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Abstract

Accurate estimates of population abundance are a critical component of species conserva-

tion efforts in order to monitor the potential recovery of populations. Capture-mark-recapture

(CMR) is a widely used approach to estimate population abundance, yet social species

moving in groups violate the assumption of CMR approaches that all individuals in the popu-

lation are detected independently. We developed a closed CMR model that addresses an

important characteristic of group-living species–that individual-detection probability typically

is conditional on group detection. Henceforth termed the Two-Step model, this approach

first estimates group-detection probability and then–conditional on group detection–esti-

mates individual-detection probability for individuals within detected groups. Overall abun-

dance is estimated assuming that undetected groups have the same average group size as

detected groups. We compared the performance of this Two-Step CMR model to a conven-

tional (One-Step) closed CMR model that ignored group structure. We assessed model sen-

sitivity to variation in both group- and individual-detection probability. Both models returned

overall unbiased estimates of abundance, but the One-Step model returned deceptively nar-

row Bayesian confidence intervals (BCI) that failed to encompass the correct population

abundance an average 52% of the time. Contrary, under the Two-Step model, CI coverage

was on average 96%. Both models had similar root mean squared errors (RMSE), except

for scenarios with low group detection probability, where the Two-Step model had much

lower RMSE. For illustration with a real data set, we applied the Two-Step and regular

model to non-invasive genetic capture-recapture data of mountain gorillas (Gorilla beringei

beringei). As with simulations, abundance estimates under both models were similar, but

the Two-Step model estimate had a wider confidence interval. Results support using the

Two-Step model for species living in constant groups, particularly when group detection

probability is low, to reduce risk of bias and adequately portray uncertainty in abundance

estimates. Important sources of variation in detection need to be incorporated into the Two-

Step model when applying it to field data.
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Introduction

Robust estimates of species population abundance are necessary for understanding baseline

conditions, gauging population trends, assessing the success of conservation actions, and

developing management strategies. Closed population Capture-mark-recapture (CMR) is con-

sidered the gold standard to estimating wildlife abundance while accounting for our imperfect

ability to detect all individuals in a population [1, 2, 3, 4, 5, 6]. Pollock [1] and Otis et al. [2]

described early versions of CMR and, due to its pervasive use by population ecologists, Pollock

[7] reviewed these approaches a short 5 years later. Since then, numerous review papers have

described various closed CMR approaches to population estimation [8, 9] with several impor-

tant additions (e.g. [10, 11, 12]) and cautions regarding the consequences of violating assump-

tions of CMR (e.g. [3]). CMR requires individual-level detection histories, which were

originally limited to live-trapping studies, but with advances in non-invasive survey methodol-

ogy, can now be obtained from non-invasive genetic markers found in hair or feces of target

species [13, 14, 15].

Social species provide a particular challenge when applying CMR approaches because the

nature of group living typically violates a primary assumption of CMR–that individuals are

detected independently of each other–which introduces a special kind of capture heterogene-

ity. The distributions of individuals of group-living species are clumpy; hence, in most cases,

detection of the individual is dependent on first detecting the group [16]. In such cases, indi-

vidual-level detection probability pi = 0 for individuals belonging to undetected groups and

pi>0 for individuals belonging to detected groups, thereby representing a special case of het-

erogeneity in detection probability among individuals in the population. Several approaches

have been developed to deal with capture heterogeneity. These include the jackknife heteroge-

neity model [17, 2] as well as finite mixture [18] or two-innate-rates (TIRM) models [13] for

unobservable heterogeneity; logistic-regression type models including individual covariates

[19, 20, 21]; and spatial capture-recapture models, which account for detection heterogeneity

due to different exposure to sampling [22]. Thus far, there is no CMR approach that explicitly

describes the dependence of pi on group detection that is characteristic of many group-living

species. Failure to account for heterogeneity in detection leads to overestimating parameter

precision and potentially biased parameter estimates [23]. Over time, biased abundance esti-

mates coupled with falsely narrow confidence intervals (CIs) could lead to erroneous conclu-

sions about population trends, whether they be false estimates of growth or decline [24], and

consequently, misguided conservation actions.

Mountain gorillas (Gorilla beringei beringei) serve as an excellent model species to develop

a capture-recapture approach accounting for lack of independence among individual detec-

tions due to group living. Mountain gorillas live in fairly stable family groups and they are of

such high conservation concern that for the last several decades, survey efforts expending

enormous financial and staff resources have been conducted approximately every 5–10 years

to estimate their population abundance [24, 25]. Although unhabituated gorillas are difficult

to detect due to thick vegetation, rough terrain, and elusive behavior, non-invasive genetic

markers extracted from fecal samples found in gorilla nests provide a way to survey mountain

gorillas, even if they are unhabituated to humans [24]. In established protocols for surveying

mountain gorilla populations [25, 26, 27], individual gorilla nests are sampled only upon

detection of the entire group’s nest site, thereby underscoring the dependence of individual

detections on group detection.

Here, we present a Two-Step closed CMR approach (henceforth, Two-Step model) that

accounts for the dependent nature of detection for group-living species by estimating both a

group-detection probability and then, conditional on group detection, an individual-detection
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probability. Using simulations informed by a field dataset on mountain gorillas, we compare

the performance of the conventional closed CMR model (henceforth, One-Step model) that

assumed all individuals have the same detection probability with our prototype Two-Step

CMR model. We demonstrate application of the Two-Step model by re-analyzing data from

the 2011 mountain gorilla survey [26]. Finally, we describe the strengths and weaknesses of the

models and offer recommendations for future model development. Though motivated by

mountain gorillas, the Two-Step CMR model is applicable to a wide range of group-living taxa

such as lions, wolves, elephants, or wild pigs.

Methods

Simulations

We simulated populations of group-living animals and generated capture histories for these

animals using program R version 3.4.0 [28]. Because model development was motivated by

estimating population size for the group-living mountain gorilla, data from the 2010 Virunga

population survey of mountain gorillas [25, 27] generally informed the setup of our population

simulations. For example, Gray et al. [25] reported 36 groups with mean group size of 12.5,

and in our simulations each population consisted of 40 groups with group size generated as a

zero-truncated Poisson random variable with a mean of 13 (for full description of generation

of simulated populations see R-code in S1 Script).

Capture histories were simulated reflecting a field-sampling design for mountain gorillas

[26]. Individuals in gorilla groups construct new nests each night and they usually defecate in

the nests prior to departing in the morning [29]. Areas encompassing all nests from a gorilla

group constructed on a given night are termed nest sites. Researchers searched the entire study

area for these nest sites in what they termed ‘sweeps’. Upon observing a gorilla nest site during

a given sweep and collecting fecal samples from each nest, teams followed connecting fresh

gorilla trails through the forest aiming to find 3 nest sites per gorilla group [26]. Hence, our

simulated capture–recapture data were based on 2 trials (‘sweeps’) to detect groups, yielding

two-trial group-level detection histories; and 3 sub-trials (nest sites) to detect individuals

within those observed groups, yielding three-trial individual-level detection histories for each

‘sweep’. If a group was not detected during a given sweep, all individuals in that group had all-

zero detection histories.

We analyzed the generated data with two hierarchical CMR models. For the conventional

CMR model (i.e., ignoring group structure of the population), we followed current practice of

analyzing the gorilla survey data [26] and constructed individual-level encounter histories

with sweeps constituting sampling occasions K. Within a sweep, this condenses individual

detections across multiple nest sites to a single binary observation, yik, modeled as a Bernoulli

random variable with success probability (i.e., individual detection probability) p. To estimate

abundance N, including those individuals never detected, we employed data augmentation

[30] where the observed detection histories are augmented with a large number M of all-zero

detection histories, and the model estimated how many of these augmented individuals were

actually in the population but never detected (for full One-Step CMR Model description see

JAGS code in S2 Script).

In contrast, the novel Two-Step model first used binary group-level detection with sweeps

as occasions K to estimate the number of groups (including groups never observed) G. To esti-

mate G, we used data augmentation, analogous to estimating N in the conventional CMR

model. To estimate group size mg, we made use of the individual-level detection histories with

T nest sites as occasions, building on the standard multinomial formulation of closed capture-

recapture models [31]. Following Clement et al. [32], we describe group size as a zero-
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truncated Poisson random variable. The collection of individual detection histories from an

observed group i, ωi, can be described as conditional multinomial random variable. As a sim-

ple example, for K = 2 sweeps and T = 1 nest site, ωi is a vector containing the number of indi-

viduals detected in sweep 1 but not in sweep 2 (detection history “10”), the number detected in

sweep 2 but not sweep 1 (“01”), and the number detected in both sweeps (“11”). The number

of individuals never detected (“00”) is unobserved. Cell probabilities for the multinomial dis-

tribution of ωi can be derived as p�(1−p), (1−p)�p, and p�p, where p is the individual detection

probability in a given sweep. To account for the unobserved detection history “00”, these cell

probabilities are divided by the probability of being detected at least once (i.e., conditioned on

detection), p� = 1−((1−p)�(1−p)). This can readily be expanded to any number of K occasions.

In our simulation, p = p.i, individual-detection probability. We achieve conditioning of indi-

vidual detection on group detection by multiplying p.i with the occasion-specific group obser-

vations, so that p.i = 0 during a sweep in which the group was not detected. Finally, to estimate

group size, we model total number of observed individuals in group i, ni, as a zero-truncated

Binomial random variable with sample size mg and detection probability p�. Group sizes for

unobserved groups are generated as random draws from the zero-truncated Poisson distribu-

tion of group sizes. We obtained total population size N by summing mg for all groups esti-

mated (by data augmentation) to be part of the population (for full Two-Step CMR Model

description see JAGS code in S3 Script). The Two-Step Model returned estimates of the aver-

age number of groups, average group size, and total population size; whereas the One-Step

Model returned only estimates of total population size.

Note that for the purpose of model development and comparison, we use a simple detection

model that does not include individual heterogeneity in detection probability (in data genera-

tion or analysis). Both the One-Step and Two-Step models described above can easily be

extended to incorporate sources of heterogeneity in p (see Discussion).

We performed these simulations for a range of possible values of group level detection, pg,
and individual level detection, pi, to test model performance under different detection proba-

bilities. Specifically, we generated group- and individual-level detection histories by holding pg
constant at 0.7 while varying pi from 0.3 through 0.9 at intervals of 0.2, and vice versa (a con-

stant pi of 0.7 and pg of 0.3, 0.5, 0.7, and 0.9). Data from Roy et al. [26] suggested that mean

detection probabilities of mountain gorillas are approximately 0.7, making this value a reason-

able starting point for simulation scenarios. We generated 1000 population data sets and ran

both the One-Step and Two-Step CMR models for each of the 8 pi/pg scenarios. We imple-

mented models in a Bayesian framework using the computer program JAGS [33] through the

software R [28] using the jagsUI package [34]. We used uninformative uniform(0,1) priors on

all detection probabilities and the data augmentation parameter, and an uninformative uni-

form(0,30) prior for average group size. Because simulated average group size was 13, this

upper bound did not constrain estimates of this parameter (for the One-Step and Two-Step

JAGS models see S2 and S3 Scripts, respectively). We compared model performance based on

the posterior mean of total abundance N, by calculating, across the 1000 simulations, (1) root-

mean squared error (RMSE), (2) average bias of the posterior mean, (3) 95% Bayesian Credible

Interval (BCI) coverage, and (4) average coefficient of variation (CV).

Comparison of estimators with real data

To evaluate model performance with real data, which tend to be less ideal than simulated data,

we also applied the Two-Step CMR model and the conventional CMR model to noninvasive

genetic survey data from unhabituated mountain gorillas collected as described under Simula-
tions and in Roy et al. [26]. The data set consisted of detections of 179 individuals in 26 groups
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ranging in observed size from 2 to 17 (mean of 6.9), and 16 solitaries. Solitary mountain goril-

las normally occur in mountain gorilla populations. Usually solitaries are adult males that have

yet to amass a group of females [35]. In any case, solitaries are substantially more difficult to

detect than gorilla groups (e.g. only 1 of 16 solitaries was detected in both ‘sweeps’ [26]).

To demonstrate the added flexibility of the Two-Step model in considering group structure,

we applied a slightly modified version, where single individuals have a separate detection prob-

ability, ps, their group size is assumed known (i.e., 1), and the number of single individuals in

the population is estimated with a separate data augmentation step. Total abundance N is the

sum of individuals in groups and solitaries. As in the simulations, we used uninformative uni-

form priors on all parameters; we modeled group size as a Poisson random variable truncated

at 2, as minimum group size was 2.

We compared Two-Step model estimates of total abundance with estimates from a conven-

tional CMR model. Roy et al. [26] explored multiple CMR models with different sources of

variation in detection probability and presented model-averaged estimates of abundance. For

our purposes of comparing abundance estimates between the Two-Step and the conventional

CMR model, we only applied their [26] most supported model–the null model with no varia-

tion in detection probability. We did not engage in model selection or averaging, or compare

the Two-Step model to conventional CMR estimates from models accounting for variation in

detection. As a result, our estimates under the conventional CMR model differ slightly from

those previously published and are not intended as a comparison to Roy et al. [26].

We implemented both models in JAGS, running 3 parallel chains for 50,000 iterations and

discarding the first 1,000 as burn-in. According to the Gelman-Rubin statistic, chains for all

parameters in the model converged (r-hat<1.1). We present parameter estimates as posterior

mean, standard deviation, and 95% BCI.

Results

Simulations

Across all scenarios, true abundance ranged from 436 to 606 individuals. Depending on the sce-

nario (i.e. values of pg and pi), the average proportion of groups detected at least once ranged from

51.3 to 99.9%, and the average proportion of group members detected at least once ranged from

77.8 to 100%. The average posterior mean estimate of abundance (N̂ ) per scenario ranged from

518.9 to 546.6 individuals in the Two-Step and from 521.6 to 556.1 for the One-Step Models.

Average bias in the posterior mean abundance estimates was consistently low to moderate

across all combinations of pi and pg (ranging from 0% to 5% for the Two-Step and from 0% to

7% for the One-Step model; Fig 1). For constant pi, the One-Step model was sensitive to very

low pg (7% bias at pg = 0.3) and produced N̂ with decreasing bias as pg increased (Fig 1),

whereas the Two-Step model produced most biased estimates of abundance (5% bias) at inter-

mediate levels of pg. With constant pg, bias in both models remained constant across values of

pi. For these scenarios, Two-Step model estimates of abundance were consistently more biased

that One-Step model estimates, but only by about 2% (Fig 1).

For the Two-Step model, we were able to parse out whether estimation of the number of

groups or estimation of group size contributed more to bias in overall abundance estimates.

Whereas the average group size was estimated, on average across all scenarios, with<1% bias,

estimates of the number of groups had an average bias of 3%, and thus were largely responsible

for bias in N̂ in the Two-Step model.

Overall, the Two-Step CMR model performed considerably better in terms of 95% BCI cov-

erage than the conventional model. Two-Step model BCIs encompassed the true population
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abundance an average of 96% of the time across all scenarios and coverage showed no relation-

ship with varying group or individual detection probability (Fig 2). The One-Step model por-

trayed false certainty through overly narrow BCIs that encompassed the true abundance, on

average, 48% of the time. When pg was low, coverage of the One-Step model was highest, at

77%, but quickly declined with increasing pg. One-Step coverage was consistently low (between

40 and 50%) across a range of pi when pg = 0.7 (Fig 2).

Abundance estimates from the Two-Step model had either smaller or almost identical

RMSE compared to the One-Step model. For both models, the RMSE was highest at low group

detection probabilities (pg = 0.3 or 0.5) and decreased with increasing pg. The RMSE was not

affected by varying individual detection probability at pg = 0.7 (Fig 3).

As an example of compared model performance, when pg = pi = 0.7, which are values com-

parable to those associated with the Roy et al. (26) real field dataset, the Two-Step model esti-

mated a slightly higher population abundance than did the One-Step model (average means

535.7 versus 525.6, respectively; Table 1). All parameters returned by the Two-Step model

were largely unbiased (3% or less) and exhibited nominal or almost nominal BCI coverage

(Table 1), whereas detection probability estimates from the One-Step model showed moderate

bias of 6% and both detection and abundance estimates had BCI coverage of<50%.

Comparison of estimators with real data

The Two-Step model estimated a total of N̂ = 285.4 (SD 35.74) gorillas, composed of 52.3 (SD

25.2) solitary individuals and 29.5 groups (SD 2.94) with, on average, 7.9 individuals (SD 0.61).

Fig 1. Average relative bias of the posterior mean of abundance (N̂ ) from the Two-Step and the One-Step CMR

model over a range of group-detection probabilities (pg) and individual-detection probability (pi). When pg was

varied, pi was held constant at 0.7, and vice versa.

https://doi.org/10.1371/journal.pone.0208726.g001
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Estimates of detection probability for groups, and individuals within groups, were similar

(0.68 with SD 0.08, and 0.69 with SD 0.03, respectively), but detection probability of solitary

individuals was much lower at 0.22 (SD 0.11). The conventional CMR model estimated a simi-

lar total N̂ (279.4) but with erroneously higher precision (SD 20.58). Credible intervals for

total N̂ of both models widely overlapped. Detailed model output is summarized in Table 2.

Discussion

Numerous examples exist where CMR approaches were applied to estimate the abundance of

group-living species including: herding species such as elephants and pronghorn [4, 36, 37],

pack species such as wolves and African wild dogs [13, 16], roosting species such as bats [38],

aggregating species such as dolphins and whales [6, 39, 40], and grouping species such as

chimpanzees and mountain gorillas [26, 41, 42]. Although some of these CMR studies

described, to varying degrees, the potential dependence of individual-level detection on prior

group-level detection, most CMR studies encountered by the authors ultimately assumed

equal pi of individuals [but see 41, 42] and none applied CMR approaches that explicitly

addressed the dependent nature of detection probability in group-living species. A noteworthy

exception was Marnewick et al. [16] who acknowledged that African wild dogs live in packs

and therefore used the capture histories of the packs (not the individuals) to estimate the total

number of packs in the study area. They then estimated mean pack size via count data from a

tourist photographic survey to calculate the overall population estimate [16]. Analytical frame-

works other than CMR have developed approaches to estimate abundance in group-living

Fig 2. 95% Bayesian Credible Interval (BCI) coverage for abundance estimates across 1000 simulated populations

for the Two-Step and the One-Step CMR model over a range of group-detection probabilities (pg) and individual-

detection probability (pi). When pg was varied, pi was held constant at 0.7, and vice versa.

https://doi.org/10.1371/journal.pone.0208726.g002
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species. For example, distance sampling has been used to estimate the number of groups, then

multiply group abundance with average observed group size to arrive at total abundance (e.g.,

[43]). This assumes, however, that group size is observed perfectly, and Clement et al. [32]

Fig 3. Root mean square error (RMSE) for abundance estimates across 1000 simulated populations for the Two-

Step and the One-Step CMR model over a range of group-detection probabilities (pg) and individual-detection

probability (pi). When pg was varied, pi was held constant at 0.7, and vice versa.

https://doi.org/10.1371/journal.pone.0208726.g003

Table 1. Over 1000 population simulations, the average posterior mean, RMSE, coefficient of variation, % bias of the mean, and coverage of the 95% Bayesian Cred-

ible Interval of the estimates for overall population abundance, group size, number of groups, detection probability of groups (pg), and detection probability of indi-

viduals (pi) in the Two-Step and conventional CMR models (for capture histories simulated with pg = pi = 0.7).

Average

Mean

RMSE Average

CV

Average % Bias Average

BCI

Coverage

Two-Step CMR model

Total N̂ 535.68 44.37 0.08 3 0.942

Group size 13.05 0.62 0.046 0.3 0.954

Number of groups 41.15 3.35 0.078 3 0.966

pg� 0.68 0.075 0.103 -3 0.942

pi� 0.700 0.010 0.015 0 0.941

Conventional CMR model

Total N 525.61 42.81 0.022 1 0.408

p� 0.677 0.087 0.030 6 0.332

�pg: group detection probability of gorilla groups with >1 members; pi: individual detection probability; p: individual detection probability not accounting for group

structure of population

https://doi.org/10.1371/journal.pone.0208726.t001
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expanded this approach to account for imperfect group size observations, using double-

observer type group size data combined with N-mixture models. The general approach of

combining models describing group and individual detection is thus a flexible one that can be

adapted to different observation protocol.

Williams [44] explained the importance of accounting for uncertainty in wildlife conserva-

tion and management and provided a framework for coping with four basic types of uncer-

tainty. CMR approaches attempt to reduce the uncertainty reflected in sampling variation in

wildlife monitoring, often termed ‘partial observability’, by quantifying detection probability.

Such variation can lead to uncertainty in population abundance or the status of the population.

Here, we introduced a Bayesian CMR approach that incorporates group detection explicitly

into the abundance-estimation procedure and resolves the issue of individual detection being

dependent on group detection. Our results demonstrate that the simpler One-Step model

falsely suggested high certainty in abundance estimates by ignoring the true hierarchical struc-

ture of the detection process. Even though this conventional CMR model produced, on aver-

age, unbiased estimates of abundance, BCI coverage was poor, especially when individual-

detection probability was high. Moreover, maximum bias in any given scenario was higher for

the One-Step model, in particular for low group-detection probability, suggesting that for a

given data set the conventional model incurs a higher risk of stronger bias. The One-Step

model also had considerably higher RMSE in scenarios with low group-detection probability.

Misleadingly accurate abundance estimates could erroneously suggest significant differences

between populations or, if replicated over time (as is done for the mountain gorilla popula-

tion), could falsely suggest population trends when a population is, in fact stable.

Alternatively, the Two-Step model had high BCI coverage under all scenarios. The Two-

Step model is more complex, therefore, its coefficient of variation (CV) tends to be higher than

the simpler One-Step model, which may at first seem undesirable. However, our results sug-

gest that the amount of uncertainty around N̂ under the Two-Step model is a more accurate

portrayal of the true uncertainty given the data and the detection process. Moreover, the Two-

Step model provides additional information on population structure, by returning estimates

of the number of groups and average group size. These quantities in themselves may be of

Table 2. Posterior summaries (mean, standard deviation and 2.5th and 97.5th percentiles) for parameters from a Two-Step CMR model accounting for group struc-

ture (# groups, group size) and allowing single individuals never associated with a group (# solitaries) to have a separate detection probability from group-living

individuals while estimating abundance (total N̂ ), and from a regular CMR model that does not account for group structure in the population.

Mean SD 2.50% 97.50%

Two-Step CMR model

Total N̂ 285.4 35.74 232 366

Group size 7.90 0.61 6.75 9.16

Number of groups 29.52 2.94 26 37

Number of solitaries 52.27 25.22 21 114

pg� 0.68 0.08 0.50 0.82

pi� 0.69 0.03 0.64 0.74

ps� 0.22 0.11 0.07 0.47

Conventional CMR model

Total N̂ 279.43 20.58 245 325

p� 0.46 0.04 0.38 0.53

�pg: group detection probability of gorilla groups with >1 members; pi: individual detection probability conditional on group detection; ps: detection probability for

solitary individuals; p: individual detection probability not accounting for group structure of population

https://doi.org/10.1371/journal.pone.0208726.t002
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ecological or conservation interest. Further, by separating out the two detection components,

the Two-Step model opens up avenues for more specific modeling of variation in detection.

For example, it is conceivable that variation in group-detection probability is more pro-

nounced (due to group size or overlap of group territories with survey effort) than variation in

detectability of individuals within that group, once a nest site is found. Finally, the Two-Step

model also makes more efficient use of the available data, as it does not condense individual

detections across multiple nest sites into a single binary variable per sweep. Our results sug-

gested that data from three nest sites (sub-trials) were sufficient to produce highly accurate

(bias<1%) estimates of group size, even when individual detection probability pi was as low as

0.3 (much lower than pi estimated at 0.69 from real data). Conversely, estimates of the number

of groups showed some bias at low group detection probability pg. Again, real data analysis

suggested that pg for mountain gorillas was much higher, at 0.68. When surveying other

group-living species with lower pg, however, it may be beneficial to invest more effort into

detecting groups rather than individuals within groups.

Based on results here, we suggest that the Two-Step CMR approach be adopted for abun-

dance estimation of mountain gorillas. This species is of extreme conservation concern and

most studies in the last 20 years have concluded that mountain gorilla abundance has been

increasing, without quantifying the simultaneous increases in survey effort over the same

period. To draw conclusions about population status requires that we better estimate the

uncertainty around any given population estimate such that we do not erroneously claim a

trend, when in fact the population is simply stable. A robust estimate of the direction and mag-

nitude of a trend, if any, will help managers assess the effectiveness of their conservation mea-

sures. Importantly, should a truly increasing population trend be detected for mountain

gorillas, a re-assessment of carrying capacity will be critical, as quantity of habitat has remained

static, at best, over the last several decades.

Future research

The Two-Step CMR model developed in this study represents the simplest case scenario,

where group sizes within the population show relatively low variability, group membership

and size is constant within the study period, and detection probability is constant across

groups and–within groups–is constant across individuals. Analogous to conventional CMR

models, this model could easily be extended to incorporate variation in detection probability

across time, captures and recaptures, or among groups/individuals (conventional models Mt,

Mb and Mh, respectively; 2); or to include covariates on either group- or individual-detection

probability. Particularly, group size may be an important predictor of group detectability [e.g.,

45], as0 suggested by the much lower detection probability of solitaries in the present gorilla

case study. In a Bayesian framework, estimated group size could readily be used as a covariate

on group-detection probability (using an appropriate link function such as logit). When group

size is an important determinant of group detectability, failure to account for this detection

bias will likely lead to overestimated group size [45] and can lead to negatively biased estimates

of the number of groups [23]. More variable group size could be modeled using more dis-

persed distributions; or, the model could reflect more complex social structuring of the popu-

lation (for example, including the presence of solitary individuals in otherwise group-living

species, as shown in the gorilla example). Alternatively, if individual-detection probability is

sufficiently high once a group is detected, group size is observed perfectly and the model sim-

plifies to one similar to Marnewick et al. [16], where the number of groups becomes the main

focus of estimation. Finally, the hierarchical detection structure could readily be translated

into a spatial capture-recapture framework, which accounts for heterogeneity in detection of
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groups due to differential exposure to sampling effort [22, 46]. It is worth emphasizing that the

present model and all suggested extensions consider stable group memberships over the course

of the study. Approaches that allow for a fission-fusion type population will likely be more

challenging to develop. In such cases, it is conceivable that the added complexity necessary to

describe group fluidity might outweigh the benefits of accounting for group structure.

Conclusion

The current study represents an initial investigation into incorporating both group detection

and individual detection into a single closed CMR approach to estimate the abundance and

population structure of a group-living species. The main consequence of ignoring the depen-

dence of individual detection on first detecting the group was severely overestimated precision,

which in practice can translate into a misunderstanding of population abundance, trends, and

status which can then lead to misguided conservation actions; this was combined with a higher

risk for bias, especially at low group detection probability. We suggest that future population

studies of species living in stable (i.e., negligible fission-fusion for the duration of a given

study) groups consider the Two-Step approach when estimating total population abundance.

Applications of this approach to field data, however, should incorporate important sources of

variation in group- and/or individual-detection probability to obtain unbiased population esti-

mates. Investigating the performance of the Two-Step model when detection is variable would

be an important next step in further validating this novel approach.
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