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Abstract: Autism Spectrum Disorder (ASD) is a spectrum of disorders that are characterized by
problems in social interaction and repetitive behavior. The disease is thought to develop from
changes in brain development at an early age, although the exact mechanisms are not known yet.
In addition, a significant number of people with ASD develop problems in the intestinal tract. A
Disintegrin And Metalloproteases (ADAMs) include a group of enzymes that are able to cleave
membrane-bound proteins. ADAM10 and ADAM17 are two members of this family that are able
to cleave protein substrates involved in ASD pathogenesis, such as specific proteins important for
synapse formation, axon signaling and neuroinflammation. All these pathological mechanisms
are involved in ASD. Besides the brain, ADAM10 and ADAM17 are also highly expressed in the
intestines. ADAM10 and ADAM17 have implications in pathways that regulate gut permeability,
homeostasis and inflammation. These metalloproteases might be involved in microbiota-gut–brain
axis interactions in ASD through the regulation of immune and inflammatory responses in the
intestinal tract. In this review, the potential roles of ADAM10 and ADAM17 in the pathology of ASD
and as targets for new therapies will be discussed, with a focus on the gut–brain axis.

Keywords: Autism Spectrum Disorder (ASD); gut-brain axis; neuroinflammation; metalloproteases;
A Disintegrin And Metalloprotease (ADAM); ADAM10; ADAM17; ectodomain shedding

1. Introduction

Autism Spectrum Disorder (ASD) is a spectrum of neurodevelopmental disorders
that are generally diagnosed early in life and might persist across the whole lifespan. It
is mainly characterized by a deficiency in social interactions and communication and the
presence of specific stereotyped behaviors [1]. The prevalence of ASD is approximately
1.5% in developed countries, as determined in 2012 by the World Health Organization [2],
and predominantly affects males [3]. Globally, the incidence of ASD has shown a 35-fold
increase (1 in 59 children in the USA and 1 in 89 in the EU are affected) compared to the 60s
and 70s (Centers for Disease Control and Prevention Data & Statistics on Autism Spectrum
Disorder, 2019 and Autism Spectrum Disorders in the European Union, 2018). A diagnosis
is performed using a behavioral assessment due to the absence of reliable biomarkers.

Although the ASD pathogenesis remains elusive, it is thought that it results from
early altered brain development and neural reorganization [4,5]. Some clinical aspects are
found in large groups of people diagnosed with ASD, such as altered neuronal connec-
tivity, increased synaptic density [6], neuroinflammation [7], microbiota dysbiosis [8–10],
dysregulated immune responses [11–15] and gastrointestinal abnormalities [16–18]. In
addition, the most replicated neuroanatomical finding in infants and the early childhoods
of people diagnosed with ASD is an enlarged brain volume, called macrocephaly or mega-
locephaly [19,20]. Genetically, it is estimated that 400–1000 genes are involved in ASD
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susceptibility, and it is thought that there are more that have and will be discovered in the
near future [21]. The estimated heritability of ASD was 83% in a recent population-based
cohort of children born in Sweden [22], and Bailey et al. reported a similar result [23].
Among these genetic predispositions, the membrane-bound synaptic genes for the Amyloid
Precursor Protein (APP), Neural glial-related Cell Adhesion Molecule (NrCAM), Neuroli-
gins (NLGNs), Neurexins (NRXNs) and Protocadherins (PCDHs) were widely identified as
candidate genes of ASD [24–28], as their deficiency in mice led to ASD-like behaviors, such
as deficits in spatial memory and learning, increased repetitive and stereotype grooming
behaviors and compromised social interactions [29–31]. Interestingly, the amount of these
ASD-related proteins in the membrane is controlled by the metalloproteases ADAM10
and ADAM17 through proteolytically cleaving these transmembrane proteins by which
ADAM10 and ADAM17 might be involved in ASD pathogenesis [32–36].

A Disintegrin And Metalloproteases (ADAMs) are a subgroup of the metzincin family
of metalloproteases, which also consists of Matrix Metalloproteases (MMPs), ADAMs with
thrombospondin motifs (ADAMTSs) and Snake Venom Metalloproteases (SVMPs) [37,38].
ADAMs are ubiquitously expressed and are able to regulate sperm–egg interactions, cell
proliferation, differentiation, migration and cell fate determination [39]. ADAM10 and
ADAM17 are the two most investigated members of the ADAM family. Interestingly, both
ADAM10 and ADAM17 are highly expressed in the brain, as well as the intestines. In
the Central Nervous System (CNS), ADAM10 and ADAM17 are able to regulate axon
guidance and synaptic functions through controlling the cleavage of synaptic proteins,
such as APP, NrCAM, NLGNs, NRXNs and PCDHs. Importantly, ADAM10 plays a vital
role in synaptic pruning by cleaving the chemokine fractalkine (CX3CL1) that binds to
its receptor CX3C chemokine receptor 1 (CX3CR1) to induce microglia-mediated synapse
elimination [40]. ADAM17 also regulates neuroinflammation, attributing to its capacity
of converting membrane-bound Tumor necrosis factor-α (TNF-α) into a soluble form that
recognizes the TNF-α receptors I and II and, consequently, triggers inflammatory responses.
In the intestinal tract, ADAM17 can regulate intestinal inflammation, intestinal barrier
permeability and inflammatory responses by cleaving several cytokines, such as TNF-α
and lymphotoxins [41–44]. Moreover, ADAM10 can control the intestinal permeability by
cleaving the transmembrane proteins Notch [45–47] and E-cadherin [48]. However, there
are only a few reports available that elucidate the roles and functions of ADAM10 and
ADAM17 in the gut-to-brain pathology of ASD.

Taken together, ADAM10 and ADAM17 regulate synaptic functions, neuroinflam-
mation and brain development, as well as intestinal barrier functions, inflammation and
immunity, which are involved in the pathogenesis of ASD. In this review, we aim to elab-
orate on the potential role of ADAM10 and ADAM17 in the pathogenesis of ASD with a
major focus on the gut–brain axis.

2. Structure of Metalloproteases

The metzincin family of metalloproteases has four family members: ADAMs, MMPs,
ADAMTSs and SVMPs [37,38]. They are called metzincins for the conserved Met residue
at the active site and the use of a zinc ion in the enzymatic reaction. Collectively, the
metalloproteases are able to degrade all extracellular structures. These family members
have some corresponding protein domains (Figure 1). All members start with a signal
peptide at their N-terminal that allows them to be located at the secretory pathway. Im-
mediately following the signal peptide is a pro-domain. This ensures enzyme latency
until cleaved by pro-protein convertases [49]. After the pro-domain, all members of the
metzincin family contain a metalloprotease domain, which holds its catalytic activity. After
this, some major structure differences are found between members. For ADAMs, SVMPs
and ADAMTSs, the metalloprotease domain is followed by a Disintegrin domain and
then a cysteine-rich domain. For the ADAMTS, the cysteine-rich domain follows the
Thrombospondin region. The ADAMs contain an epidermal growth factor (EGF)-like
domain, followed by a transmembrane and cytoplasmic domain. SVMP and ADAMTS
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are soluble proteins. Membrane-type MMP and MMP contain a Hemapexin domain after
their metalloprotease domain, necessary for substrate selectivity and for binding with
Tissue Inhibitors of Metalloproteinases (TIMPs), the main MMP inhibitor [37], and the
membrane-type matrix metalloproteinase (MT-MMP) contains a transmembrane region
with a cytoplasmic tail [37,50,51].

In this review, the focus will be on two types of ADAMs: ADAM10 and ADAM17.
The MMPs, MT-MMPs, ADAMTSs and SVMPs are beyond the scope of this review. Little
is known about the possible role of MT-MMPs, ADAMTSs and SVMPs in ASD, however, it
should be noted that we do not rule out that MMPs, such as MMP9, might also play a role
in the pathogenesis of ASD [52,53].
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Figure 1. Protein structure of the members of the metzincin family of metalloproteases: A Disintegrin
And Metalloprotease (ADAM), Snake Venom Metalloprotease (SVMP), A Disintegrin And Metallo-
protease Thrombospondin motif (ADAMTS), membrane-type matrix metalloproteinases (MT-MMP)
and MMP.

ADAMs

ADAMs are a family of type I transmembrane proteins characterized mainly by their
ability to cleave membrane-bound proteins at their extracellular domain. The cleavage
generates a soluble protein fraction in the extracellular space, a process called “ectodomain
shedding”. This will influence the signaling pathways of other cells by decreasing the
amount of membrane-bound receptors or by increasing the amount of soluble ligands [50].
ADAMs are proteins of approximately 750 amino acids that contain several structurally
conserved domains, which determine its biological function. The metalloprotease domain
can contain a catalytic site with a zinc-binding motif, which is mediated by three histamine
residues (HEXGHXXGXXHD) [54]. Around 24 ADAMs have been identified in humans, of
which only 12 contain the metalloprotease domain with the active zinc-binding site [55,56].
The biological function of these proteolytically active ADAMs (ADAM8, 9, 10, 12, 15,
17, 19, 20, 21, 28, 30 and 33) is determined by their substrates and includes sperm–egg
interactions, cell migration, axon guidance, inflammation and cell fate determination [39].
In addition, ADAMs have been implicated in different pathologies, such as cancer [57],
inflammation [58] and Alzheimer’s Disease (AD) [59,60].
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3. ADAM10 in the Central and Enteric Nervous Systems

The most extensively studied member of the ADAMs family is ADAM10. There are
more than a hundred substrates cleaved by ADAM10 in the CNS [35], and its expression,
maturation and substrates selectivity are regulated by the TspanC8 subfamily of tetraspanin,
consisting of Tspan5, 10, 14, 15, 17 and 33 [61–63], as different Tspan-ADAM10 complexes
might adopt different conformations and spaces to their substrates [62,64,65]. ADAM10 is
ubiquitously expressed in the brain [66], where it is located at the synapse and in synaptic
vesicles and functions as a sheddase of other synaptic proteins [67], which makes ADAM10
able to control CNS processes, such as development, synaptogenesis and axon targeting.
In addition, ADAM10 is expressed in the intestinal tract [68]. In Section 5, the role of
ADAM10 in the intestines is discussed. Table 1 lists the major ADAM10 substrates in the
CNS that will be discussed below.

Table 1. The reduction in shedding of the A Disintegrin And Metalloprotease (ADAM)10 sub-
strates after the conditional deletion of ADAM10 in embryonic primary cortical neuron cultures
[35]. Abbreviations: Fractalkine (Cx3cl1), Neuroligin-1 (NLGN-1), Protocadherin-9 (PCDH9), Neural
glial-related Cell Adhesion Molecule (NrCAM), Neuroligin-3 (NLGN-3) and Amyloid-β Precursor
Protein (APP).

ADAM10 Substrates Shedding Reduction in ADAM10–/– Neurons

Cx3cl1 91%
NLGN-1 83%
PCDH9 71%
NrCAM 66%
NLGN-3 62%

APP 20%

3.1. Amyloid-β Precursor Protein (APP)

APP is a transmembrane protein involved in cell adhesion and neurite pruning [69,70].
It consists of an extracellular N-terminus domain, a transmembrane region and a C-
terminus, intracellular domain [71]. APP can be proteolytically cleaved by a group of
secretases: α-, β- and γ-secretases (Figure 2). The β-site APP cleaving enzyme 1 (BACE1)
and γ-secretases induce the amyloidogenic pathway, where APP is cleaved extracellu-
larly to create a soluble fraction, sAPPβ, the main component of AD plaques, Amyloid
β-peptide (Aβ) and Amyloid Precursor Intracellular Domain (AICD) [72]. α-Secretases
activate the nonamyloidogenic pathway by creating the soluble fractions sAPPα, P3 and
AICD. ADAM10 is the main α-secretase of APP in the nervous system [32]. ADAM10
cleaves APP in the Aβ domain, which inhibits the formation of the pathological plaques
that cause AD and, consequently, creates sAPPα instead. Therefore, the nonamyloidogenic
pathway of APP is thought to serve a neuroprotective function at this point [72]. Inter-
estingly, studies show that while ADAM10 is the constitutive secretase, ADAM17 is the
stimulatory secretase of APP [32].
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tases. The cleavage of APP by the β-site APP cleaving enzyme 1 (BACE1) initiates the amyloidogenic
pathway, where the soluble fraction of APP (sAPP)β and C-Terminal Fragment 99 (CTF99) are created.
γ-secretases further process the CTF99 to create the neurotoxic Aβ protein and the Amyloid Precur-
sor Intracellular Domain (AICD). Meantime, sAPPβ is also cleaved by additional secretases at an
unknown site to generate an N-terminal of APP (N-APP). The cleavage of APP by either ADAM10 or
ADAM17 initiates the nonamyloidogenic pathway, which creates sAPPα and C-Terminal Fragment
83 (CTF83). γ-secretases then cleave CTF83 to create P3 and AICD.

Recent studies have started to investigate the roles of ADAM10 and ADAM17 in
neurodevelopmental diseases. Of all ADAM10 substrates, APP is the most described in
the context of ASD. It has been shown that there is an increase of sAPPα levels in the
plasma of children diagnosed with severe ASD aged between 5–17 years [28,73]. In the
fragile X mental retardation 1 knockout (Fmr1 KO) mouse model of Fragile X Syndrome,
significantly increased levels of both sAPPα and ADAM10 are found at postnatal day
21 [74] but not in adulthood. These findings are in-line with the concept that ASD is a result
of early altered brain development, as the prenatal and perinatal period is most critical for
synaptogenesis. In parallel with these main findings, Westmark et al. found that genetically
decreasing APP and Aβ levels are able to ameliorate the autistic phenotype in adult Fmr1
KO mice [75]. Additionally, Lahiri et al. hypothesized that increased sAPPα levels can
activate neuroprotective pathways and microglia, which result in neuronal overgrowth
and neuroinflammation, leading to an increased brain volume that is also observed in
ASD [19,20,76].

Importantly, the N-terminal of APP (N-APP) is a ligand of Death receptor 6 (DR6),
which is highly expressed in oligodendrocytes and neurons. N-APP is a cleavage product
of sAPPβ by a still undetermined mechanism, and the specific cleavage site is unknown.
The binding of N-APP to DR6 triggers neuronal death via caspase pathways in vitro and
in vivo, and consequently, a role for N-APP/DR6 in neurodegeneration has been pro-
posed [70]. Furthermore, DR6 negatively regulates oligodendrocyte survival, maturation
and myelination, which is related to microglia activation, phagocytosis and neuroinflamma-
tion [77–79]. Colombo et al. demonstrated that the DR6 of Schwann cells (SCs) negatively
regulates the myelination of the Peripheral Nervous System (PNS) and that DR6 KO mice
showed precocious myelination in the PNS [80]. SCs underlie the sheath of most of periph-
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eral nerves and regulate the myelination of the nervus vagus in the PNS [81–83]. Vagal
stimulation is recognizably involved in ASD development. Sgritta et al. demonstrated that
Lactobacillus reuteri (L. reuteri) rescued social behaviors in ASD mice (SH3 and multiple
ankyrin repeated domains 3B KO mice) but not in vagotomized mice. These findings
indicate that L. reuteri might ameliorate ASD-like behavior in the ventral tegmental area
of ASD mice in a vagus nerve-dependent manner [84,85]. In addition, Jin et al. proposed
transcutaneous vagus nerve stimulation is a promising treatment for ASD, but the exact
mechanism is not clear [86]. Recently, DR6 cleavage was decreased by 50% in ADAM10-
deficient murine neurons, and consequently, it is a substrate of ADAM10 [80]. However,
the potential role of ADAM10-mediated cleavages of APP and its receptor DR6 in the
pathology and treatment of ASD is barely investigated.

Overall, ADAM10 and, possibly, ADAM17 are able to regulate APP shedding and
create sAPPα fractions at the expense of sAPPβ. As elevated sAPPα levels are found in the
plasma of children with severe ASD behavior, it is probable that ADAM10/17-mediated
APP shedding contributes to the development of disturbed brain development in ASD.
More studies are needed to elucidate the specific mechanisms of APP shedding in ASD.

3.2. Neuroligins (NLGNs) and Neurexins (NRXNs)

NLGNs are synaptogenic adhesion proteins located at the post-synapse that trans-
synaptically binds to the presynaptic partner NRXNs to form a NRXN/NLGN complex,
necessary for efficient neurotransmission. These two proteins recruit key synaptic proteins,
such as scaffolding proteins and neurotransmitter receptors, after the initial contact of an
axon with its target cell. Therefore, they are essential for synaptic formation, maturation
and differentiation [87–89]. There are five types of NLGNs (NLGN1, NLGN2, NLGN3,
NLGN4 and NLGN4Y) and three NRXNs (NRXN1, NRXN2 and NRXN3) in the human
genome. They are involved in ASD pathogenesis. Among the NLGNs, NLGN3 is the
strongest candidate, followed by NLGN1, and of the NRXNs, NRXN1 is the strongest candi-
date [90]. Loss-of-function variants of NRXN1 have been found in ASD patients [24,26,27].
Interestingly, variants of the other two types, NRXN2 and NRXN3, are much rarer. Further-
more, NLGN-1 KO mice display deficits in spatial memory and learning and an increased
repetitive, stereotypical grooming behavior, which is accompanied by a reduced ratio of
NMDA to the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA)
at the corticostriatal synapses [29]. NLGN-1 is shed by ADAM10 for 83% and NLGN-3
for 62%, as described in ADAM10-deficient neurons (Table 1) [35]. As the other types of
NLGNs are not cleaved by ADAM10, we will not discuss them further. NLGN-1 is found
exclusively on glutamatergic neurons, whereas NLGN-3 is found on both glutamatergic
and GABAergic synapses [91,92]. The proteolytic cleavage by ADAM10 of membrane-
bound NLGN-1 increases by either N-methyl-D-aspartate (NMDA) receptor activation or
by binding to the secreted form of NRXNs [92]. Interestingly, the secreted form of NRXN2
and NRXN3 may also be generated by ADAM10 or ADAM17 [33,34]. A recent study
discovered that NRXN1 is primarily cleaved by ADAM10 in hippocampal neurons [93].

Only limited reports are available on the role of intestinal NLGN-1, NLGN-3 and
NRXN. NLGN-3 is expressed in the enteric nervous system as well, and gastrointestinal
dysfunction is found in people and mice with a R451C missense mutation in this NLGN-
3 that have an ASD phenotype [94]. Very recently, it was shown that ASD-associated
NLGN-3 mutations, as well as NLGN-3 KO mice, have more cecal Nitric Oxide (NO)-
producing neurons and more activated enteric macrophages [95]. These phenomena might
explain the presence of intestinal symptoms in these NLGN-3-deficienct mice [94,96] and
ASD patients [97,98], such as a disturbed intestinal transit and intestinal inflammation.
Additionally, NLGN-1 and NRXN are shown to be important for the development of the
enteric nervous system in rats [99]. It is rather speculative to link the enhanced intestinal
ADAM10/17 expression to the loss of NLGN-1, NLGN-3 or NRXNs and ASD-related
intestinal dysfunction.
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Taken together, ADAM10 cleaves NLGN-1, NLGN-3 and, possibly, NRXNs. Follow-
ing this, it can be hypothesized that increased ADAM10 levels or activity will lead to an
increased cleavage of NLGN-1, NLGN-3 and NRXNs, therefore terminating their function
at the synapse and disrupting the neurotransmissions. Disturbances in neurotransmissions
are also described in people diagnosed with ASD. It has been shown that a decreased glu-
tamate concentration in the striatum correlates with the severity of social ASD symptoms,
suggesting that glutamate/γ-aminobutyric acid (GABA) abnormalities in the corticostri-
atal circuitry may contribute to ASD development [100]. Moreover, it was shown that
NLGN-1 shedding has a negative effect on NRXN1 stability [101], which also seems to
be primarily cleaved by ADAM10 [93]. In conclusion, ADAM10 is a major regulator of
synaptic functions of NLGN/NRXN complexes, and the loss of NLGN-1 and NLGN-3 in
mouse models induces autistic-like phenotypes [29,102,103], which highlights a potential
connection between ASD and ADAM10-mediated cleavages of NLGN/NRXN complexes.

3.3. Protocadherins (PCDHs)

Cadherin is a family of calcium-dependent cell adhesion proteins consisting of three
family members: classic cadherins, desmosomal cadherins and PCDHs [104]. PCDHs
are mainly expressed in the developing CNS [105]. One member of this family that is
an ADAM10 substrate is PCDH9 [35]. The conditional deletion of ADAM10 in primary
neuron cultures resulted in a 71% reduced shedding of PCDH9 [35], which has been
proposed to play a role in synaptogenesis [106]. It remains unclear what the effect of
ADAM10 shedding is on PCDH9 functions. In PCDH9-deficient mice, long-term social and
object recognition deficits were determined [30] but without any changes in perception,
sociability or fear memory. Furthermore, the PCDH9 KO mice showed impairments in
sensorimotor development and structural changes in layers of sensory cortices [30]. The
behavioral dysfunctions in PCDH9 KO mice are also presented in ASD. Moreover, Copy
Number Variations (CNV), including deletion, duplication, translocation and inversion,
of the PCDH9 gene have been found in patients with ASD [24]. Additionally, another
member of PCDHs, PCDH8, has also been identified as a substrate of ADAM10 [35] and
regarded as a candidate ASD gene in Caucasian females [107]. Furthermore, Breuillard
et al. demonstrated, although with a limited sample size, that PCDH19 genetic defects
frequently emerged in female ASD children with epilepsy and intellectual disability [108].
Obviously, PCDHs play an important role in ASD pathogenesis, as it seems that ADAM10
is the main sheddase of PCDH8 and PCDH9 [108]. Indeed, the role of ADAM in the loss
of function of PCDHs is not yet investigated in ASD. To elucidate this connection further,
more research will be necessary.

3.4. Neural Glial-Related Cell Adhesion Molecules (NrCAM)

NrCAM is part of the L1 family of cell adhesion molecules of immunoglobulin su-
perfamily (IgCAMs), and a cell adhesion molecule [109]. NrCAM is involved in brain
development, where it controls dendritic spine densities, axon guidance and targeting
and neurite outgrowth [110–112]. NrCAM was shown to be an ADAM10 substrate, where
the deletion of ADAM10 in primary neurons reduces NrCAM shedding by 66% [35]. In
addition, Brummer et al. recently showed that ADAM17 deletion in primary neurons did
not alter NrCAM proteolysis and that ADAM10 controls NrCAM cell surface expression
levels and NrCAM-dependent neurite outgrowth in vitro [36]. Furthermore, mice with
a conditional ADAM10 knockout in neurons showed increased cell surface expression
levels of NrCAM [35,36] and a reduced number of dendritic spines [113], whereas NrCAM
knockout mice show increased dendritic spine densities. As NrCAM is a member of the
Sema3F complex that mediates spine retraction [114], increased NrCAM surface levels
would be expected to decrease spine density. A potential role for soluble NrCAM in axon
signaling becomes apparent in NrCAM-deficient [115] and ADAM10-deficient mice [35].
Both mouse models present with axonal targeting deficits within their olfactory bulbs
with axons overshooting their marks. This would suggest a functional role for the soluble
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fraction of NrCAM generated by ADAM10 cleavage, although more research is needed
to obtain more information about this role. Currently, no studies report on the possible
peripheral/intestinal role of NrCAM in relation to ASD.

In NrCAM-deficient male mice, the loss of NrCAM leads to ASD-related behavioral
alterations in sociability, acquisition of a spatial task and reversal learning [31]. Marui et al.
identified that seven single-nucleotide polymorphisms (SNPs) within the NrCAM gene are
associated with ASD in Japanese children [25]. Bonora et al. also detected in 48 unrelated
individuals with ASD several polymorphisms in the promoter and untranslated region of
NrCAM and suggested that a reduction in the expression of this gene might be involved in
ASD susceptibility [116]. In contrast, Hutcheson et al. showed that there is no association
between ASD susceptibility and the NrCAM gene in the subsets of chromosome 7-linked
families [117]. In order to further explore the relation between ASD and NrCAM, and the
possible role of the ADAM10-induced cleavage of NrCAM, more studies are needed.

3.5. Fractakine (CX3CL1)

CX3CL1 is the only member of the δ subfamily of chemokines that is constitutively and
abundantly expressed in the brain—specifically, in glial cells and neurons [118]. CX3CL1
recognizes its receptor CX3CR1, which is exclusively expressed in the microglia [119,120].
CX3CL1–CX3CR1 signaling is necessary for the immune response, neuroinflammation,
synaptic pruning and brain development through maintaining the phagocytic function
of the microglia [40,119]. Moreover, CX3CL1 was identified as a substrate of ADAM10
and cleaved by ADAM10 to generate a soluble CX3CL1 that acts as a ligand of CX3CR1
in the brain [35,121,122]. Currently, there is little known about the link between the
ADAM10-mediated cleavage of CX3CL1, microglial phagocytosis and ASD. However, it
has been shown that CX3CR1 KO mice exhibit a deficiency in microglia engulfment and,
consequently, show an increased density of dendritic spines and immature synapses, as
well as a synaptic pruning deficiency [119]. Furthermore, there is a defect in synaptic
elimination in both CX3CL1 KO mice and CX3CR1 KO mice, which was phenocopied
after ADAM10 inhibition in wild-type mice [40]. Insufficient synaptic elimination is a
cause of hyperconnectivity in the brain, which is related to the macrocephaly found in
ASD patients. Additionally, Rogers et al. demonstrated that CX3CR1 KO mice show
impairments in synaptic plasticity and cognitive function [123], which are symptoms of
neurodevelopmental diseases, including ASD.

There are limited reports available that discuss the contribution of ADAM10-mediated
cleavage of CX3CL1 to the intestinal disturbances found in ASD. Interestingly, the CX3CL1–
CX3CR1 levels are critical for the sex differences in high-fat food-induced obesity. For
instance, females are much more resistant to diet-induced obesity due to the higher ex-
pression levels of CX3CL1 than in males. Strengthening this point, female CX3CR1 KO
mice phenocopied “male-like” microglial activation and increased their susceptibility to
diet-induced obesity. Conversely, increasing the CX3CL1 levels in the male mice brain con-
verted them to a “female-like” metabolic phenotype with a decrease of microglial activation
and weight gain [124]. These sex differences may be involved with gender differences in
ASD. However, more research is necessary.

Taken together, the important role that CX3CL1–CX3CR1 signaling plays in the phago-
cytic function of microglia and, consequently, synaptic pruning emphasizes the potential
of this ADAM10 substrate to contribute to ASD pathology. Importantly, more research will
be needed to further explore alterations in CX3CL1 expression in people diagnosed with
ASD and its contribution to the disease.

4. ADAM17 in the Central Nervous System

ADAM17 is one of most extensively studied member of the ADAMs family and is
ubiquitously expressed in all tissues and cell types. Similar to the regulation of ADAM10
by TspanC8, the selectivity or specificity of substrates in ADAM17 is regulated by the
iRhoms subfamily, which is one of the rhomboid superfamilies of intramembrane pro-
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teases and consists of iRhom 1 and iRhom 2 [125,126]. In addition, iRhoms also regulate
ADAM17 enzymatic maturation from its exit from the endoplasmic reticulum to the mem-
brane [125,127]. ADAM17 was first discovered as the enzyme responsible for the proteolytic
cleavage of TNF-α, and therefore, ADAM17 was originally called the TNF-α Converting
Enzyme [128]. Currently, it is known that ADAM17 is responsible for the shedding of
over 90 substrates. Some substrates of ADAM17, such as TNF-α, Tumor necrosis factor-α
receptor, Interleukin-6 receptor (IL6-R) and Triggering receptor expressed in myeloid cells-2
(TREM2), are involved in the onset of immune responses and neuroinflammation [129]. The
influence of neuroinflammation in ASD has been recently reviewed [7]. Additionally, it was
shown that ADAM17 expression levels increased with age in juvenile people diagnosed
with ASD [130], although this was reported in relation to the elevation of sAPPα and not
with respect to neuroinflammation, inflammation and immune responses. We will discuss
the proteolytic cleavages of these substrates, focusing on neuroinflammation and immunity
in the CNS and their role in ASD below. More information involving ADAM17 in the
intestinal tract will be provided in Section 5.

4.1. Tumor Necrosis Factor-α (TNF-α)

ADAM17 is the main protease of TNFα, a proinflammatory cytokine that can elicit
its proinflammatory potential only after being proteolytically released from the cell sur-
face [128,131]. Although deletion of the ADAM17 gene abolishes TNF-α shedding by 90%
in ADAM17−/− macrophages and neutrophils, it seems that there are other proteases,
amongst others MMP7 and proteinase 3, that are also able of proteolytically cleaving
TNF-α [131]. In addition, ADAM10 was identified as a major sheddase when ADAM17
is deficient in fibroblasts, indicating that there is a compensation between ADAM10 and
ADAM17 [132]. These reports demonstrated that these two metalloproteases are important
in TNF-α cleavage. It was shown that increased levels of TNF-α have been found in
the cerebellum and hippocampus in a murine model for ASD induced by Valproic Acid
(VPA) [133] and in the brain cortex of people diagnosed with ASD [134].

Together, there is an increase in proinflammatory cytokines in the brains of people
diagnosed with ASD, and it seems to be that decreasing the levels of these specific cytokines
has a beneficial effect on the disturbed sociability. As ADAM17 has been shown to be
the main protease that controls TNF-α shedding from the cell membrane, an interesting
connection between ADAM17-mediated TNF-α cleavage, neuroinflammation and ASD
remains to be elucidated.

4.2. Interleukin-6 Receptor (IL6-R)

IL6-R is a known substrate of ADAM17. The cytokine IL-6 has both pro- and anti-
inflammatory properties, which is determined by the receptor signaling type [129,135].
Signaling via the membrane-bound IL-6R is called classic signaling. This type of signaling
can only occur on cell types that express IL-6R on their surface and is thus limited to hepato-
cytes and several leukocyte subsets and results in an anti-inflammatory response [136,137].
Signaling via soluble forms of the IL-6R, which is called trans-signaling, can occur on all cell
types, because the IL-6/soluble IL-6R (sIL-6R) complex can directly bind to and activate
the ubiquitously expressed glycoprotein 130 (gp130). The trans-signaling accounts mainly
for the proinflammatory properties of IL-6 [137,138]. Interestingly, research in transgenic
mice showed that the proteolytic cleavage of IL-6R to create a soluble form is carried out
by both ADAM17 and ADAM10 [139] and that approximately 85% of sIL6-R is a result of a
proteolytic cleavage in vivo [140]. Increased levels of IL-6 in the brain have been found in a
murine model for ASD [133] and in the brain cortex of ASD patients [134]. Moreover, it has
been shown that overexpressing IL-6 in the mouse brain mediates neuronal circuitry imbal-
ances and induces ASD-like behavior [141]. Furthermore, one study showed that blocking
the trans-signaling pathway of IL-6 led to improved social behavior in a murine ASD
model by continuously infusing the IL-6 trans-signaling blocker sgp130Fc protein [142]. As
ADAM17 and ADAM10 are capable of proteolytically cleaving IL6-R to create the soluble
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IL6/sIL6-R complex, it will be of interest to investigate whether reducing the levels of
these metalloproteases and, consequently, the level of sIL6-R will lead to reduced ASD-like
behavior [142].

4.3. Triggering Receptor Expressed in Myeloid Cells-2 (TREM2)

ADAM17 is the main protease shedding TREM2 under steady-state conditions [143].
Whether ADAM10 has a similar effect on TREM2 is still under debate [143]. TREM2
is a type I transmembrane protein and exclusively expressed by the microglia [144,145].
TREM2 deficiency in mice decreases the number of microglia and activated microglia in
the hippocampus and increases the synaptic and spine density [145]. This may be involved
with the increased expression of ligands of TREM2 induced by apoptotic neurons [146].
Furthermore, it is demonstrated that TREM2 is essential for initiating microglia-dependent
synaptic pruning during early brain development [145]. Synaptic pruning is essential to
remove synapses and keep normal brain connectivity during brain development. The
shedding of TREM2 of microglial cells by ADAM17 might result in reduced synaptic
pruning and associated neuronal overgrowth. The shedding of TREM2 results in a soluble
fraction, sTREM2. Recently, Zhong et al. demonstrated that sTREM2 is able to activate
the microglia and increases neuroinflammatory responses both in vitro and in vivo [147];
however, by which mechanisms remains to be elucidated.

Reports on the connection between TREM2 and ASD are currently scarce. Trem2-
deficient mice display increased synaptic density, enhanced excitatory neurotransmission
and reduced social and repetitive behaviors [145]. Additionally, in the post-mortem brain
tissue of ASD patients, reduced TREM2 levels were found in the age group of 5–23 [145].
Furthermore, TREM2 protein levels of brain tissue were inversely correlated to the Autism
Diagnostic Interview-Revised score [145]. However, the levels of sTREM2 were not de-
termined in this study. In general, reduced TREM2 could result in an altered control of
microglial pruning, and consequently, this would lead to increased synaptic density. In
ASD patients, synaptic density is increased on apical dendrites of pyramidal neurons from
cortical layer 2 in the frontal, temporal and parietal lobes and layer 5 only in the tempo-
ral lobe [6]. Therefore, the relationship between the lower TREM2 levels and increased
synaptic density in ASD patients seems plausible.

Taken together, it is difficult to determine the contribution of ADAM17 or ADAM10-
mediated shedding of TREM2 in people diagnosed with ASD. The decreased levels of
TREM2 in juvenile ASD could be related to either lower baseline TREM2 protein levels or
to increased shedding of the protein by proteases. This can be determined by measuring
the sTREM2 levels in the same post-mortem tissue.

5. ADAM10 and ADAM17 in the Gut–Immune–Brain Axis

The contribution of the intestines to ASD pathogenesis remains a field of active
research. Forty-six point eight percent of people diagnosed with ASD present with at least
one intestinal symptom [148], such as constipation [149] and diarrhea [16]. Furthermore, a
meta-analysis revealed that children with ASD show four times more intestinal symptoms
than controls [150]. The gut–brain axis refers to the bidirectional interaction between these
organs [151]. Alterations in this pathway could lead to the increased permeability of both
the intestinal and brain barriers. Research emphasizing the role of the intestines show
that, in the post-mortem duodenal tissue of people diagnosed with ASD, elevated levels
of pore-forming proteins and decreased levels of barrier-forming proteins were found
in the tight junction of the intestinal epithelium [53]. These findings suggest a “leaky
gut”, which could lead to more circulating bacterial metabolites in the blood of people
diagnosed with ASD and activation of the immune system associated with an enhanced
cytokine response [152–154]. Entering the brain by circulating cytokines and bacterial
metabolites via blood is regulated by the Blood–Brain Barrier (BBB). The BBB allows the
selective entrance of compounds to the brain through the expression of receptors and
transporters, which are necessary for maintaining brain homeostasis [155,156]. Disruption
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of the BBB—for example, by chronic systemic inflammation—will increase the permeability
and allow cytokines and bacterial metabolites to enter the brain directly. In turn, this
could result in neuroinflammation and neuronal dysfunction [156,157]. There are limited
studies investigating the effect of ADAM10 and ADAM17 on the immune system, the
intestinal homeostasis, intestinal microbiota, in intestinal inflammation and epithelial and
endothelial (BBB) barrier functions. These studies are discussed below.

5.1. ADAM10 and ADAM17 and Blood–Brain Barrier Permeability

There is little known regarding the effects of ADAM10 or ADAM17 on the BBB
permeability. Schulz et al. demonstrated ADAM10 increases the endothelial permeability
by specifically cleaving Vascular Endothelial Cadherin (VE-cadherin) in human umbilical
vein endothelial cells [158]. The low-density lipoprotein receptor-related protein 1 (LRP1)
prevents the endocytic transport of Aβ [159,160]. LRP1 is located at the abluminal surface
of the brain endothelium, by which Aβ is then released into the systematic circulation.
ADAM10 KO and ADAM10 inhibition facilitate the clearance of Aβ in the brain through
decreasing the proteolytic cleavage of LRP1 by ADAM10 in mice and in human brain
microvessel endothelial cells [161]. It seems plausible that ADAM10 plays an important
role in changing the BBB permeability through the proteolytic cleavage of junction and
transporter proteins in the BBB.

5.2. ADAM10 in the Intestinal Tract

ADAM10 is widely expressed in intestinal epithelial cells [68] and involved in mod-
ulating the intestinal permeability by targeting its substrates Notch and E-cadherin [48].
Research in conditional ADAM10-deficient mice points out that, when ADAM10 is deleted
in intestinal cells, there is an early lethality caused by altered intestinal morphology and
changes in cell differentiation [45]. Furthermore, it has been shown that the intestinal
morphology changes were due to the loss of Notch receptor signaling caused by the shed-
ding of ADAM10 [45]. The Notch receptor is a recognized substrate of ADAM10 that
is ubiquitously expressed in all epithelial cell types. The Notch receptor determines the
intestinal stem cell fate and controls intestinal homeostasis [162]. An increase of cleaved
Notch-1 decreases the transepithelial electrical resistance, indicative for a reduced intestinal
barrier function, and tight junction protein Claudin-5 expression in Caco-2 cells. In addi-
tion, the levels of cleaved Notch-1 are increased in the colonic epithelium of patients with
Crohn’s disease [47]. E-cadherin is one of the most important junction molecules involved
in maintenance of the intestinal epithelial integrity. It was demonstrated that E-cadherin is
specifically cleaved by ADAM10 in mouse embryonical fibroblasts and by the absence of
soluble E-cadherin in ADAM10-deficient mice [48]. Taken together, these findings suggest
that the ADAM10-mediated shedding of Notch receptor and E-cadherin downregulates
epithelial cell migration and adhesion and influences intestinal barrier function.

Finally, there might be a role for ADAM10 (possibly, also, ADAM17) in cleaving
APP in relation to weight gain, as children diagnosed with ASD have a higher risk for
becoming overweight [163]. More recently, it has been demonstrated that APP medi-
ates diet-dependent weight gain, probably through enhanced TNF-α and IL-6 secre-
tion by macrophages, and the potentiation of cholesterol uptake by colonic epithelial
cells [164–166]. Moreover, high-fat diet-induced APP production in white adipose tissue
leads to mitochondrial dysfunction [167]. However, the role of ADAM10 in cleaving APP
in relation to weight gain has not been studied. Taken together, it can be hypothesized
that, possibly, ADAM10-induced dysregulated APP can be involved in the development of
obesity in ASD.

In conclusion, ADAM10 has an important role in maintaining intestinal homeostasis.
However, there are no studies conducted about the role of enhanced ADAM10 on intesti-
nal functioning in ASD, and this will be crucial to deepening our understanding of this
involvement.
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5.3. ADAM17 in the Intestinal Tract

ADAM17 is ubiquitously expressed in all intestinal epithelial cells. In a murine model
of decreased ADAM17 expression, where its activity is significantly reduced, normal in-
testinal epithelial cell proliferation is not compromised. However, there is a less effective
response of the intestines to inflammation [168]. ADAM17 seems to be an essential com-
ponent in regulating intestinal inflammation. The proinflammatory cytokines TNF-α and
IL-6 [8] can disrupt the tight junction structure in the intestine and contribute to inflamma-
tion [169,170]. As ADAM17 cleaves TNF-α [171] and IL-6R [139], it seems that ADAM17
activity is tightly connected to the intestinal barrier integrity via a proinflammatory route.
Recently, research pointed out that the polyphenol, resveratrol, is able to ameliorate social
deficits in the VPA mouse model of ASD, probably attributing to its anti-inflammatory
properties [172]. Resveratrol also reduced the proinflammatory cytokine levels, such as IL-6
and TNF-α in the BTBR T+tf/J mouse model of ASD, which indicates that the inhibition
of inflammation may be promising to the treatment of ASD [173]. Additionally, with the
observed increased levels of TNF-α, sIL6R/IL6 complexes [134,174] and ADAM17 [130]
in ASD patients, it is tempting to assume that this metalloprotease could be crucial in the
development of ASD by alteration of the gut–brain axis.

5.4. ADAMs and Intestinal Microbiota

Another important aspect of the gut–brain axis is the intestinal microbiome. Intesti-
nal microbiotas consist of cohabitating microorganisms involved in regulating the host
immunity and inflammation [175–177]. There is bidirectional communication between the
intestinal microbiota and the brain [178–180]. Although there are limited reports on the
contribution of ADAM10 or ADAM17 to intestinal microbiota dysbiosis, it is possible to
connect several studies and hypothesize.

The composition of the intestinal microbiome is altered in ASD children compared
to normal healthy individuals [8,9,84,151]. Their microbial composition contains a higher
proportion of Gram-negative bacteria [181], which increases the expression of lipopolysac-
charides (LPS) [182]. LPS can activate the innate immune system through the activation of
Toll-Like Receptor 4 (TLR4) [183,184]. The activation of TLR4 stimulates the production of
proinflammatory cytokines in the intestines and causes neuroinflammation in the brain
by activation of the microglia [185,186]. Strikingly, the activation of TLR4 stimulates the
ADAM17-dependent shedding of TNF-α [187]. Furthermore, proinflammatory cytokines
and LPS treatments are both able to increase the active ADAM10 levels in vitro [188]. It
can be suggested that the altered microbiome in people diagnosed with ASD might be able
to activate ADAM17 and ADAM10 through increased LPS and proinflammatory cytokines
production.

A higher incidence of Clostridium perfringens in fecal samples of ASD children has
been described compared to healthy children [189,190]. In the intestines, several species
of Clostridium perfringens generate potent toxins that are the causatives of fatal intestinal
and CNS diseases in animals [191]. Delta-toxin is one of these that perturbs the intestinal
epithelial barrier function in human intestinal epithelial Caco-2 cells through enhancing the
ADAM10 activity in a dose- and time-dependent way, which is blocked in the presence of
the ADAM10 inhibitor [192,193]. Therefore, the altered microbiome and related metabolites
in ASD patients seem to be able to activate ADAM17 and ADAM10 by increasing the
production of LPS and Delta-toxin. However, there is little known about the effects
of other bacterial-generated metabolites on ADAM10 and ADAM17, such as p-cresol,
its derivative p-cresyl sulfate (pCS) and 4-ethylphenylsulfate (4EPS). The levels of p-
cresol and its conjugated derivative pCS are increased in urine and fecal samples in ASD
children [97,194,195]. Urinary p-cresol has been suggested as a biomarker for ASD in small
children because of its significant elevation [195]. A 4EPS treatment induced ASD-like
behavior in mice [8]. Mishra et al. showed that there was no difference in the cecal bacterial
microbiota composition and load between ADAM17 conditional KO mice and control
mice, but the conditional knockout of ADAM17 decreased the peritoneal spread of bacteria
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following sepsis induction compared to control mice [196], which might be involved with
reduced cleavages of TNF-α shedding and other proinflammatory cytokines by ADAM17.

Additionally, some substrates of ADAM17 or ADAM10 can regulate microbiota com-
position. Angiotensin-converting enzyme 2 (ACE2), a substrate of ADAM17 [197,198],
plays an emerging role in the pathogenesis of cardiovascular and lung diseases through
changing the composition of the intestinal microbiota, such as increasing the ratio of the
Firmicutes to Bacteroidetes and decreasing the Bifidobacterium genus, which raises the
potential relation of ADAM17-mediated ACE2 shedding and intestinal dysbiosis [199–201].
Meantime, it is demonstrated that an enteric infection coupled with chronic Notch receptor
pathway inhibition in mice is associated with bacterial dysbiosis compared to control mice,
indicated as a significant decrease in the Bacteroidetes phyla, with concomitant increases
in the Firmicutes, Proteobacteria and Verrucomicrobia phyla [46]. It seems that the Notch
receptor inhibition changed the microbiota composition in enteric-infected mice, which
implies that ADAM10 overexpression may have a similar effect on microbiota composition
through cleavage of the Notch receptor. Taken together, intestinal microbes can regulate
ADAM10 or ADAM17 activity by producing bacterial metabolites, and, in turn, ADAM10
or ADAM17 can also change the intestinal microbiome composition. However, these
connections remain unclear, and more research is needed.

5.5. ADAMs and the Immune System

The development and function of the immune system is highly dependent on the in-
testinal microbiota, as demonstrated by the limited immune activity in germ-free mice [202].
Intestinal bacterial fermentation produces a wide range of metabolites on the basis of tryp-
tophan, tyrosine and phenylalanine from our daily diet, such as serotonin, short-chain fatty
acids (SCFAs), indole-containing metabolites and p-cresol [203–205]. The role of SCFAs and
other not-mentioned bacterial metabolites in ASD have been extensively reviewed [177].
These metabolites can regulate immune responses and inflammatory responses by rec-
ognizing their receptor on epithelial cells or entering into the systemic circulation or the
brain. SCFAs promote the number, function and differentiation of colonic T-reg cells in
mice [203,206]. In addition, SCFA—specifically, butyrate—being fuel for epithelial cells,
promote intestinal barrier integrity [207,208]. In the brain, SCFAs also increase the mi-
croglia maturation and functions in mice [204]. However, the exact mechanisms how
these metabolites affect host immune and brain functions remains to be investigated. In
recent years, alterations in the gut–brain axis have been presented as possible pathological
causes of ASD, and targeting the intestinal microbes has been recognized as a promis-
ing treatment for ASD [8,16,178,209]. For example, maternal immune activation (MIA)
induced by polyinosinic:polycytidylic acid (polyI:C) injection led to intestinal dysbiosis
in the male offspring associated with defects in communicative, stereotypic, anxiety-like
and sensorimotor behaviors. The oral administration of Bacteroides fragilis restored these
ASD-like symptoms [8]. The roles of ADAM10 and ADAM17 in the effects of the bacterial
metabolites in the immune system in ASD has not been researched well; however, it is
possible to speculate about its potential involvement.

Transforming growth factor β1 (TGF-β1) is one member of the TGFβ family and, gen-
erally, regulates T lymphocytes and antigen-presenting cells as an immunosuppressor [210].
Some studies showed that there is a significant decrease of the TGF-β1 level in the plasma
or serum of ASD children [211,212]. Moreover, one study showed that TGF-β1 might be
considered as a biomarker of ASD severity. Increasing TGF-β1 levels in the plasma of
ASD children consequently improved the behavioral rating score [213]. TGF-β1 also is
essential to the microglial development, phenotypes and functions in vitro and in vivo,
which is connected with ASD pathogenesis [214–216]. Besides, TGF-β1 plays a vital role
in modulating social interactions and repetitive behaviors in mice hippocampus. It was
demonstrated that adult hippocampal TGF-β1 overexpression increases social interactions
and decreases self-grooming and depression-related behaviors, and early hippocampal
TGF-β1 overexpression reversely decreases those behaviors [217]. Kawasaki et al. illus-
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trated that TGF-β1 signaling is dependent on ADAM 17 activity, and thus, modifying
ADAM17 genetic variants enhances TGF-β1 signaling activity through cleaving less type 1
TGF-beta receptor (TGF-βR1) in mice and humans [218]. It is demonstrated that TGF-βR1
is a substrate of ADAM17, and its cleavage by ADAM17 downregulates TGF-β1 signaling
through the decreasing cell surface TGF-βR1 [218,219]. In addition, Vasorin is a type 1
transmembrane protein, and it is cleaved by ADAM17 to generate soluble Vasorin that
binds to TGF-β1 as a suppressor [220,221]. To our knowledge, there is little known about
the ADAM17-mediated TGF-β1 signaling in ASD pathogenesis.

T-helper 17 lymphocytes (TH17) cells and their effector cytokines interleukin 17 (IL-17)
are necessary for immune responses against extracellular bacteria and fungi, and their
dysregulation is thought to underlie numerous inflammatory and autoimmune diseases,
such as inflammatory bowel disease and multiple sclerosis [222]. Choi et al. demonstrated
that maternal immune activation induced ASD-like behavioral phenotypes in the offspring
and compromised their cortical brain development in an IL-17a-dependent manner. IL17a
KO or IL-17a blockage with an antibody rescued the ASD-like phenotypes [223]. The
proinflammatory cytokine IL-6 inhibits TH17 cell differentiation from the CD4+ T-cell
subset as an upstream regulator of IL-17a [224,225]. Therefore, IL-6 is also necessary for
maternal immune activation-induced ASD-like phenotypes in the offspring [226]. It is
demonstrated that ADAM17 regulates IL-6 signaling through controlling the IL-6 receptor
(IL-6R) in vitro and in vivo [227]. Horiuchi et al. reported that conditional ADAM17 KO
mice have increased serum levels of IL-17 compared with control littermates, indicating
that decreased ADAM17 activity is associated with a downregulation of IL-17 secretion
in vivo [187], but the role of the IL-17 receptor in this process was not investigated, and
the definite mechanism remains to be elucidated. It is possible that the increased IL-17
level in ADAM17 KO mice is a result from the increased cleavage of the IL-17 receptor
by ADAM17 [228], but it is barely studied. These findings make it promising to investi-
gate the potential roles of ADAM10 and ADAM17 in the pathogenesis of ASD from an
immunological perspective.

6. Metalloproteases ADAM10 and ADAM17 as Therapeutic Targets for Autism
Spectrum Disorders

The metalloproteinases ADAM10 and ADAM17 are or might be involved in different
aspects of ASD pathogenesis. Strikingly, as can be concluded from Table 2, it seems that
the enhanced expression and activity of ADAM10 or ADAM17 might contribute to several
aspects of ASD. Therefore, the reduction or inhibition of these targets could be interesting
as therapeutic strategies for ASD. Although not much attention has been given in research
to targeting metalloproteases, some possible therapeutic options will be discussed below.

6.1. TIMPs

The natural inhibitors of the metalloproteases are the Tissue Inhibitors of Metallo-
proteases (TIMPs). There are four members of the TIMP family [229,230]. In general,
the TIMPs can inhibit all MMPs, but the strength of MMP inhibition differs between the
TIMPs. Interestingly, TIMPs inhibit ADAMs with higher specificity. For example, ADAM10
is specifically inhibited by TIMP-1 and TIMP-3 [231]. Moreover, TIMP-3 also inhibits
ADAM17 [232]. The main limitation of metalloprotease inhibitors is their lack of selectivity.
Therefore, an inhibitor can affect other enzymes as well, which could lead to undesirable
side effects. For instance, increasing the TIMP-3 levels can be an interesting therapeutic tar-
get, as this can possibly decrease both the ADAM10 and ADAM17 activity in ASD patients;
however, TIMP-3 also has an inhibitory effect on most MMPs [233,234]. Thus, the search
for selective inhibitors is of critical importance in order to be used as a therapeutic drug.

6.2. ADAM Inhibitors

In search for molecules with a great selectivity for ADAM10 and ADAM17, the
GI254023X compound has been identified as a potent and selective inhibitor of ADAM10,
with 100-fold higher selectivity than ADAM17 [235,236]. In addition, Mahasenan et al.



Int. J. Mol. Sci. 2021, 22, 118 15 of 27

recently synthesized and tested the compound (1R,3S,4S)-3-(hydroxycarbamoyl)-4-(4-
phenylpiperidine-1-carbonyl) cyclohexyl pyrrolidine-1-carboxylate, which showed a high
potency of inhibiting ADAM10 [237]. This compound can also cross the BBB [237]. Further-
more, Hirata et al. showed that the inhibitor KP-457 has over 50 times higher selectivity for
ADAM17 than ADAM10 or any other MMPs [238].

TspanC8 members regulate ADAM10 maturation and substrate selectivity. Six TspanC8
members can form six different Tspan–ADAM10 complexes, which preferentially cleave
different substrates as six scissors [36,62,65,125]. Therefore, the development of inhibitors
targeting these complexes is beneficial compared to the side effects of broad ADAM in-
hibitors. Taken together, these studies showed that effective inhibitors are available and
might be beneficial for ASD treatment.

6.3. Probiotics, Bacterial Metabolites and Prebiotics?

As discussed above, intestinal dysbiosis has been frequently described in children suf-
fering from ASD. Pro-, prebiotic and even microbiota transfer therapy (MTT) interventions
have been proposed as promising treatments for ASD children [16,239–242]. Of interest are
the bacterial metabolites 4EPS, as well bacterial toxin LPS, that induce ASD-like behavior
in mice by unknown mechanisms [8,243]. Furthermore, a bacterial LPS-induced increase of
ADAM10 expression is important for proinflammatory immune cell responses [244]. Other
important bacterial metabolites are SCFAs. The increase of enteric SCFAs levels in ASD
mice [245], as well as in ASD children, are demonstrated [246,247]. The precise mechanism
of action of SCFAs in relation to ASD-like behaviors is not known, but the effects on the
mitochondrial function or epigenetic alterations in the brain may be involved [248]. Given
the important roles of ADAM10 and ADAM17 in the gut functions, immunity and brain, it
will be interesting to study whether and how intestinal microbiota-derived metabolites,
such as 4EPS, LPS, p-cresol and SCFAs, affect ADAM10/17 activity in the intestinal tract
and in the brain related to ASD. When, indeed, an important role of these bacterial metabo-
lites on the ADAM10/17 activity is established, then targeting the intestinal microbiota
with pre- and probiotics, as well as MTT, may be useful in ASD.

6.4. Targeting ADAM10 and ADAM17 in ASD: Some Considerations

The strategy of targeting ADAM 10 and/or ADAM17 as future treatments in ASD
raises several issues. First, the processes in which ADAMs are involved are critical for cell,
tissue and organ functioning; therefore, ADAM10 and ADAM17 inhibitors might have
serious side effects. Both proteases contribute to developmental and regenerative processes;
for example, the disruption of ADAM17 in mice leads to death, and studies in KO mice
show that ADAM10 is vital for early development [125]. The specific targeting of ADAM10
or ADAM17 at the right time and in the right location might be the way to go. Secondly,
it should be investigated at which location ADAM10 and ADAM17 should be targeted:
in the intestines or the brain. For the latter, compounds that are able to pass the BBB are
essential. Indirect targeting through manipulation of the intestinal microbiota with pre-,
pro or postbiotics might be a safer way to inhibit the enhanced ADAM10 and ADAM 17
activity in ASD.
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Table 2. The effect of ADAM10 and ADAM17 on different substrates and their involvement in Autism Spectrum Disorder
(ASD) patients. ↓: downregulated; ↑: upregulated

Protein Name Gene Symbol ADAM10 Shedding ADAM17 Shedding ASD Patients

Amyloid Precursor Protein APP ↑sAPPα [32] ↑sAPPα [32] ↑ sAPPα [28]

Neuroligin-1 NLGN-1 ↓ Synaptogenic activity [92] Common variants
[249,250]

Neuroligin-3 NLGN-3 ↓ Synaptogenic activity [92]
R415C transition

[251,252]
Common variants [250]

Neurexin-1 NRXN-1 ↓ Synaptogenic activity [93] Loss-of-function
variants [24,26,27]

Neural glial-related Cell
Adhesion Molecule NrCAM ↑ Axon targeting activity [35] SNPs & Common

variants [25]

Protocadherin9 PCDH9 No data available Copy Number
Variants [24]

Fractalkine CX3CL1 ↑ Synaptic pruning
[35,121,122] No data available

Tumor Necrosis Factor-α TNF-α ↑ pro-inflammatory
activity [131]

↑ in blood and brain
[134]

Interleukin-6 Receptor IL-6R ↑ pro-inflammatory
pathways [139]

↑ pro-inflammatory
pathways [139]

↑ IL-6 in blood and
brain [134]

Triggering Receptor
Expressed in Myeloid cells 2 TREM2 ↓ TREM2 membrane

receptor levels [143]
↓ in post-mortem brain

tissue age 5–23 [145]

7. Outlook and Conclusions

ASD is a highly heterogeneous disorder that includes multiple affected genes, altered
synaptic density, neuroinflammation, low-grade systemic immune activation and an in-
testinal phenotype, including a “leaky gut”. Therefore, it is challenging to pinpoint what
the exact underlying cause of this neurodevelopmental disease is. The ASD-associated
enhanced expression and/or activity of the metalloproteases ADAM10 and ADAM17
provide an overarching hypothesis that affects many different aspects that seem to be
involved, at least in part, in ASD pathology. ADAM10 is responsible for the proteolytic
cleavage of several key proteins involved in synapse formation, axon signaling and cell
adhesion and for regulating the intestinal permeability. Furthermore, ADAM17 has a
pivotal role in the shedding of proteins that regulate the onset of (neuro)inflammation
and immune responses. Additionally, the effects of ADAM10 and ADAM17 on the in-
testinal microbiota composition and the effects of bacterial metabolites on ADAM10 and
ADAM17 expression and activity remain to be investigated. Taken together, these two
metalloproteases seem responsible for activating key pathways that seem to be altered in
ASD pathogenesis. Figure 3 provides an overview of the pathways where ADAM10 and
ADAM17 are possibly involved in the pathogenesis of ASD. In conclusion, the enhanced
expression and/or activity of ADAM10 or ADAM17 could possibly be involved in the
induction and maintenance of ASD-like phenotypes in the brain, as well as systemically
and in the intestinal tract. Consequently, this hypothesis suggests that reducing the levels
or activity of ADAM10 or ADAM17 could be a potential therapeutic target in ASD patients.

In order to provide more evidence to support this hypothesis, it is necessary to further
determine if there is any altered ADAM10 and ADAM17 expression and/or activity in
ASD-associated mouse models or in ASD patients. Moreover, more studies need to be
conducted to investigate the role and molecular mechanisms of ADAM10 and ADAM17,
which will shed light on the molecular pathogenesis and possible targets for the treatment
of ASD. Additionally, it will be interesting to screen metalloprotease-specific inhibitors and
then test the specific inhibitors of ADAM10 and ADAM17 in ASD animal models.
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Figure 3. Overview of the proposed role of ADAM10 and ADAM17 in ASD pathology, with a
focus on the gut–immune–brain axis. In the intestines, the increased activity or levels of ADAM10
and ADAM17 will lead to an increased intestinal permeability by cleaving more E-cadherin and
Notch, increased intestinal inflammation by cleaving more IL-6R and TNF-α, disrupted intestinal
transit by cleaving more NLGN3 and increased myelination of nervus vagus by cleaving more
DR6 in the Enteric Nervous System; these contribute to the intestinal dysfunctions. In the brain,
the elevated activity of ADAM10 and ADAM17 will result in increased neuronal growth, synaptic
density, dendritic spines densities and larger brain volume by cleaving more synaptic molecules, such
as NLGN, NRXN, NrCAM and APP. Furthermore, it will result in decreased synaptic elimination
and microglial phagocytosis by cleaving more CX3CL1 and TREM2; increased neuroinflammation
by cleaving more IL-6R, TNF-α and TREM2 and increased BBB permeability by cleaving more
VE-cadherin and LRP1. These processes will lead to altered brain development and functions.
Additionally, increased ADAM10 and ADAM17 activity will lead to immune activation by cleaving
more IL-17R, IL-6R and TNF-α. All of these can participate ASD development and be involved in
ASD pathogenesis.
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