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A B S T R A C T

Objective: College students with subclinical depression often experience sleep disturbances and are at high risk of
developing major depressive disorder without early intervention. Clinical guidelines recommend non-
pharmacotherapy as the primary option for subclinical depression with comorbid sleep disorders (sDSDs).
However, the neuroimaging mechanisms and therapeutic responses associated with these treatments are poorly
understood. Additionally, the lack of an early diagnosis and therapeutic effectiveness prediction model hampers
the clinical promotion and acceptance of non-pharmacological interventions for subclinical depression.
Methods: This study involved pre- and post-treatment resting-state functional Magnetic Resonance Imaging (rs-
fMRI) and clinical data from a multicenter, single-blind, randomized clinical trial. The trial included 114 first-
episode, drug-naïve university students with subclinical depression and comorbid sleep disorders (sDSDs;
Mean age=22.8±2.3 years; 73.7% female) and 93 healthy controls (HCs; Mean age=22.2±1.7 years; 63.4%
female). We examined altered functional connectivity (FC) and brain network connective mode related to sub-
regions of Default Mode Network (sub-DMN) using seed-to-voxel analysis before and after six weeks of non-
pharmacological antidepressant treatment. Additionally, we developed an individualized diagnosing and ther-
apeutic effect predicting model to realize early recognition of subclinical depression and provide objective
suggestions to select non-pharmacological therapy by using the newly proposed Hierarchical Functional Brain
Network (HFBN) with advanced deep learning algorithms within the transformer framework.
Results: Neuroimaging responses to non-pharmacologic treatments are characterized by alterations in functional
connectivity (FC) and shifts in brain network connectivity patterns, particularly within the sub-DMN. At baseline,
significantly increased FC was observed between the sub-DMN and both Executive Control Network (ECN) and
Dorsal Attention Network (DAN). Following six weeks of non-pharmacologic intervention, connectivity patterns
primarily shifted within the sub-DMN and ECN, with a predominant decrease in FCs. The HFBN model
demonstrated superior performance over traditional deep learning models, accurately predicting therapeutic
outcomes and diagnosing subclinical depression, achieving cumulative scores of 80.47% for sleep quality pre-
diction and 84.67% for depression prediction, along with an overall diagnostic accuracy of 82.34%.
Conclusions: Two-scale neuroimaging signatures related to the sub-DMN underlying the antidepressant mecha-
nisms of non-pharmacological treatments for subclinical depression. The HFBN model exhibited supreme
capability in early diagnosing and predicting non-pharmacological treatment outcomes for subclinical depres-
sion, thereby promoting objective clinical psychological treatment decision-making.
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Introduction

The World Health Organization estimated that approximately 280
million people worldwide suffer from depression (WHO, 2024), with
nearly 1/3 of cases occurring in China (Lu et al., 2021). Recently, sub-
clinical depression among university students has garnered significant
clinical attention, with global studies reporting a prevalence rate of
30–40% among college students (An et al., 2022; Bertha& Balázs, 2013;
Cukrowicz et al., 2011; Ge et al., 2024), with 90% also suffering from
sleep disturbances (Geoffroy et al., 2018; Tsuno et al., 2005). This rising
clinical concern could be attributed to several factors, including chal-
lenges in adjusting to the dramatic transition from adolescence, sleep
disturbances, intense academic pressure, social media impacts, financial
stress, and inadequate mental health education. University students are
particularly vulnerable to mental health challenges due to pressures
related to academics, career preparation, and social relationships.
Moreover, subthreshold depression—an early indicator of Major
Depressive Disorder (MDD) —is notably prevalent in this population,
raising concerns about an increased risk of future depressive diagnoses.
In China, over 50 million students belong to subthreshold depression,
with 15% having suicidal thoughts (Gao et al., 2020; Qu et al., 2023).
The issue could also be attributed to the increased fear and anxiety that
resulted from the COVID-19 pandemic. During the pandemic, Chinese
college students exhibited a prevalence of depressive symptoms and
sleep disturbances of as high as 54.95% and 48.18%, respectively
(Zhang et al., 2023b).

The depression-sleep disturbance relationship is not only intricate
but also comorbid, creating a bidirectional link that has been extensively
explored in numerous studies since the 1970s (Pearlman & Greenberg,
1970). For instance, patients with insomnia and subthreshold depression
were previously reported to show a significant deterioration of insomnia
when they stopped taking sleep-promoting medications (Wichniak et al.,
2011). Furthermore, college students with an evening chronotype and
poorer sleep quality were found to be at a higher risk of more severe
depressive symptoms (Zhang et al., 2023b). It is also noteworthy that
subclinical depression, a significant precursor to and a risk factor for
MDD (Zhang et al., 2023c), can develop into a MDD if not properly
intervened. In subclinical depression randomized controlled trials
(RCTs), anti-depressants have not often shown no better therapeutic
effects than placebos (Baumeister, 2012). Furthermore, research evi-
dence suggests that anti-depressants might be less useful in treating
patients with more severe depression, as well as functional impairments
or suicidal ideations (Kroenke, 2017). Given the limited research evi-
dence supporting the effectiveness of pharmacotherapeutic treatments
in managing subclinical depression, current clinical guidelines recom-
mend non-pharmacological interventions as the first-line treatment for
early depression.

Psychotherapy, the most commonly employed anti-depressant
intervention for subclinical depression, has been shown in numerous
studies to reduce MDD incidences (Cuijpers et al., 2014). For instance, a
meta-analysis involving 32 RCTs revealed that psychotherapy might be
the most effective non-pharmacological treatment for subclinical
depression in adults (He et al., 2022). Moreover, findings from the
annual Healthy Minds Study that involved 96,000 US students across
133 campuses who completed web surveys during the 2021–22 aca-
demic year revealed a significant increase in the number of students
participating in counseling or alternative therapy. Specifically, the
number of students participating in ≥ 1 therapy or counseling session
within a year rose from 30 to 37% (>1/3 of the surveyed students),
marking a new high. According to a systematic review and network
meta-analysis of combined treatments for a new episode of depression,
included 676 RCTs, 105,477 participants and 63 treatment classes, re-
ported that combined treatments showed better effectiveness for a new
episodes of depression at the intervention level (Mavranezouli et al.,
2024).

Electroacupuncture (EA), another promising Y anti-depressant

treatment, entails applying electrical stimulation to acupuncture nee-
dles, resulting in improved therapeutic effects relative to traditional
acupuncture (Yin et al., 2022). It has been widely studied in recent years
for its safety, effectiveness, ease of operation, and affordability. The
Mayo Clinic adopted acupuncture as a regular therapy in April 2024 to
help with pain management, anxiety, and sleep problems, et al. showing
its effectiveness and safety. According to clinical research, EA exerts
therapeutic effects comparable to classic tricyclic anti-depressants in
alleviating MDD symptoms, with no side effects (Luo et al., 1998; Zhao
et al., 2019). Moreover, clinical research evidence from two reliable
RCTs (Yeung et al., 2011; Yin et al., 2022) revealed that compared to
placebo group, EA on Baihui (GV20) and Yintang (GV29) [covering the
Prefrontal Cortex (PFC)] significantly improved the depression and
subjective sleep scores after treatment. Nonetheless, additional
high-quality RCTs are required to further elucidate the effectiveness of
different non-pharmacological interventions, including EA and Psy-
chotherapy. It is also noteworthy that the underlying neuroimaging
mechanisms, as well as neural markers associated with combined
non-pharmacological treatment responses in young patients with sub-
clinical depression, remain unclear, necessitating further research.

The Default Mode Network (DMN), the most studied functional brain
network in recent rs-fMRI research, is highly relevant in depression
diagnosis and treatment response. The DMN is responsible for self-
referential thinking, memory retrieval, emotional regulation, intro-
spection, and internal focus, faculties that are closely linked to depres-
sion (Barreiros et al., 2024; Deng et al., 2016; Liang et al., 2020; Xu
et al., 2023). Therefore, it is plausible that research targeting the syn-
chronous activation of distinct brain regions is flourishing based on the
notion that anti-depression neuro-responses are related to DMN and its
downstream modulation of connected brain regions (Bestmann et al.,
2004; Beynel et al., 2020; Zweerings et al., 2019). Based on Independent
Component Analysis (ICA), the DMN can be divided into two
sub-regions: the anterior DMN (aDMN) and posterior DMN (pDMN)
(Damoiseaux et al., 2008; Lei et al., 2013, 2014). The Anterior Cingulate
Cortex (ACC) and Precuneus (PCU), integral components located in the
aDMN and pDMN, respectively, formed the central hub within the DMN
and have been established to correlate with depression complicated by
comorbid sleep disorders (Godlewska et al., 2018; Rubart et al., 2022;
Yu et al., 2020). In a previous study, compared to Healthy Controls
(HCs), mental disorder patients showed a stronger ACC connectivity in
the aDMN and a weaker connectivity between the PCU and the Posterior
Cingulate Cortex (PCC) within the pDMN (Liemburg et al., 2012; Sendi
et al., 2021). Furthermore, a leave-one-out analysis implied that,
following six weeks of treatment, activity in the ACC could predict
anti-depressant response status at individual participant levels
(Godlewska et al., 2018). The sub-DMN is also crucially involved in the
neuromodulation and communication between other brain networks in
depression patients, especially during rest. For instance, a rs-fMRI study
involving 114MDD patients linked the PCU to subjective sleep quality in
depression patients (Ma & Zhang, 2022; Rubart et al., 2022). Further-
more, a study on DMN-related changes among adolescents with
depression predicted future depression risk based on the ACC and
anterior dorsomedial PFC, with the increase in depressive symptoms at
previous time points significantly predicting changes in FCs between the
PCC and PCU (Afzali et al., 2022). Despite such extensive research in-
sights, the correlation between the sub-DMN and neuroimaging signa-
tures of non-pharmacological treatment responses in college students
with subthreshold depression is yet to be fully elucidated.

Notably, the lack of individualized therapeutic effect prediction
models limits the global applicability and popularity of non-
pharmacological interventions for subclinical depression treatment.
Consequently, robust, and intelligent predictive models are urgently
required to enhance clinical therapeutic selection and pre-evaluation of
therapeutic outcomes for subthreshold depression. Deep learning in
Artificial Intelligence (AI) has demonstrated considerable potential in
understanding and modeling the brain’s complex structures and
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functions. Although the Functional Brain Network (FBN) has been
widely used in constructing FBN models, conventional FBN construction
often relies on a predefined brain region atlas to identify nodes
(Tzourio-Mazoyer et al., 2002), limiting node interaction modeling to a
single scale. However, extensive research has revealed that the brain
functions hierarchically in physiology and anatomy (Mastrandrea et al.,
2017; Raut et al., 2020; Vidaurre et al., 2017). Owing to the brain’s
hierarchical architecture in both structure and function, the single-scale
FBN has been associated with several limitations, including inherently
flat methods that do not learn hierarchical representations of the brain
connectome (Ying et al., 2018). To overcome the hierarchical prediction
details overlooked in conventional approaches, we propose the adaptive
use of the Hierarchical Functional Brain Network (HFBN) within the
transformer framework. Recently, the HFBN model has been success-
fully applied in diagnosing early Alzheimer’s Disease (Zhang et al.,
2024).

Herein, we hypothesized that: (1) compared to HCs, sDSDs would
show abnormal rsFCs related to sub-DMN in some brain regions, as well
as abnormal rsFCs between sub-DMN to other brain networks; (2) after
six weeks of non-pharmacological treatment, sDSDs might have altered
rsFCs and changed brain network connective mode related to sub-DMN
(aDMN or pDMN); and (3) HFBN model could perform better in diag-
nosing and predicting non-pharmacological treatment outcomes than
traditional deep learning models. To the best of our knowledge, this is
the first rs-fMRI study that focuses on neuroimaging signatures of non-
pharmacological treatment response in subclinical depression among
college students and constructing a deep learning diagnosis-prediction
model based on the transformer framework. The study’s flow chart
and design are shown in Fig. 1.

Methods

This rs-fMRI study was approved by the Ethics Committee of The
First Affiliated Hospital of Guangzhou University of Chinese Medicine
(NO. ZYYECK [2019] 068). It is part of a four-site, single-blind RCT
clinical trial on the effectiveness of non-pharmacological treatments on
subclinical depression, registered in the Chinese Clinical Trial Registry
(ChiCTR1900028530) https://www.chictr.org.cn. The metabolic
genome findings of this clinical trial have already been published (Jiang
et al., 2024), and the study protocol was as in Wang et al. (2020).

Participants

Sample size calculation uses G* power (Faul et al., 2007), based on
previous RCTs of EA on depression (Yeung et al., 2011; Yin et al., 2022;
Zhao et al., 2019). After 6 to 8 weeks of intervention, the average
depression scale scores in the post-EA group were 9.8 ± 3.1 and 3.9 ±

3.2 in the control group. With the alpha value of 0.05, the statistical
power (1-β) = 0.95, and a 10% dropout rate, the minimized sample size
is 72.

From June 2020 to March 2021, 207 college students recruited from
two campuses of Guangzhou University of Chinese Medicine, all over 18
years old, signed an informed consent form, allowing for data sharing
and publication for scientific purposes. The inclusion and exclusion
criteria were as described in Wang et al. (2020). Students with sub-
clinical depression and comorbid sleep disorders received six weeks of
non-pharmacological treatments; EA was administered three times per
week for 30 min per session, whereas counseling was provided once a
week for 50–60 min per session.

Clinical measurements

The primary measurement was Beck Depression Inventory-Second
Edition (BDI-II) scores (Beck, 1996). BDI-II is a brief, self-rated mea-
sure that is easily scored and administered (Scogin &McElreath, 1994).
Furthermore, a 50% change in the BDI-II score demonstrated high
sensitivity and specificity for predicting depression remission (Reeves
et al., 2012; Riedel et al., 2010). The secondary outcome was the
Pittsburgh Sleep Quality Index (PSQI) scores (Buysse et al., 1989). PSQI
measure comprises 19 self-rated questions covering seven sleep quality
components (each weighted equally on a 0–3 scale) with a global score
ranging from 0 to 21, with scores ≥ 5 indicating poor sleep quality
(Buysse et al., 1989). Additionally, a ≥ 3-point reduction in the PSQI
score indicated a clinically significant improvement in sleep quality,
defined as Minimally Clinically Important Difference (MCID) by
(Costandi et al., 2023).

fMRI data acquisition and pre-processing

All students’ MRI images were obtained using a 3.0 Tesla Siemens
Prisma scanner with a 64-channel head coil. Students were instructed to

Fig. 1. The flow chart and design of the study.
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lie still, wear sponge earphones to reduce noise, and avoid systemic
thinking during the procedures. Foam pads were put in the gap between
head and coil to minimize head motion and improve image quality.
Clinical diagnosis sequences were scanned first to exclude brain-
structural abnormality. Blood Oxygen Level Dependent (BOLD) fMRI
data were acquired using Gradient Echo Planar Imaging (GRE-EPI) se-
quences with the following parameters: TR=500 ms, TE=30 ms, slice
thickness=3 mm, slice spacing=1 mm, Field of View (FOV)=220 × 220
mm, matrix=64× 64, flip angle=90◦, and time points=960, collected in
8 min. The DICOM was converted to the NIFTI format using MRIcroGL’s
dcm2niix converter (https://www.nitrc.org/projects/mricrogl/), and
quality assessed. The Data Processing and Analysis for Brain Imaging
(DPABI) toolbox version 6.8 (http://rfmri.org/DPABI) and SPM 12
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) were employed
for MRI data processing (Yan et al., 2016) using MATLAB (version
R2022b).

The data pre-processing steps were as follows: (1) Discarding the first
ten volumes to eliminate magnetic field instability; (2) Slice timing and
realignment, excluding participants with head motion or rotation
>3mm or 3◦, respectively; (3) Spatial normalization to the MNI space
using the standard EPI template with a resampling voxel size of 3× 3× 3
mm³; (4) Smooth normalizing images with a 6 mm Full-Width at Half
Maximum (FWHM) to reduce the spatial noise; (5) Regressing out
covariates, including head motion parameters, cerebrospinal fluid sig-
nals, and white matter signal; and (6) Bandpass filtering (0.01~0.08 Hz)
and detrending to remove cardiac and high-frequency physiological
noise, and low-frequency drift.

Data quality control

The baseline fMRI data of sDSDs-071 and HC-066 subjects were
excluded due to insufficient rs-fMRI data time points. Furthermore, six
students (sDSDs-groups-019, 032, 039, 042, 052, 064) dropped out of
the study during the six-week non-pharmacological treatment course,
resulting in some missing post-treatment fMRI data. Additionally, post-
treatment fMRI data of the sDSDs-group-081 student was excluded due
to excessive head motion (>3 mm or 3◦). During the six weeks of
treatment course, patient compliance remained high, 11 students
dropped out, with a dropout rate of 9.6%, lower than the 12% dropout
rate reported in a systematic review of acupuncture RCTs (Jeon et al.,
2021). Finally, 96 sDSDs (with 96 paired pre/post-scan images) and 92
HCs (with 46 paired pre/post-scan images) were included in the final
rsFC analysis.

Seed-based FC analysis

The SPM 12 version of Automated Anatomical Labelling (AAL)
software (Tzourio-Mazoyer et al., 2002) was used to select core
sub-DMN regions as ROIs or seeds, including ROI 1=AAL 31, ROI
2=AAL 32 (for represent aDMN); and ROI 3=AAL 67, ROI 4=AAL 68
(for represent pDMN) (DeMaster et al., 2022; Lei et al., 2013). Their
Montreal Neurological Institute (MNI) coordinates (x, y, z) were anterior
cingulate and paracingulate gyri L/R (− 6, 52, − 2 / 2, 36, 22) and pre-
cuneus L/R (0, -56, 30 / 2, − 56, 26). The RESTplus toolbox was used to
calculate altered FCs related to sub-DMN before and after six weeks of
non-pharmacological treatment (Jia et al., 2019). Pearson’s correlation
coefficients were also calculated between the seeds’ time series and the
remaining voxels in the entire brain. Finally, FC matrixes were obtained
via conversion of the correlation values to Z values through Fisher Z
transformation. Two-sample t-tests were performed to evaluate the
abnormal FCs related to sub-DMN between sDSD and HCs and the
different FCs between post-treatment SDSDs and post-scanned HCs. The
altered FCs related to sub-DMN after non-pharmacological treatment
within sDSDs were estimated by paired t-tests (gender, age, and edu-
cation as covariates). The significant level was voxel p<0.001, cluster
p<0.05, with a family-wise error (FWE) correction threshold of p<0.05

at the cluster level.

Construction of the HFBN model for diagnosing and predicting therapeutic
outcomes

The HFBN is a sparse attention mechanism-based diagnostic model
for constructing and analyzing multi-scale Functional Brain Networks
(FBN). Herein, the HFBN was employed to construct and analyze multi-
scale FBNs using rs-fMRI data to predict the therapeutic outcomes of
non-pharmacological treatments. Its architecture comprised two key
modules: The Spatial-Temporal Graph Convolutional Feature Extraction
(ST-GCFE) module and the Hierarchical Node Fusion (HNFM) module.
Fig. 2 shows the architecture of HFBN model. The former extracts
spatiotemporal features from rs-fMRI time series signals via spatiotem-
poral graph convolution operations, effectively capturing low-level
spatial-temporal features from rs-fMRI signals for subsequent construc-
tion of multi-scale FBNs. On the other hand, HNFM provides a node
fusion technique for hierarchically merging the fine-grained brain nodes
into coarse-grained nodes to construct and analyze multi-scale FBNs.
This node fusion process allows HNFM to gradually refine and integrate
the ST-GCFE-extracted multi-scale features and learn the hierarchical
representation of FBNs for understanding and analyzing the brain’s
structural and functional organization. Our previous methodological
research (Zhang et al., 2024) details these two modules and their
application in the proposed deep network.

Results

Demographic and clinical characteristics

Table 1 shows a summary of the demographic and disease-related
clinical characteristics. Continuous variables were examined using an
independent two-sample t-test between sDSd and HC. The categorical
variable (sex) using percentages and analyzed with the chi-square test,
with statistical significance at p<0.05.

This study involved 207 college students in total, including 114
unmedicated first-episode subclinical depression students with comor-
bid sleep disorders (males=30; females=84; age range=18–25 years;
mean age=22.85 (±2.28) years; HAMD-17 ≥7 points and <17 points;
PSQI>5 points) and 93 HCs (males=34; females=59 females; age
range=18–25 years; mean age=22.22 (±1.75) years; HAMD-17<7
points; PSQI<5 points).

The two groups showed no significant differences in sex, age, or
education (p>0.05). However, they showed significant differences in
PSQI and HAMD-17 scores, with average scores of 11.73 (±2.77), 13.91
(±5.00) in sDSDs group, and 1.97 (±2.16), 2.25 (±1.53) in HC groups,
respectively (p<0.001).

Clinical measurements after non-pharmacological treatment in the sDSDs

In baseline, the mean scores of the primary (BDI-II) and secondary
(PSQI) measurements were 25.78 (±7.75) and 11.73 (±2.77)
(p<0.001), respectively (Table 2). After 6 weeks of non-pharmacological
treatment, 79 (74.5%) students were in clinical remission in depression;
91 (85.8%) students achieved MCID in sleep disorders, and the means of
the core clinical measurements were markedly reduced to 8.99 (± 5.03)
and 5.95 (± 2.39) for BDI-II and PSQI, respectively (p<0.001) (Fig. 3).

Abnormal FCs related to sub-DMN in sDSDs compared to HCs

Two-sample t-tests were performed between two groups based on
cluster-forming (p<0.001 at the voxel level) and cluster-extent (pFWE-

corrected<0.05) thresholds. This study found statistically significant dif-
ferences in whole-brain FCs between the sDSDs and the HCs in the four
core sub-DMN regions. At baseline, the sDSDs had higher FCs related to
sub-DMN than HCs (Table 3). These alterations were detected in the
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bilateral medial Prefrontal Cortex (mPFC), right caudate, and left infe-
rior temporal gyrus, which correlated with the ACC (a part of the aDMN)
(Fig. 4-AB). On the other hand, brain activity in the left precentral and
inferior temporal regions correlated with brain activity in the PCU (a
part of the pDMN) (Fig. 4-CD). Furthermore, higher FCs between sub-
DMN with other brain networks show a connective mode mainly in
the ECN, DMN, and DAN at baseline (Fig. 5A).

Alerted FCs related to sub-DMN after non-pharmacological treatment
within sDSDs

Paired t-tests were performed to estimate FC alterations before and
after non-pharmacological treatment in sDSDs group (Table 4). After
treatment, FCs significantly changed in the bilateral Dorsolateral Pre-
frontal Cortex (dlPFC), angular gyrus, and right precentral gyrus, which
correlated with the ACC (a part of the aDMN) (Fig. 4-ab). Meanwhile,

FCs significantly altered in the left lingual and bilateral precentral gyrus,
which correlated with the PCU (a part of the pDMN) (Fig. 4-cd).

Alerted FCs related to sub-DMN after treatment between sDSDs and HCs

Two-sample t-tests were performed between two groups based on
cluster-forming (p<0.001 at the voxel level) and cluster-extent (pFWE-

corrected<0.05) thresholds. The whole brain voxel analyses and seed-
based functional connectivity analyses were all conducted within HC
group and with post-treatment group (Supplementary Tables 1–2, Sup-
plementary Figs. 1–2), while none of them hold up to correction for
multiple comparisons (pFWE-corrected<0.05).

The sub-DMN-related brain network connective mode in sDSDs after
treatment

The DMN and ECN responded to such intervention (Fig. 5B), with
higher sub-DMN-related FCs in baseline decreased after non-
pharmacological treatment (Table 4, Fig. 5B). Moreover, therapeutic
neural responses were characterized by alterations in the collaborative
brain network mode, primarily in the DMN and ECN.

Performance of the HFBN model in early diagnosis and therapeutic
outcomes prediction

Table 5 shows the model prediction performance. A Cumulative
Score (CS) was set to evaluate outcome prediction accuracies within a
threshold of α=5. The accuracies were determined as follows: CS(α) =
Ne≤α
N × 100%; where Ne≤α is the number of samples in which the absolute
prediction error e is not > the α threshold. The model prediction was
considered accurate if the error between the predicted and actual values
was≤ 5. To enhance the reliability of the results, all data were processed
using five-fold cross-validation. The HFBN model achieved the highest
CS scores of 80.47 and 84.67 compared to traditional deep learning
models for predicting sleep quality and depression, respectively
(Table 5).

Table 6 shows the model diagnoses performance of early depression.
Compared to other traditional deep learning models, the HFBN model
exhibited superior classification results, achieving an accuracy of
82.34%, 3.89% higher than that of the second-best model, BrainNetCNN
(Table 6).

Discussion

This study detected two scales of neuroimaging signatures: the
altered sub-DMN-related FCs and a shifted brain network connective
mode, after non-pharmacological treatment for subclinical depression
with sleep disorders. Furthermore, the HFBN intelligence model

Fig. 2. The overall architecture of the HFBN prediction model of nonpharmacological treatment for subclinical depression.

Table 1
Demographic and clinical characteristics of participantsa.

Variables sDSDs
(n¼114)

HCs
(n¼93)

t /χ2 p-value

Sex (M/F) 30 / 84 34 / 59 2.516 0.113b

Age (years) 22.85 (2.28) 22.22 (1.75) 2.264 0.072c

Education (years) 16.24 (2.01) 15.81 (1.71) 1.660 0.147c

PSQI 11.73 (2.77) 1.97 (2.16) 25.462 0.001c

HAMD-17 13.91 (5.00) 2.25 (1.53) 24.110 0.001c

a Continuous variables presented as Mean (Standard Deviation).
b The p-values were obtained by Wilcoxon rank sum tests.
c The p-value was obtained by the chi-square test.

Table 2
Clinical measurements before and after nonpharmacological treatment in sDSDs.

Variables pre-
treatment
(n¼96)

post-
treatment
(n¼96)

Clinical
Remission
Rate
n (%)

t p-value

BDI-II 25.78
(7.75)

8.99 (5.03) 79 (74.5%) 22.320 <0.001a

PSQI 11.73
(2.77)

5.95 (2.39) 91 (85.8%) 20.389 <0.001a

CTQ 36.91
(9.70)

- - - -

HAMA 19.41
(6.58)

13.84
(4.15)

- - -

Note: BDI-II = The Beck Depression Inventory of Second Edition; PSQI = The
Pittsburgh Sleep Quality Index; CTQ = The Childhood Trauma Questionnaire;
HAMA = Hamilton Anxiety Rating Scale.

a The p values were obtained by paired t-tests.
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performed outstandingly in diagnosing subclinical depression and pre-
evaluating the therapeutic outcomes of non-pharmacological therapy.

The rsfMRI indicators in subclinical depression and comorbid sleep
disorders

Untreated, first-episode sDSDs show relatively "pure" rsfMRI abnor-
mality in the baseline. In FC scale, the higher rsFCs related to the ACC
were detected in the bilateral mPFC, which regulates decision-making
and emotional responses (Zhang et al., 2023a), the right caudate, a
part of the reward system associated with motivation and emotional
processing (Kaliuzhna et al., 2023), and the left inferior temporal gyrus,
associated with visual processing and memory, all showing altered
depression activities (Wu et al., 2023). Additionally, lower rsFCs were

detected in the left precentral and inferior temporal regions, which are
associated with motor control and memory processing (Parr et al.,
2023), and correlated with brain activity in the PCU (a part of the
pDMN).

In the brain network scale, consistent with previous research, this
study found that subclinical depression often manifests as alterations in
brain regions related to emotional regulation and cognitive control.
Additionally, the higher FCs between the aDMN and pDMN correlated
with the ECN, which regulates cognitive control and decision-making,
and the DAN, which governs attentional control (Huang et al., 2024;
Korgaonkar et al., 2023). Specifically, our findings indicated that the
bilateral mPFC, a part of the ECN, exhibited increased connectivity,
attributable to the heightened emotional regulation efforts and
decision-making processes in individuals with subclinical depression.
According to research, subclinical depression patients often exhibit FC
upregulation within the ECN (Dunlop et al., 2023; Zhu et al., 2023),
indicating heightened activity in response to emotional and executive
challenges. It is also noteworthy that owing to their robust and efficient
neural connectivity patterns, young individuals with mild depression
often exhibit higher connectivity between the DMN and ECN without
necessarily having a cognitive impairment.

This study also discovered that higher FCs between sub-DMN and
DAN in subclinical depression are detailed in the precentral gyrus and
the right caudate, parts of the DAN, which are crucial for maintaining
attention and cognitive control. Furthermore, increased connectivity
between the DAN and DMN could indicate difficulties in disengaging
from self-referential thought processes (Yang et al., 2023). According to
research, the relationship between the DAN, DMN, and ECN may be
disrupted in subclinical depression (Zhu et al., 2023), potentially
resulting in attentional biases and sustained attention difficulties. Such
functional impairments could manifest in subclinical depression as
increased activity in the DAN during tasks requiring sustained attention
or cognitive flexibility (Chang et al., 2023). Notably, this increased
connectivity may be a compensatory mechanism for counteracting the
attentional deficits commonly evident in subclinical depression.

Neuroimaging signatures of non-pharmacological treatment in subclinical
depression

Successful anti-depression treatment normalizes connectivity within
the DMN, Salience Network (SN), and ECN (Hidalgo-Lopez et al., 2023;
Prompiengchai & Dunlop, 2024). Consistent with previous research, we

Fig. 3. Improve clinical outcomes following 6 weeks of non-pharmacological treatment for subclinical depression college students. The violin plots show
the sample distribution with mean and median of the BDI-II Scores and PSQI Scores from the baseline to post-treatment; symbols refer to the clinical scores of each
treated individual, lines illustrate clinical measurements reduction according to nonmedication treatments, followed by the paired t-tests (p<0.001).

Table 3
The abnormal rsFCs related to sub-DMN in baseline (sDSs>HCs).

Brain Regions (AAL) MNI Coordinates T value Cluster size

X Y Z

ROI 1: The Left ACC (aDMN)
Cerebelum_8_L -15 -60 -39 5.4757 381
Temporal_Inf_R 51 -42 -21 4.5047 209
Olfactory_L -12 15 -18 5.0784 162
Temporal_Inf_L -57 -63 -9 4.3656 122
Frontal_Inf_Oper_R 18 27 6 6.1299 751
Parietal_Sup_R 33 -60 57 4.6657 103
ROI 2: The Right ACC (aDMN)
Cerebelum_8_L -15 -63 -39 5.9974 489
Frontal_Inf_Orb_L -18 27 0 6.3104 262
Frontal_Sup_Orb_R 18 21 -15 5.3308 155
Frontal_Mid_Orb_L -9 60 -3 5.1461 103
Caudate_R 18 27 6 6.1325 206
ROI 3: The Left PCU (pDMN)
Temporal_Inf_R 60 -48 -18 5.0375 646
Cerebelum_10_L -24 -36 -39 5.6802 915
ROI 4: The Right PCU (pDMN)
Temporal_Inf_R 63 -51 -21 4.9993 785
Temporal_Inf_L -63 -51 -15 5.9155 833
Frontal_Mid_L -42 36 21 4.1568 331
Postcentral_L -48 -33 45 4.0592 201

Note: Two sample t-tests were performed for abnormal FCs between sDSDs and
HCs groups; MNI Coordinates refer to the Montreal Neurological Institute ste-
reotaxic space; Cluster-forming threshold (pvoxel-level<0.001), and cluster-extent
threshold (pFWE-corrected<0.05). L=left, R=right, ACC=anterior cingulate cortex,
PCU=precuneus, a/pDMN=anterior/posterior default mode network.
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Fig. 4. Alteration in sub-DMN related FCs pre- and post-non-pharmacological treatment for sDSDs. (A, B) brain regions showing abnormal FCs related to
aDMN/ACC; (C, D) brain regions showing abnormal FCs related to pDMN/PCU; (a,b) brain regions showing treatment response in aDMN/ACC-related FCs; (c,d) brain
regions showing treatment response in pDMN/PCU-related FCs.
Note: The regions are rendered onto the axial slice at the Montreal Neurological Institute (MNI) standard brain. Brain regions (red sections) showed increased FCs
(sDSDs>HCs; post>pre), and brain regions (blue sections) referred to decreased FCs (post<pre) related to sub-DMN. Cluster-forming threshold (pvoxel-level < 0.001)
and cluster-extent threshold (pFWE-corrected < 0.05).

Fig. 5. Sub-DMN related brain network connective mode shift after non-pharmacological treatment in sDSDs.
(A). Baseline brain networks connective mode in sDSDs compared to HCs with increased FCs within DMN and other networks.
(B). Shifted connective mode after 6 weeks of nonpharmacological treatment with altered FCs within DMN and ECN.
Note: Blue circle: DMN=default mode network; Orange circle: ECN=executive control network; Green circle: DAN=dorsal attention network; ACC=anterior
cingulate cortex; PCU=precuneus; DLPFC=dorsolateral prefrontal cortex; MPFC=medial prefrontal cortex; CD=caudate; IT=inferior temporal gyrus; TP=temporal
cortex; PG=precentral gyrus; AG=angular gyrus; LG=lingual gyrus.
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identified a shifted connective mode between the ECN and DMN as the
non-pharmacological treatment response in subthreshold depression.
Evidence-based depression interventions, such as pharmacotherapy
(Henssler et al., 2022; Zisook et al., 2011), Transcranial Magnetic
Stimulation (TMS) (Cardenas et al., 2022; Hidalgo-Lopez et al., 2023;
Liston et al., 2014), and transcranial Direct Current Stimulation (tDCS)
(Chan et al., 2021; Filmer et al., 2019), have widely reported alterations
in FCs within key brain networks and decreased hyperconnectivity in the
DMN and ECN, potentially reflecting symptom remission.

This study showed that the treatment response correlated with the
altered rsFCs related to ACC (part of aDMN), the increased rsFC
observed in the bilateral dlPFC (part of DMN) and right precentral gyrus
(part of ECN). Pre-treatment hyperactivity in the subgenual ACC, the
core regions of emotional processing and effective decision-making, has
been linked to better response to antidepressant medications
(Godlewska et al., 2018; Yu et al., 2020). Conversely, hypoactivity in the
dlPFC, which performs executive functions, correlates with poor out-
comes (Cardenas et al., 2022; Corlier et al., 2023). Therefore, an ideal
treatment should enhance FCs in ACC and dlPFC, as observed in our
results. Our findings in pDMN-related treatment response show
decreased connectivity between DMN and ECN in the bilateral pre-
central gyrus, which is involved in visual processing and motor control,
and increased connectivity within DMN between left lingual and pDMN.
The PCU (part of pDMN) is disrupted in depression and insomnia and
provides a neural basis for the comorbidity of depression and insomnia.
In such patients, fMRI studies have revealed significant disruptions in
connectivity between the PCU and other DMN regions involved in
arousal, attention, and emotional regulation (Ma& Zhang, 2022; Rubart
et al., 2022). Effective treatment for comorbid depression and insomnia,
such as combined cognitive behavioral therapy (CBT) (Fang et al., 2024;
Haller et al., 2024) and pharmacotherapy (Dunlop et al., 2023; Gerlach
et al., 2022), can normalize PCU activity and connectivity while also
improving connectivity with mood-regulating regions affected by
depression. This dual normalization can help improve mood and sleep
quality.

Depression and sleep disorders overlap in neural circuits and treatment
effect

Depression and sleep disorders often share overlapping neural cir-
cuits exhibit a bi-directional relationship in brain regions and functional
networks in terms of activity and connectivity (Alvaro et al., 2013; Fang
et al., 2019; Sun et al., 2022). Core brain regions like the amygdala and
ACC have been shown to contribute to hyperarousal insomnia in both
conditions. The analyses revealed that youngsters with sDSDs had
heightened activity in ACC-related FC, which facilitates arousal and
attention across wakefulness and sleep. Moreover, altered connectivity
often manifests as reduced functional interactions within the DMN
during mind-wandering in wakefulness and specific sleep stages. This
notion may explain the alterations in sub-DMN-related FC in those
youngsters.

Depression and sleep disorders may be treated using the same drugs
and interventions. Treatments like cognitive behavioural therapy for
insomnia can reduce hyperarousal and improve connectivity in
depression-relevant brain regions. Our post-treatment findings in
decreased sub-DMN-related-rsFC between ECN and within-DMN corre-
lated with this effective treatment outcome. Several clinical trials have
reported that cognitive behavioural therapy (Takano et al., 2023),
mindfulness meditation (Li et al., 2023), exercise (Huang et al., 2023),
and light therapy (Chen et al., 2024; Verma et al., 2023) can improve
sleep quality and reduce depressive symptoms. Similarly, fMRI studies
have shown that depression treatments, such as antidepressant medi-
cations (Azari et al., 2024) and psychotherapy (Davis et al., 2023), can
improve both mood and sleep quality. Although these interventions

Table 4
Altered rsFCs related to sub-DMN after 6 weeks of non-pharmacalogical treat-
ments (post>pre).

Brain Regions (AAL) MNI Coordinates T value Cluster size

X Y Z

ROI 1: The Left ACC (aDMN)
Frontal_Sup_Orb_L -21 12 -15 4.8982 123
Cerebelum_6_R 18 -72 -15 4.4843 170
Cerebelum_6_L -21 -60 -18 4.1803 125
undefined -27 33 6 5.1797 1068
Precentral_R 57 6 45 6.3393 948
Frontal_Sup_Medial_R 15 48 6 4.2698 79
Cuneus_R 9 -84 30 4.5389 179
Angular_R 54 -66 36 -5.1793 245
Frontal_Sup_Medial_L 0 54 42 -4.2532 88
Angular_L -51 -66 42 -4.9913 94
Supp_Motor_Area_L -9 6 48 4.7593 233
Postcentral_R 18 -42 69 4.2266 138
Postcentral_L -21 -33 75 4.9113 94
ROI 2: The Right ACC (aDMN)
Cerebelum_Crus1_L -33 -60 -36 -4.7891 165
ParaHippocampal_L -18 -6 -30 4.4767 83
ParaHippocampal_R 21 -15 -24 4.7194 82
Cuneus_R 12 -84 39 4.6427 548
Cerebelum_6_L -9 -69 -12 4.1304 107
Frontal_Sup_Orb_L -24 12 -15 4.9082 78
Rolandic_Oper_L -48 -24 15 4.8606 1226
Precentral_R 57 6 45 6.2617 802
Angular_R 54 -66 36 -5.4736 260
Angular_L -48 -66 45 -4.5791 71
Supp_Motor_Area_L -9 0 48 4.7425 247
Postcentral_R 33 -36 54 4.7709 300
Frontal_Sup_L -15 -9 75 4.8228 66
ROI 3: The Left PCU (pDMN)
Lingual_L -9 -63 -6 5.3316 2500
Precentral_R 30 -21 63 4.0846 129
ROI 4: The Right PCU (pDMN)
Cerebelum_8_L -6 -72 -42 4.2569 72
Lingual_L -9 -63 -6 4.9902 1922
Precentral_L -36 -18 54 4.7878 669

Note: Paired t-tests were performed for altered FCs in sDSd group after 6 weeks
of non-pharmacological treatments; MNI Coordinates refer to the Montreal
Neurological Institute stereotaxic space; Cluster-forming threshold (pvoxel-lev-
el<0.001), and cluster-extent threshold (pFWE-corrected<0.05); L=left, R=right,
ACC=anterior cingulate cortex, PCU=precuneus, a/pDMN=anterior/posterior
default mode network.

Table 5
Predictive performance of HFBN versus traditional deep learning models.

Predicted Therapeutic Outcomes Models CS (α = 5)

BDI-II
(Depression Scores)

ST-GCN 78.26%
Kernel_trans 69.56%
Brainnet_CNN 73.91%
HFBN 84.76%

PSQI
(Sleep Quality Scores)

ST-GCN 74.52%
Kernel_trans 67.96%
Brainnet_CNN 71.57%
HFBN 80.47%

Note: CS=Cumulative Scores; ST-GCN=Spatial Temporal Graph Convolutional
Networks; Kernel_trans=Kernel Transformer Networks; CNN=Convolution
Neural Networks; HFBN=Hierarchical Functional Brain Networks.

Table 6
Diagnostic performance of HFBN versus traditional deep learning models (in %).

Deep Learning Models ACC SPE SEN AUC

ST-GCN 74.53 69.59 78.46 74.03
Kernel_trans 69.23 67.13 70.75 63.94
Brainnet_CNN 78.45 80.47 76.02 78.25
HFBN 82.34 82.09 80.41 81.25

Note: ACC=accuracy (in %); SPE=specificity (in %); SEN=sensitivity (in %);
AUC=area under ROC curve; ROC=Receiver Operating Characteristic
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primarily target depressive symptoms, they can also normalize sleep
architecture and reduce insomnia, which is consistent with our findings.
In the future, researchers should explore the neural mechanisms un-
derlying the intersection of subclinical depression and sleep disorders to
provide valuable insights for developing potential therapeutic targets
and personalized treatment approaches.

Deep-learning predictive model of nondrug treatment for subclinical
depression

This HFBN model allows for the early diagnosis and precise quanti-
fication of non-pharmacological treatment effectiveness, enhancing
confidence before selecting integrative intervention, thus providing the
scientific basis for treating subclinical depression. Compared to tradi-
tional brain network models, the HFBN model highlights a sensitive and
accurate ability to identify subtle FC changes and brain network con-
nective mode alterations in the early stages of depression, enabling a
more precise early diagnosis of the disease and predicting the effec-
tiveness of non-pharmacological treatments. HFBN is designed to
construct and analyze hierarchical FBNs within an attention-based deep
network that mimics the brain’s natural hierarchical architecture from
neurons to neural networks. This hierarchical ideation enables the joint
analysis of complementary information from multi-scale FBNs to facil-
itate prediction accuracy. However, this study only considers hierar-
chical structure and sparsity. To improve network design, future work
should investigate additional brain properties, such as modularity and
small-worldness, to enhance the effectiveness of deep models for FBN
construction and analysis.

Limitations and future directions

This study has several limitations that need to be acknowledged.
Firstly, this study is limited by its focus on a sample of Chinese university
students, which may affect the generalizability and external validity of
the findings. University students possess unique characteristics in age,
social experiences, and psychological traits, making it challenging to
directly apply these results to individuals from other age groups, occu-
pational backgrounds, or cultural contexts. Additionally, cultural dif-
ferences may influence the expression, coping mechanisms, and social
support systems related to depression, which can vary across countries
and cultural backgrounds. As a result, relying solely on a sample of
Chinese university students may not adequately represent other pop-
ulations. This limitation suggests that caution should be exercised when
interpreting these findings, particularly when generalizing to different
groups or settings. Future research could address this limitation by
expanding the sample to include a broader range of populations,
incorporating individuals of diverse ages, occupational backgrounds,
and cultural contexts. Future multicentre or cross-cultural comparative
studies could provide a more comprehensive understanding of the
mechanisms and intervention effects of depression, enhancing the
applicability and robustness of the conclusions.

Secondly, to improve the predictive performance of the HFBN model
for multiple non-pharmacological treatments, we chose to use a com-
bined treatment approach, which underpowered the detection of the
effects of each type of treatment. However, this study primarily aims to
investigate the potential synergistic effects of non-pharmacological
therapy, given that these two interventions are often combined in clin-
ical practice (Gautam et al., 2017; Park et al., 2013). Simulating the
complexity of real-world therapeutic scenarios could improve the
model’s generalizability and accuracy in predicting the effects of various
non-pharmacological therapies. Focusing on single-treatment studies
would limit model application scenarios and restrict its potential for
clinical adoption. Disentangling the neural mechanisms underlying each
treatment is an important challenge that may require further investi-
gation through targeted studies focusing on each independently in the
future.

Thirdly, the six-week intervention period is not considered a long
treatment duration. However, it remains widely accepted as a key
treatment time window for observing the initial effects of antidepressant
interventions. According to guidelines from the American Psychological
Association (APA) and the U.S. Food and Drug Administration (FDA),
treatment modifications—whether through medication adjustments or
the addition of non-pharmacological treatments—are typically recom-
mended after 4 to 8 weeks (with six weeks serving as the median
timeframe) (Al-Harbi, 2012; Rosenblat&McIntyre, 2017). In the case of
this study, the six-week duration was chosen as it aligns with clinical
practices for evaluating the onset of therapeutic effects, particularly in
patients with subthreshold depression, whose symptoms are generally
milder. Notably, the observed brain network alterations in 6 weeks
provide relatively “pure” brain network signatures of treatment effect
for constructing predictive models with real neuroimaging signatures.
Extending the duration could introduce confounding factors that may
dilute the distinct neural responses to treatment, thus complicating
predictive model development, and diverging from the clinically
established window for evaluating effectiveness of antidepressant in-
terventions. Additionally, logistical challenges during the COVID-19
pandemic, including participant availability and adherence, posed
constraints on extending the follow-up period. Future multimodal im-
aging and larger RCTs with longer follow-ups should be conducted to
validate these findings and test each treatment effect, including EA,
psychotherapy, and combined therapy to provide additional
neuro-evidence for nondrug treatment effects of depression.

Conclusion

Neuroimaging signatures associated with the sub-DMN have eluci-
dated the antidepressant mechanisms of non-pharmacological treat-
ments for subclinical depression, observed on two core levels: altered
FCs within the sub-DMN and a modified brain networks connective
mode. Compared to HCs, college students with subclinical depression
displayed higher FCs within sub-DMN, ECN, and DAN. Moreover, the
HFBN deep learning model demonstrated superior performance in early
depression diagnosis and in predicting therapeutic outcomes of non-
pharmacological interventions.

Registration of clinical trials
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Registry (No: ChiCTR1900028530).
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