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Abstract: Ag3PO4/g-C3N4 heterojunctions, with different g-C3N4 dosages, were synthesized using
an in situ deposition method, and the photocatalytic performance of g-C3N4/Ag3PO4 heterojunc-
tions was studied under simulated sunlight conditions. The results revealed that Ag3PO4/g-C3N4

exhibited excellent photocatalytic degradation activity for rhodamine B (Rh B) and phenol under the
same light conditions. When the dosage of g-C3N4 was 30%, the degradation rate of Rh B at 9 min and
phenol at 30 min was found to be 99.4% and 97.3%, respectively. After five cycles of the degradation
experiment for Rh B, g-C3N4/Ag3PO4 still demonstrated stable photodegradation characteristics.
The significant improvement in the photocatalytic activity and stability of g-C3N4/Ag3PO4 was
attributed to the rapid charge separation between g-C3N4 and Ag3PO4 during the Z-scheme charge
transfer and recombination process.

Keywords: Ag3PO4; g-C3N4; semiconductor photocatalyst; Z-scheme mechanism

1. Introduction

With the rapid development of industry, environmental pollution caused by indus-
trial wastewater is becoming increasingly serious. Photocatalysis is an effective technol-
ogy to degrade pollutants in water, which has been widely researched [1,2]. However,
one-component semiconductor photocatalysts always face various defects, such as low
visible-light availability and easy recombination of photogenerated charges. It has been
proven that the construction of semiconductor heterostructures is an effective route to
improve photocatalytic efficiency [3,4]. In recent years, an all-solid Z-scheme semicon-
ductor composite photocatalyst has been applied in photocatalysis [5–9]. When Z-scheme
photocatalysts are excited, h+ from the valence band (VB) at a higher energy level can
combine with e− from the conduction band (CB) at a lower energy level, while e− with a
stronger reducing ability in CB at a higher energy level and h+ with a stronger oxidation
ability in lower VB at a lower energy level can participate in the reduction and oxidation
processes during photocatalytic degradation, respectively. This method is conducive to
obtain high charge separation efficiency and strong redox ability simultaneously, thus
improving the photocatalytic efficiency [8,9].

In recent years, Z-scheme Ag3PO4-based photocatalysts with a high photocatalytic
activity have been designed and applied in wastewater treatment and environmental con-
trol [10–13], including Ag3PO4/MoS2 [14], Bi2MoO6/Ag3PO4 [15], Ag3PO4/Bi2WO6 [16],
Ag3PO4RGO/BiMoO4 [17], AgPO4/Ag/WO3−x [18], and Ag3PO4/Pd/LaPO4 [19]. Lamellar
g-C3N4 nanosheets possess high surface area, suitable band gap (2.7 eV), low cost, and good
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thermal and chemical stability, which has attracted extensive attention in the field of photo-
catalysis [20–23]. When g-C3N4 is combined with Ag3PO4, the resultant g-C3N4/Ag3PO4
photocatalyst is expected to show significantly enhanced photocatalytic activity.

Among the many types of pollutants, dyes and dangerous compounds are two main
pollutants in industrial wastewater. Rh B and phenol are the typical substances of the two
pollutants, respectively. Rh B is very harmful to human health. It can cause redness of skin
and viscera, mild congestion of cerebral vascular, rupture of myocardial fiber, and other
symptoms. Phenol has a strong corrosive effect on skin and mucous membrane, inhibiting
the central nervous system and damaging the function of liver and kidney, etc. In addition,
phenol is more difficult to degrade than other pollutants in water. Thus, they were chosen
as the degradation object in photocatalytic experiments.

In this paper, we synthesized the Ag3PO4/g-C3N4 Z-scheme heterojunction photo-
catalyst using the in situ deposition method and evaluated the photocatalytic activity by
the degradation experiment for Rh B and phenol. The influence of g-C3N4 and Ag3PO4 on
photocatalytic activity was studied in detail and the probable photocatalytic mechanism of
Ag3PO4/g-C3N4 was proposed.

2. Experimental Section
2.1. Sample Preparation

Preparation of g-C3N4: A typical calcination method was used to prepare g-C3N4.
Briefly, 10 g urea powder was placed in an alumina crucible with a lid. The crucible was
heated in air at a heating rate of 2 ◦C·min−1 to 550 ◦C and, then held at this temperature for
2 h to obtain g-C3N4. Subsequently, the bulk g-C3N4 was thermally exfoliated into g-C3N4
nanosheets by calcination at 600 ◦C for 2 h in air. The light yellow product was collected
and ground using an agate mortar for subsequent use.

Synthesis of Ag3PO4/g-C3N4: Fifty milligrams of g-C3N4 nanosheets were dispersed
in 80 mL of deionized water by ultrasonication. Silver ammonia solution (0.1 g·L−1) was
dropped into the aqueous dispersion of g-C3N4 nanosheets and, then magnetically stirred
for 1 h to fully adsorb Ag(NH3)2+ ions on the surface of g-C3N4 nanosheets. Then, the
KH2PO4 solution (0.1 g·L−1) was dropped into the above mixture under magnetic agitation
and the mixture continued to be stirred for 1 h. The final product was collected by centrifu-
gation, washed with deionized water and ethanol thrice, and dried at 70 ◦C for 1 h. Finally,
the product was collected and ground with an agate mortar for further use. According to
the theoretical dosage of g-C3N4, the as-prepared samples were named Ag3PO4/g-C3N4-
10 wt%, Ag3PO4/g-C3N4-20 wt%, Ag3PO4/g-C3N4-30 wt%, and Ag3PO4/g-C3N4-40 wt%.
The actual dosage of g-C3N4 detected by EDS were 9.2 wt%, 16.3 wt%, 27.7 wt%, and
41.8 wt%, respectively. In addition, the simple physical mixture of Ag3PO4 and 30 wt%
g-C3N4 was named the Ag3PO4/g-C3N4-30% mixture.

2.2. Sample Characterization

The crystal structure was analyzed by a Bruker D8 X-ray diffractometer (XRD, Bruker,
Germany), equipped with a Cu Kα irradiation light source (λ = 0.154 nm). The microstruc-
ture was observed using a Tecnai G2 F20 transmission electron microscopy (TEM, FEI,
Hillsboro, OR, USA). Room-temperature transient photoluminescence (PL) spectra were
recorded using an FLS1000 spectrometer (EI, UK). UV-vis diffuse reflectance spectra (UV-
Vis, Hitachi, Tokyo, Japan) were measured by using a UH4150 UV-Vis near-infrared spec-
trophotometer. The photocurrent response was measured using a CHI 760E electrochemical
workstation (Chenhua, Shanghai, China).

2.3. Photocatalytic Activity Test

The photocatalytic activity was evaluated by the pollutant degradation experiments
at room temperature. A Polfilet xenon lamp (300 W) with a 320-nm filter was used as
the light source. The spectra of the xenon lamp are shown in Figure S1 and detailed
experimental devices are shown in Figure S2. The reaction solution consisted of 50 mL



Molecules 2021, 26, 2062 3 of 10

of rhodamine B (Rh B, 5 mg·L−1) or 50 mL of phenol (10 mg·L−1), and the photocatalyst
was 0.03 g Ag3PO4, g-C3N4, or Ag3PO4/g-C3N4. The photocatalyst was weighed and
added to the reaction solution, and the reaction solution was continuously stirred in the
dark for 30 min to achieve an adsorption–desorption balance between the photocatalytic
material and pollutant. Subsequently, the solution was irradiated by a full-wavelength
Xenon lamp, and the absorbance of the supernatant was measured at certain intervals. In
the cyclic experiments, the photocatalyst was separated from the reaction system after each
degradation experiment, washed with ethanol and deionized water, and re-dispersed in
the newly-prepared reaction solution to repeat the degradation experiment.

3. Results and Discussion
3.1. Structural Analysis and Microstructure

Figure 1 shows the XRD patterns of Ag3PO4, g-C3N4 and Ag3PO4/g-C3N4-30 wt%.
As shown in Figure 1, a strong peak appeared in the diffraction pattern of g-C3N4 at
2θ = 26.5◦, corresponding to the (002) planes of g-C3N4 (JCPDS card no. 87-1526), which
is the characteristic interlayer stacking peak of g-C3N4 [24]. The Ag3PO4 and Ag3PO4/g-
C3N4-30 wt% exhibited similar XRD patterns and all strong diffraction peaks corresponded
to the cubic Ag3PO4 phase (JCPDS card no. 06-0505). The inset provided the refined
XRD patterns of Ag3PO4 and Ag3PO4/g-C3N4-30 wt%. Compared with Ag3PO4, the XRD
pattern of Ag3PO4/g-C3N4 showed the characteristic peaks of g-C3N4; however, the peak
intensities were far weaker than that of Ag3PO4. This may be attributed to the inferior
crystallinity and lower content of well-exfoliated g-C3N4.
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Figure 1. XRD patterns of as-prepared Ag3PO4, g-C3N4, and Ag3PO4/g-C3N4.

Figure 2 shows TEM images of Ag3PO4, g-C3N4, and Ag3PO4/g-C3N4 photocatalysts.
Figure 2a illustrates that Ag3PO4 consisted of approximately cubic particles with a size
of 200–300 nm. As shown in Figure 2b, g-C3N4 presented thin wrinkled nanosheets.
After thermal exfoliation, the specific surface area of g-C3N4 increased significantly, due
to morphological changes. Figure 2c shows that the small-sized Ag3PO4 particles were
attached to the surface of g-C3N4, forming a stable composite.
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Figure 2. TEM images of (a) Ag3PO4, (b) g-C3N4, and (c) Ag3PO4/g-C3N4.

3.2. Optical Properties

Figure 3 shows the UV-vis diffuse reflectance spectra of Ag3PO4, g-C3N4, and Ag3PO4/
g-C3N4-30 wt% photocatalysts. As shown in Figure 3a, the absorption cutoff edges of
Ag3PO4 and g-C3N4 were located at about 460 and 530 nm, respectively. Compared with
Ag3PO4, the absorption edge of Ag3PO4/g-C3N4-30 wt% was basically unchanged. Based
on the UV-vis absorption data, the bandgap width of the photocatalysts was calculated and
results are shown in Figure 3b. The calculated bandgap width of g-C3N4 was about 2.78 eV,
whereas the bandgap of Ag3PO4 and Ag3PO4/g-C3N4-30wt% decreased to 2.45 eV.
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Figure 3. (a) UV-vis diffuse reflectance spectra, (b) estimated bandgap of Ag3PO4, g-C3N4, and Ag3PO4/g-C3N4-30 wt%.

By testing the photoelectrochemical properties of Ag3PO4, g-C3N4, and Ag3PO4/g-
C3N4-30 wt% photocatalysts, the separation and transfer efficiency of photogenerated
electron-hole pairs were studied and results are shown in Figure 4. Figure 4a presents the
photoluminescence (PL) spectra of the as-synthesized photocatalysts. The PL emission
peak of g-C3N4 was located at 460 nm, showing the highest PL intensity and indicating
that the photogenerated charge of g-C3N4 exhibited high recombination efficiency. The PL
emission peak of Ag3PO4 was located at 460 nm, showing a far lower PL intensity than
g-C3N4. When Ag3PO4 was combined with g-C3N4, the location of the PL emission peak
of Ag3PO4/g-C3N4-30 wt% was basically the same as Ag3PO4, but the PL peak intensity of
Ag3PO4/g-C3N4-30 wt% was significantly lower than Ag3PO4. Among Ag3PO4, g-C3N4,
and Ag3PO4/g-C3N4-30 wt%, Ag3PO4/g-C3N4 exhibited the lowest PL peak intensity,
which corresponded to the lowest recombination efficiency for photogenerated charges.
As can be observed in Figure 4b, all photocatalyst electrodes exhibited rapid response
when irradiated by a Xenon lamp (full wavelength). The Ag3PO4/g-C3N4-30 wt% showed
the highest photocurrent response of about 16.35 µA·cm−2, which was 2.79 times higher
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than Ag3PO4 (5.87 µA·cm−2) and 21.8 times higher than g-C3N4 (0.75 µA·cm−2). These
results indicate that the combination of Ag3PO4 and g-C3N4 reduced the recombination
efficiency of photogenerated electrons and holes, and accelerated the charges transfer,
which is beneficial for photocatalysis.

Molecules 2021, 26, x FOR PEER REVIEW 5 of 10 
 

 

Ag3PO4/g-C3N4-30 wt%, Ag3PO4/g-C3N4 exhibited the lowest PL peak intensity, which cor-

responded to the lowest recombination efficiency for photogenerated charges. As can be 

observed in Figure 4b, all photocatalyst electrodes exhibited rapid response when irradi-

ated by a Xenon lamp (full wavelength). The Ag3PO4/g-C3N4-30 wt% showed the highest 

photocurrent response of about 16.35 μA·cm−2, which was 2.79 times higher than Ag3PO4 

(5.87 μA·cm−2) and 21.8 times higher than g-C3N4 (0.75 μA·cm−2). These results indicate 

that the combination of Ag3PO4 and g-C3N4 reduced the recombination efficiency of pho-

togenerated electrons and holes, and accelerated the charges transfer, which is beneficial 

for photocatalysis. 

  

  

Figure 4. (a) Photoluminescence spectra and (b) transient photocurrent response curves of Ag3PO4, g-C3N4, and Ag3PO4/g-

C3N4-30wt%. 

3.3. Photocatalytic Activity 

Furthermore, using Rh B and phenol as target pollutants, we simulated the photo-

catalytic reaction under sunlight irradiation using Xenon lamp (full wavelength) irradia-

tion, and evaluated the photocatalytic activity, as shown in Figure 5. Figure 5a shows the 

photocatalytic activity of Ag3PO4/g-C3N4 with different amounts of g-C3N4 After irradia-

tion by the Xenon lamp for 9 min, the photocatalytic degradation rate of RhB by Ag3PO4, 

g-C3N4, Ag3PO4/g-C3N4-10 wt%, Ag3PO4/g-C3N4-20 wt%, Ag3PO4/g-C3N4-30 wt%, and 

Ag3PO4/g-C3N4-40 wt% was found to be 71.1%, 22.2%, 79.8%, 95.5%, 99.4%, and 89.9%, 

respectively. With the increase of g-C3N4 content, the photocatalytic activity of Ag3PO4/g-

C3N4 initially increased, followed by a decrease. The optimal photocatalytic activity was 

achieved for Ag3PO4/g-C3N4-30 wt%. The first-order kinetic model [25,26] was used to cal-

culate the corresponding reaction rate constants (k), and the results are shown in Figure 

5c. The observed reaction rate constant of Ag3PO4, g-C3N4, Ag3PO4/g-C3N4-10 wt%, 

Ag3PO4/g-C3N4-20 wt%, Ag3PO4/g-C3N4-30 wt%, and Ag3PO4/g-C3N4-40 wt% was found 

to be 0.1033, 0.0209, 0.1333, 0.2591, 0.4227, and 0.1911 min−1, respectively. The k value of 

Ag3PO4/g-C3N4-30 wt% (0.4227 min−1) was the highest, which was ≈4.09 and 20.24 times 

higher than Ag3PO4 and g-C3N4, respectively. 

 

 

 

 

 

Figure 4. (a) Photoluminescence spectra and (b) transient photocurrent response curves of Ag3PO4, g-C3N4, and Ag3PO4/g-
C3N4-30 wt%.

3.3. Photocatalytic Activity

Furthermore, using Rh B and phenol as target pollutants, we simulated the photocat-
alytic reaction under sunlight irradiation using Xenon lamp (full wavelength) irradiation,
and evaluated the photocatalytic activity, as shown in Figure 5. Figure 5a shows the photo-
catalytic activity of Ag3PO4/g-C3N4 with different amounts of g-C3N4 After irradiation
by the Xenon lamp for 9 min, the photocatalytic degradation rate of RhB by Ag3PO4,
g-C3N4, Ag3PO4/g-C3N4-10 wt%, Ag3PO4/g-C3N4-20 wt%, Ag3PO4/g-C3N4-30 wt%,
and Ag3PO4/g-C3N4-40 wt% was found to be 71.1%, 22.2%, 79.8%, 95.5%, 99.4%, and
89.9%, respectively. With the increase of g-C3N4 content, the photocatalytic activity of
Ag3PO4/g-C3N4 initially increased, followed by a decrease. The optimal photocatalytic ac-
tivity was achieved for Ag3PO4/g-C3N4-30 wt%. The first-order kinetic model [25,26] was
used to calculate the corresponding reaction rate constants (k), and the results are shown
in Figure 5c. The observed reaction rate constant of Ag3PO4, g-C3N4, Ag3PO4/g-C3N4-
10 wt%, Ag3PO4/g-C3N4-20 wt%, Ag3PO4/g-C3N4-30 wt%, and Ag3PO4/g-C3N4-40 wt%
was found to be 0.1033, 0.0209, 0.1333, 0.2591, 0.4227, and 0.1911 min−1, respectively. The k
value of Ag3PO4/g-C3N4-30 wt% (0.4227 min−1) was the highest, which was ≈4.09 and
20.24 times higher than Ag3PO4 and g-C3N4, respectively.
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In order to further verify the superior photocatalytic activity of Ag3PO4/g-C3N4, the
photocatalytic degradation experiment for phenol was also carried out and the results
are shown in Figure 5b. Under Xenon lamp irradiation for 30 min, the degradation
rate of phenol by Ag3PO4, g-C3N4, Ag3PO4/g-C3N4-10 wt%, Ag3PO4/g-C3N4-20 wt%,
Ag3PO4/g-C3N4-30 wt%, and Ag3PO4/g-C3N4-40 wt% was found to be 43.0%, 15.8%,
63.9%, 90.9%, 99.6%, and 77.5%, respectively. Figure 5d shows that the Ag3PO4/g-C3N4-
30 wt% exhibits the highest rate constant k (0.0540 min−1), which was ≈5.35 and 20.00 times
higher than Ag3PO4 (0.01009 min−1) and g-C3N4 (0.0027 min−1), respectively. Hence,
Ag3PO4/g-C3N4 showed obvious advantages for the degradation of pollutants.

Figure 6 presents the cyclic stability of Rh B degradation by Ag3PO4, g-C3N4, and
Ag3PO4/g-C3N4-30 wt% photocatalysts. Under Xenon lamp irradiation, the loss rate of
Rh B degradation by Ag3PO4, g-C3N4, and Ag3PO4/g-C3N4-30 wt% during the fifth cycle,
compared with the initial degradation, was 32.5%, 11.5%, and 7.3%, respectively. The
presence of g-C3N4 significantly reduced the loss rate for Rh B and phenol degradation.
Hence, Ag3PO4/g-C3N4 showed excellent photocatalytic stability.
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3.4. Photocatalysis Species

In order to identify the active species during the photocatalytic process, free radical
capture experiments were carried out using Rh B as a target pollutant. EDTA-2Na, p-
benzoquinone (BZQ), and tert-butanol were introduced during the photocatalytic process
as h+, ·O2

−, and OH− inhibitors, respectively, and the results are shown in Figure 7. The
introduction of tert-butanol during the photocatalytic process of Ag3PO4/g-C3N4-30 wt%
rendered no influence on the photodegradation efficiency of Rh B, whereas EDTA-2Na and
BZQ both significantly reduced the degradation efficiency of Rh B with a degradation rate
of 4.4% and 12.4%, respectively. These results indicate that h+ and O2− are the main active
species in Ag3PO4/g-C3N4-30 wt%.
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3.5. Energy Band Structure and Photocatalytic Mechanism

Figure 8 presents the Z-scheme charge transfer pathway of the Ag3PO4/g-C3N4
composite photocatalyst for the degradation of organic pollutants. The bandgap of g-C3N4
was 2.7 eV with the VB potential of ~1.4 eV and CB potential of ~−1.3 eV [27,28]. The
potential of e− on the CB of g-C3N4 was −1.3 eV, which can reduce the molecular oxygen
O2 to·O2 because the potential of O2/·O2

– was −0.44 eV vs. NHE. Therefore, O2− was
the main active substance during the photocatalytic process by g-C3N4. The bandgap of
Ag3PO4 was 2.45 eV with a VB potential of ~2.9 eV and CB potential of ~0.45 eV [29].
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The generated electrons (e−) in the CB of Ag3PO4 are insufficient to reduce O2 into O2−.
Therefore, holes (h+) play a major role during the photocatalytic degradation of organic
matter by Ag3PO4.
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Based on the energy band analysis, it can be inferred that the photogenerated e− in
the CB of Ag3PO4 can combine with h+ in the VB of g-C3N4 due to the formation of a
heterojunction interface between Ag3PO4 particles and g-C3N4 nanosheets, resulting in
the accumulation of e− in the CB of g-C3N4 and h+ in VB of Ag3PO4. The h+ in the VB
of Ag3PO4 can directly react with pollutants, whereas the electrons in CB of g-C3N4 can
reduce O2 into O2−, which reacts with pollutants. The Z-scheme charge transfer mechanism
promotes the separation of electron-hole pairs, slows down the photocorrosion of Ag+, and
improves photocatalyst activity and stability.

4. Conclusions

In summary, the Z-scheme heterojunction Ag3PO4/g-C3N4 photocatalyst was synthe-
sized using an in situ deposition method and exhibited excellent photocatalytic degradation
activity for Rh B and phenol under Xenon lamp irradiation. The observed rate constant (k)
for the degradation of Rh B by Ag3PO4/g-C3N4 was found to be 0.4227 min−1, which was
4.09 and 20.24 times higher than pure Ag3PO4 and g-C3N4, respectively. Moreover, the k
value for the degradation of phenol by Ag3PO4/g-C3N4 was 0.0540 min−1, which was 5.35
and 20.00 times higher than pure Ag3PO4 and g-C3N4, respectively. Overall, the formation
of the Z-scheme heterojunction hindered the recombination of photogenerated electrons
and holes, and accelerated the electron transfer, thus improving the activity and stability
of photocatalysts.

Supplementary Materials: Figure S1: The spectra of xenon lamp, Figure S2: The picture of experi-
mental setup.
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