal standard (14:1–14:1 PC) of
100 ng and 5 ng of each prostaglandin internal standard (shown in
Table S2) were added prior to extraction.

2.7. Detection of oxPL profile by a targeted metabolomics using normal
phase LC/ESI-MS/MS

As described in our previously study, samples were injected into an
Agilent Zorbax RX-silica column (150×2.1 mm, 5 µm) at a flow rate of
500 μl/min by using an Agilent 1260 Quad pump coupled to a Thermo
Fisher TSQ Vantage triple quadrupole mass spectrometer [22]. The
linear gradient started from 100% A (CHCl3/MeOH/NH3·H2O, 80/19.5/
0.5, by vol) to 100% B (CHCl3/MeOH/NH3·H2O, 60/34/5.5/0.5, by vol)
in 14 min, held at 100% B for 6 min and returned to 100% A in 2 min.

Each oxidized phospholipid was determined by three characteristic
transitions as shown in Table S1. In positive ion mode, PC species is
readily ionized to give a characteristic fragment of PC headgroup with
m/z 184. In the negative ion mode, a palmitate in sn-1 position and the
side chain of oxidized fatty acids at sn-2 position were used as
important structural information to identify and quantify a specific
oxidation product. All the transitions used in multiple reaction mon-
itoring (MRM) experiments were summarized in Table S1.

2.8. Detection of fatty acid metabolites using a targeted metabolomics based
on reverse phase LC/ESI-MS/MS

Systematic analysis of fatty acid metabolomic approach was per-

formed according to our published procedure [36,37]. In brief, samples
were injected onto a Phenomenex C18 column (100×2.1 mm, 2.6 µm)
at a flow rate of 400 μl/min by using an AB Sciex 5500 QTrap hybrid
quadrupole linear ion trap mass spectrometer in negative ion mode. The
gradient started with 100 to 92% A (H2O/ACN/FA, 63/37/0.02, by vol)
in 6 min, held at 45% A from 6.5 to 10 min, increased to 100% B (ACN/
IPA, 50/50, by vol) at 13 min, and returned to 100% A from 14 to
14.5 min. The characteristic transitions used in the MRM experiments
were shown in Table S2.

2.9. Statistical analysis

Results are expressed as mean± SD. Statistical analysis was per-
formed using one-way ANOVA. A probability value of< 0.05 was
considered statistically significant.

3. Results

To investigate the metabolic changes associated with CHD, we
performed the untargeted metabolomic profiles of 28 plasma samples
from the three groups (10 HC, 10 SA, and 8 MI patients) using UHPLC-
QTOF/MS. Table 1 represented a brief clinical background of the
human subjects enrolled in this study. We attempted to match the
major risk factors associated with CHD including age, sex, BMI,
hypertension, history of cigarette smoking, diabetes mellitus, and blood
lipid profiles. Notably, patients with SA were older than HC, but there
was no statistically significant difference in age between patients with
SA and MI. A majority of the participants across the three groups were
normal weight. Even though the healthy controls had an average BMI of
26.18±3.09, there were no statistical difference of BMI among three
groups. The percentage of smoker was significantly higher in MI
patients compared with HC and SA patients. The lipid profiles were
all well matched across three groups.

3.1. Metabolic profiles of plasma samples from healthy controls, SA and MI
patients

A total of 582 molecular features (240 metabolite features in
negative ion mode, and 342 metabolite features in positive ion mode
in the MS analysis) were selected for subsequent analyses. The principle
component analysis (PCA) was performed to view the metabolomics
data set and identify characteristics for each group. As shown in Fig. S1,
quality control (QC) samples, shown as blue dots, were center-
clustered, indicating the good instrumental reproducibility and stability
throughout the period of this metabolomics study.

Table 1
Clinical characteristics of patients enrolled in this study.

HC SA MI
(n=10) (n=10) (n=8)

Age (years) 54.9± 10.92 68.5±10.01 52.89±26.42
Male gender (%) 70 70 87.5
BMI (kg/m2) 26.18± 3.09 24.92± 3.53 23.11±9.75
Hypertension (%) 70 90 37.5
Diabetes mellitus (%) 30 20 12.5
Current smoker (%) 30 30 87.5
Drinking history (%) 20 20 25
Triglycerides(mg/dl) 1.7±1.15 1.62±0.97 3.03± 2.06
CHO (mmol/l) 3.82± 0.73 4.06±0.91 4.01± 1.6
LDL-C (mmol/l) 2.23± 0.66 2.41±0.78 2.35± 0.94
HDL-C (mmol/l) 1.08± 0.32 0.99±0.25 0.88± 0.35
apo-A1 (g/L) 1.23± 0.24 1.18±0.22 1.17± 0.48
apo-B (g/L) 0.79± 0.19 0.87±0.24 1.00± 0.62

Healthy controls: HC, stable angina: SA, myocardial infarction: MI. Values are mean± SD
or %; BMI, body mass index; CHO, total cholesterol; LDL-C, low density lipoprotein (LDL)
cholesterol; HDL-C, high density lipoprotein (HDL) cholesterol.
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Partial least-squares discriminant analysis (PLS-DA) model was
employed to further investigate the metabolic changes and differential
metabolites. In Fig. 2A, HC, SA and MI groups were separated from each
other, implying distinct metabolic profiles associated with different
disease stages. Then we compared SA to HC, MI to SA, as well as MI to
HC; PLS-DA score plots revealed that all these three groups could be
clearly discriminated (Fig. 2B–D). Parameters for explained variation
(R2), an indicator of model robustness, and cross-validated predictive
ability (Q2) were obtained as follows: HC versus SA, cumulative R2 at
0.98 and Q2 at 0.46 (Fig. 2B); SA versus MI, R2 at 0.96 and Q2 at 0.62
(Fig. 2C); HC versus MI, R2 at 0.89 and Q2 at 0.47 (Fig. 2D).

3.2. Hierarchical clustering analysis (HCA) of differential metabolites and
pathways

The metabolite features with variable importance in the projection

(VIP) values> 1.0 and p value<0.05 were considered as the potential
differential metabolites. As summarized in Tables 2–4, there were 18
specific metabolites that can distinguish SA from HC, 37 for MI from
SA, and 36 for MI from HC. Interestingly, a majority of these differential
metabolites were lipids. For example, lipids represent 13 out 18
(Table 2), 23 out 37 (Table 3), and 25 out 36 (Table 4). All these
differential metabolites were used to conduct the HCA (Fig. 3A–C). The
heatmaps showed the clear differential metabolic profiles when com-
paring SA to HC, MI to SA, and MI to HC. Among these three paired
comparisons, the metabolic profiles of MI were better distinguished
from HC group.

Next, we mapped these differential metabolites into their biochem-
ical pathways. As shown in Fig. 3D–F, the significantly altered path-
ways were mainly involved in glycerophospholipid (GPL) metabolism,
porphyrin and chlorophyll metabolism, and amino acids metabolism.
Moreover, disturbance of GPL metabolism was ranked at the top of the

Fig. 2. PLS-DA score plot of (A) HC, SA patients and MI patients, (B) HC and SA patients, (C) SA patients and MI patients, and (D) HC and MI patients. Each dot represents the plasma
metabolomic profile of a single sample.
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most significantly affected pathways in all paired comparisons, con-
sistent with the notion that dyslipidemia is a prominent feature in all
stages of atherosclerosis [8].

3.3. Targeted metabolomic analysis of GPL pathways: focusing on LPO
products of oxPLs and IsoPs

As shown in Fig. 1, GPL metabolism has been closely associated with
inflammatory responses and oxidative stress-induced LPO, two major
contributing factors for the initiation and progression of atherosclerosis
[8]. We next employed a targeted metabolomic approach to system-
atically analyze all the major downstream metabolites associated with
GPL metabolic pathways: eicosanoids derived from three major enzy-
matic pathways of arachidonic acid and linoleic acid, oxidized PLs
(PAPC and PLPC) on the surface of LDL particles, and the hydrolyzed
oxidation products from oxPL. Surprisingly, we observed overwhelmed
production of LPO metabolites in the circulation comparing to the
enzymatic products derived from arachidonic acids as evidenced by the
multiple isomeric peaks in the MRM transitions in the MS analysis (Fig.
S2) [22]. Furthermore, we found that both oxPLs and hydrolyzed fatty
acid oxidation products were significantly elevated in plasma of MI
patients comparing to those from HC and SA patients (Fig. 4). Among
them, D2/E2-IsoPs, 5-HETE, and 9/13-HODE were hydrolyzed products
of D2/E2-IsoP-PC, HETE-PC and HODE-PC respectively. Taken together,
our data suggest that oxidative stress and LPO play an important role in
atherosclerosis and the LPO metabolites can be potentially used to
differentiate MI from SA and HC.

Table 2
Statistical analysis of differential metabolites to distinguish SA from HC group.

Metabolites VIP value Fold Change p value

HC vs SA
PC (18:3/2:0) 7.95 0.15 < 0.001
PC (14:1/4:0) 5.95 0.12 < 0.001
PC (17:2/2:0) 4.62 6.42 0.005
Bilirubin 3.64 3.02 0.005
LysoPC (20:0) 2.80 0.34 0.01
Biliverdin 2.31 2.31 0.009
2-Oxoadipic acid 2.22 1.73 0.03
LysoPC (22:5) 2.14 0.43 0.007
L-gamma-glutamyl-L-valine 1.79 0.49 0.015
LysoPE (18:3) 1.79 0.48 < 0.001
LysoPC (O-15:0) 1.60 1.96 0.01
Urocanic acid 1.49 0.56 0.02
LysoPC (20:2) 1.46 1.84 0.003
PC (24:1/14:1) 1.31 0.54 < 0.001
PC (12:0/24:4) 1.31 0.62 0.04
Inosine 1.27 1.67 0.01
Glycerophosphocholine 1.26 0.57 0.009
PC (10:0/26:2) 1.05 1.57 0.009

PC: phosphatidylcholine; LysoPE: lyso-phosphatidylethanolamine.

Table 3
Statistical analysis of differential metabolites to distinguish MI from SA group.

Metabolites VIP value Fold Change p value

SA vs MI
Bilirubin 5.88 0.05 < 0.001
PG (16:0/18:2) 5.08 18.63 < 0.001
PC (18:3/2:0) 4.98 4.32 < 0.001
SM (d16:1/26:1) 4.21 0.35 < 0.001
PC (14:1/4:0) 4.08 6.35 < 0.001
LysoPC (20:0) 3.82 7.45 < 0.001
5-Hydroxyhexanoic acid 3.82 6.17 < 0.001
Biliverdin 3.52 0.14 < 0.001
Adenosine monophosphate 3.29 3.35 < 0.001
Glycocholic acid 2.59 0.18 0.001
PC (10:0/20:1) 2.41 2.87 0.002
N1-Methyl-2-pyridone-5-carboxamide 2.21 0.41 0.002
Pyridoxamine 5′-phosphate 2.11 6.05 0.002
Pregnenolone sulfate 2.00 3.10 0.003
Traumatic acid 1.97 3.75 0.003
PE (P-16:0/22:5) 1.96 0.65 0.003
Hypoxanthine 1.78 3.69 0.003
16-Hydroxy hexadecanoic acid 1.69 2.87 0.003
Chlorogenic acid 1.66 3.60 0.004
PI (16:0/16:0) 1.48 2.53 0.004
LysoPA (18:2) 1.46 2.24 0.004
MG(18:0/0:0/0:0) 1.45 2.33 0.004
L-gamma-glutamyl-L-valine 1.42 1.96 0.004
2-Oxoadipic acid 1.39 1.79 0.004
PI (16:1/22:6) 1.39 1.91 0.006
L-Arginine 1.39 0.47 0.006
MG (20:3/0:0/0:0) 1.37 1.66 0.006
Palmitic acid 1.37 1.89 0.006
LysoPS (20:4) 1.31 1.89 0.006
Oxypurinol 1.31 2.50 0.006
Hydrocortisone 1.22 2.06 0.006
LysoPC (O-15:0) 1.20 0.48 0.006
SM(d14:0/12:0) 1.19 2.18 0.006
PG (18:1/0:0) 1.14 0.48 0.008
PC (10:0/26:2) 1.11 0.69 0.008
Urocanic acid 1.06 1.86 0.011
PC (22:2/18:4) 1.02 1.82 0.011

PC: phosphatidylcholine; PG: phosphatidylglycerol; SM: sphingomyelin; MG: monoacyl-
glycerol; PI: phosphatidylinositol; PS: phosphatidylserine; PA: phosphatidic acid; PE:
phosphatidylethanolamine.

Table 4
Statistical analysis of differential metabolites to distinguish MI from HC group.

Metabolites VIP value Fold Change p value

HC vs MI
PE (P-16:0/22:5) 5.35 0.54 0.04
Bilirubin 4.40 0.14 0.01
Adenosine monophosphate 4.00 2.89 0.01
1-Stearoylglycerophosphoglycerol 3.39 0.36 0.04
PC (10:0/20:1) 2.87 0.25 0.02
5′-Methylthioadenosine 2.80 5.82 0.009
LysoPS (20:4/0:0) 2.62 2.49 0.001
LysoPE (15:0/0:0) 2.57 0.19 0.02
LysoPC (20:0) 2.49 2.60 0.03
Biliverdin 2.49 0.32 0.01
Palmitic acid 2.43 2.47 0.01
16-Hydroxypalmitic acid 2.41 3.17 <0.001
L-Tryptophan 2.38 0.43 0.04
LysoPC (20:1) 2.37 0.42 0.03
Chlorogenic acid 2.24 3.64 0.01
Pregnenolone sulfate 2.10 2.44 0.02
Traumatic acid 2.08 2.99 0.004
Gentisic acid 2.01 1.49 0.003
PI (16:1/22:6) 1.99 2.25 <0.001
Oxypurinol 1.89 2.54 0.004
PI (16:0/16:0) 1.83 2.29 0.004
Hydrocortisone 1.66 1.86 0.008
Oleic acid 1.61 2.04 0.01
MG (18:0/0:0/0:0) 1.61 2.02 0.001
Carnitine (20:1) 1.43 1.82 <0.001
PC (22:4/14:1) 1.41 1.64 0.006
LysoPC (20:2) 1.40 1.82 0.01
LysoPC (20:5) 1.37 0.58 0.01
PC (22:2/18:4) 1.35 1.80 0.006
PC (10:0/14:1) 1.22 1.61 0.01
PI (16:0/18:2(9Z,12Z)) 1.15 1.64 0.002
PC (22:5/20:5) 1.12 1.58 0.006
MG (20:3(5Z,8Z,11Z)/0:0/0:0) 1.11 1.39 0.02
PC (18:3/2:0) 1.09 0.66 0.03
Carnitine (24:0) 1.01 1.53 0.02
Stearoylcarnitine 1.01 1.49 0.003

PC: phosphatidylcholine; PG: phosphatidylglycerol; SM: sphingomyelin; MG: monoacyl-
glycerol; PI: phosphatidylinositol; PS: phosphatidylserine; PE: phosphatidylethanolamine.
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Fig. 3. Heatmap visualization of differential metabolites and related pathways. (A) HC to SA, (B) SA to MI, and (C) HC to MI. The color scale (right) illustrates the relative expression level
of metabolites across all samples: red color represents an expression level above mean, green color represents expression lower than the mean. Pathway analysis of potential differential
metabolites: (D) HC to SA, (E) SA to MI, and (F) HC to MI. All matched pathways are plotted according to p value from pathway enrichment analysis and pathway impact values from
pathway topology analysis. Color gradient and circle size indicate the significance of the pathway ranked by p value (yellow: higher p values and red: lower p values) and pathway impact
values (the larger the circle the higher the impact score). Only the significantly affected pathways with low p value and high pathway impact score are showed.
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4. Discussion

In this study, we performed a comprehensive metabolomic analysis
in human plasma to investigate disturbed metabolic features from
healthy controls and CHD patients. Subsequent analysis demonstrated a
good discrimination of HC with SA or MI patients, as well as SA with MI
patients, implying a uniquely altered metabolite profile in different
stages of CHD. A total of 18, 37 and 36 metabolites have been identified
as differential metabolites to distinguish SA from HC, MI from SA, and
MI from HC respectively. Metabolic pathway analysis of these potential
metabolites suggested that disturbance of GPL metabolism was among
the most significantly altered metabolic pathways in all paired compar-
isons. We then employed a targeted lipidomic analysis to further
evaluate the downstream metabolite of major phospholipids and found
that oxidized PL and their hydrolyzed fatty acids were closely asso-
ciated with CHD. These oxidative stress-induced LPO products over-
whelmed the enzymatic products of arachidonic acid and linoleic acid,
especially in plasma from MI patients. All these data demonstrated that
oxidative stress and LPO are a predominant feature and contributing
factors to CHD. Even though there are some limitations associated with
our current study, such as the limited size of the cohorts, significant
number of cigarette smokers in MI groups comparing to SA and HC, the
LPO metabolites have the potential to differentiate different stages of
CHD one validated in larger cohorts.

GPL were the major differential metabolites identified in this work
and these phospholipids belonged to multiple subclasses including
phosphatidylcholine (PC), lysophosphatidylcholine (lysoPC), phospha-
tidylethanolamine (PE), lysophosphatidylethanolamine (lysoPE), phos-
phatidylserine (PS), lysophosphatidylserine (lysoPS), phosphatidylino-
sitol (PI), and lysophosphatidic acids (lysoPA). Among them, lysoPC
(20:0), lysoPC (20:1), lysoPC (20:2), lysoPC (20:5), lysoPC (22:5),
lysoPE (18:3), and glycerophosphocholine have been previously re-
ported to be differential metabolites in CHDs [30]. Besides, we found
lysoPA (18:2) (one of the main lysoPA species) and lysoPS (20:4) were
increased in MI patients compared to healthy controls or SA patients
[38]. Furthermore, we observed PC and lysoPC were the primarily
disturbed subclasses especially in the comparison of SA with HC group.
As shown in Fig. 1, PC can be hydrolyzed to generate lysoPC and free
fatty acid catalyzed by phospholipase A2 [39]; the free PUFAs, such as
arachidonic acid and linoleic acid, can be further oxidized to prosta-
glandins, thromboxane, prostacyclin, and hydroxylated fatty acids by
COX, LOX and cytochrome P450 [20]. All these enzymatic lipid
mediators have been shown to play a critical role in inflammatory
responses, immune response, blood pressure control among others in
the context of CHD and atherosclerosis [40]. Furthermore, PUFA-
containing PL can be oxidized by LPO in the context of CHD and
generates a plethora of oxidation products [11]. The oxidized PL can be

hydrolyzed by PAF-AH to form oxidized fatty acids [41,42]. Among
these oxidation products, isoprostanes (IsoPs), isomers of prostaglan-
dins, have been well characterized and studied in CHD [19,35,43].
These two processes are interrelated in the initiation and progression of
CHD due to the presence of oxidative stress and chronic inflammation
in atherosclerosis [44–46]. Our results showed that oxPLs were strik-
ingly increased in MI patients. Among them, HETE-PC, PECPC, HODE-
PC, KDdiA-PC and HODA-PC were the top five oxidized products. The
roles of oxidized PL in atherosclerosis have been a research focus for the
past decades and both anti-atherosclerotic and pro-atherosclerotic
effects of these oxPLs have been reported [46,47]. PECPC is a potent
anti-inflammatory lipid mediator involved in Nrf2 pathway [48]
whereas POVPC exhibits pro-inflammatory bioactivity mediated by
Toll-like receptor 2 [49]. Truncated products KODA-PC, HODA-PC and
KDdiA-PC are ligands of CD36, which directly contribute to the
development of macrophage foam cell formation [50]. We also found
elevated levels of IsoPs-PC in plasma of MI patients [19,51], specifi-
cally, D2/E2-IsoP-PC, precursors of a newly discovered deoxy-A2/J2-
IsoP-PC, which have potent anti-inflammatory and antioxidant proper-
ties [22]. Moreover, LA esters of cholesterol reside in the core of LDL,
and HODEs are major oxidation products derived from LA [52,53].
Previous studies demonstrated that oxidation products from cholesterol
esters have been associated with atherosclerosis [54,55]. Distinct from
enzymatically generated eicosanoids, LPO products of IsoPs consisted of
multiple peaks in MS analysis due to the presence of multiple stereo-
isomers [56,57] (Fig. S2). Interestingly, we observed that LPO meta-
bolites were significantly elevated only in MI patients whereas SA
patients had modest elevations comparing to control. It warrants
further investigation and validation in large cohorts for this interesting
and significant observation.

In addition, several amino acids or intermediates of amino acid
metabolisms have been identified as differential metabolites associated
with CHD. For example, MI patients had obviously decreased trypto-
phan and arginine levels, corroborated with previous publications
[58–61].

Metabolomics, systematic analysis of all metabolites and metabolic
pathways in a given biological system, has been increasingly recognized
as an enabling technique in biomarker discovery and understanding
disease mechanisms [23]. This technique attracts increasing attentions
in CHD research [30]. Lipidomic is a branch of metabolomics, which
has been considered as a powerful technique to systematically inves-
tigate all the lipids and pathways associated with lipid metabolism. Due
to the importance of lipid metabolism in atherosclerosis and CHD, a
number of studies have been carried out using lipidomics to identify
feature of lipids associated with different stages of CHD [54,62,63].
Metabolomics and lipidomics can be carried out in a targeted and
untargeted fashion and the limitations of these techniques have to be

Fig. 4. Heatmap visualization of significantly changed metabolites associated with CHD: oxPLs (A) and oxidation products of hydrolyzed free fatty acids (B).
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taken into consideration in a study [31]. One of the biggest challenges
in the metabolomic analysis is the quantification of a wide range of
abundances of metabolites. In this study, we combined untargeted and
targeted approach to identify metabolic features of different CHD. The
oxidized PL and their downstream metabolites were quantified in a
targeted manner using internal standards and MRM technique, which
enabled us to differentiate the LPO products from enzymatic products
[36,37,64]. Thus, the identification of LPO products as a predominant
feature in human plasma has significant implications in understanding
the pathophysiology of atherosclerosis and CHD as well as identifying
potential biomarkers. It is noteworthy that oxidized cholesterol ester
may be also targeted for future analysis due to the important roles of
these oxidation products in atherosclerosis [54].

In summary, we observed a significantly disturbed metabolic profile
and LPO in the different stages of CHD through metabolomics and
identified a variety of differential metabolites to distinguish HC, SA and
MI patients. Among them the metabolites associated with LPO appeared
to be a predominant feature in CHD and may be used as potential
biomarkers to differentiate MI from SA and HC. Our study has
highlighted the power of using comprehensive metabolomic (lipidomic)
approach to identify biomarkers and underlying mechanisms in CHD.
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