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A systematic characterization of compulsivity in pathological forms of eating has been

proposed in the context of three functional domains: (1) habitual overeating; (2) overeating

to relieve a negative emotional state; and (3) overeating despite aversive consequences.

In this review, we provide evidence supporting this hypothesis and we differentiate

the nascent field of neurocircuits and neurochemical mediators of compulsive eating

through their underlying neuropsychobiological processes. A better understanding of

the neurobiological mechanisms that lead to compulsive eating behavior can improve

behavioral and pharmacological intervention for disorders of pathological eating.
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INTRODUCTION

Compulsivity, defined as a strong, irresistible internal drive to perform an action, typically contrary
to one’s will, is a transdiagnostic construct present in numerous psychiatric conditions. Compulsive
eating behavior is observed in pathological forms of feeding behavior, such as binge eating disorder
(BED), certain forms of obesity, and the recently proposed “food addiction” (Moore et al., 2017).
BED is an eating disorder defined by uncontrolled overeating of palatable food (i.e., high in fat
and/or sugar) in brief periods of time. “Food addiction” is a recently proposed concept measured
by the “Yale Food Addiction Scale,” which uses diagnostic criteria based on the Diagnostic and
StatisticalManual (DSM-V) diagnosis of substance use disorder (American Psychiatric Association,
2013; Gearhardt et al., 2016). While compulsive eating behavior is highly prevalent in obese
individuals, it is neither necessary nor sufficient to characterize obesity, an extremely heterogeneous
disorder defined simply through having a body mass index (BMI) of≥30 (Curtis and Davis, 2014).
Here, we review evidence from the literature supporting the dissection of compulsive eating into
threemain elements: (1) habitual overeating (Smith and Robbins, 2013; Tomasi and Volkow, 2013),
(2) overeating to relieve a negative emotional state (Cottone et al., 2009a; Parylak et al., 2011), and
(3) overeating despite aversive consequences (Cottone et al., 2012; Rossetti et al., 2014). In animal
models, long-term access to palatable food results in compulsive-like habit formation, which results
in negative emotion-like states and which is resistant to aversive consequences. It is important
to note that the different elements of compulsive eating are not mutually exclusive, and can be
attributed to distinct, though often intersecting, mechanisms.

HABITUAL OVEREATING

Goal-directed, voluntary actions can become compulsive, stimulus-driven habits through
Pavlovian conditioning mechanisms. Habits are formed when the stimulus-response association
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overlaps the goal of the behavior (e.g., the palatable food
or the drug); and the outcome/reward no longer motivates
the action (Everitt and Robbins, 2016). This overlap occurs
throughout repeated pairings, where reward-associated stimuli
(e.g., advertising in humans, or a tone in animals) can elicit
and maintain compulsive seeking behavior (Everitt and Robbins,
2016). An important element of compulsive habits is the inability
to retain evaluative processes that can allow for the switch from
stimulus-response driven back to goal-directed actions when the
value of the reward is reduced (Watson et al., 2014; Horstmann
et al., 2015). Therefore, habitual behavior can be assessed
through outcome devaluation procedures, where persistence
of responding is measured after the value of the outcome is
decreased (i.e., drug/food reward).

There is evidence from both human and animal studies
to suggest a link between binge eating/palatable food and
an increased tendency to engage in habitual responding.
Individuals with BED and/or obesity have been shown to
display a bias toward habitual responding (Horstmann et al.,
2015; Janssen et al., 2017) and the use of neural circuits
that support these processes (Voon et al., 2015). In addition,
palatable food consumption induced habitual responding in
animals, observed as resistance to devaluation procedures
(Kendig et al., 2013; Furlong et al., 2014; Reichelt et al., 2014;
Figure 1A). Furthermore, in healthy weight controls, palatable
food associated cues bias responding away from goal-directed
actions toward habitual behavior, determined as continued cue-
elicited food seeking after satiation (i.e., resistance to devaluation;
Watson et al., 2014). Obese and binge eating individuals showed
heightened food cue reactivity and attentional biases (Carnell
et al., 2014; Schmitz et al., 2014), which likely contribute to the
initiation and the persistence of overeating.

The transition from reinforcement learning to habitual
responding is hypothesized to be mediated by the striatum,
an area composed of ventral (i.e., nucleus accumbens, NAc)
and dorsal regions. While the NAc plays a key role in the
reinforcing effects of food and drugs, the dorsal striatum is
thought to contribute to the development of habits (Everitt
and Robbins, 2016). Habit-learning processes, implicated in the
shift to addiction, are accompanied by a concomitant shift from
ventral to dorsal striatal circuits that control behavior. Food
and associated cues increase extracellular dopamine transmission
in the NAc, which is hypothesized to result in increased
incentive salience and an enhancement of habit learning (Everitt
and Robbins, 2016). Initially in reinforcement learning, which
corresponds with early stages of drug use or palatable food
consumption, dopamine signaling in the NAc drives goal-
directed responding for the reward, and the pharmacological
inactivation of the dorsal striatum has no effect. However, in
later stages, when habitual responding eventually dominates,
antagonizing dorsolateral striatal dopamine blocks compulsive-
like responding and restores sensitivity to devaluation (Belin
and Everitt, 2008). Research indicates heightened behavioral
and/or neural responses to food cues in individuals with
BED (Wang et al., 2011) and obesity (Stoeckel et al., 2008;
Carnell et al., 2014), and behavioral and/or neural responses
to food cues can predict subsequent food intake and weight

gain (Demos et al., 2012; Lawrence et al., 2012). Dopamine-
2 receptor (D2R) binding potential in dorsal regions of
the striatum was found to be positively associated with
BMI and habitual, opportunistic eating (Guo et al., 2014)
yet D2R availability in the entire striatum has also been
found to be lower in obese individuals (further discussed
below; Volkow et al., 2008), likely reflecting dynamic and
regional changes as habitual compulsive overeating evolves. For
example, one interpretation of the decreased D2R availability is
that dopamine function becomes compromised with repeated
excessive activation, see below. This highlights the importance
of researchers further associating neurobiological measures
with behavioral indices of habitual compulsive overeating. In
an animal model, long-term, intermittent access to palatable
food was associated with greater activation of the dorsolateral
striatum in rats (Figure 2A; Furlong et al., 2014). Thus,
experience with palatable food causes neuroadaptations in
striatal circuitry, which may, in turn, cause and potentiate
compulsive, habitual overeating, and increase susceptibility to
food cues.

OVEREATING TO RELIEVE A NEGATIVE
EMOTIONAL STATE

In drug addiction, the transition from casual to compulsive
drug use is hypothesized to reflect an allostatic change in
mood, where drugs acquire negative reinforcing properties
(Koob et al., 2014). Analogously, ingesting palatable food to
alleviate a negative emotional state represents an element of
compulsive eating behavior (Cottone et al., 2009a; Parylak
et al., 2011). Two neuropsychobiological processes underlie this
element: (i) decreased reward function, caused by within-system
neuroadaptations and (ii) withdrawal-induced negative affect,
caused by between-system neuroadaptations (Parylak et al.,
2011; Koob et al., 2014). These processes are characterized
by affective habituation and loss of motivation for ordinary
life stimuli, as well as by dysphoria, irritability, and anxiety
(Parylak et al., 2011; Koob et al., 2014). Through a negatively
reinforced mechanism, compulsive eating would, therefore,
“paradoxically” both improve the reward deficit and suppress
negative emotions in the short term, but worsen them in the
long term, a form of misregulation in self-regulation theory
(Koob and Le Moal, 1997; Cottone et al., 2009a; Parylak et al.,
2011).

The overeating of, and subsequent withdrawal from, palatable
food is hypothesized to cause or contribute to the negative
emotional state. In humans, there is evidence that dieting
contributes to negative affect, which in turn predicts later
increases in eating pathology (Stice, 2002). Indeed, consumption
of palatable food, commonly referred to as “comfort food,”
can effectively mitigate acutely the physiological stress response
and anxiety (Pecoraro et al., 2004; Tomiyama et al., 2011),
thus compulsive eating behavior may be strengthened through
negative reinforcing mechanisms. Similarly, in animal models,
overconsumption of palatable diets has been shown to decrease
brain reward system functioning; for example, decreases in
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FIGURE 1 | Evidence of compulsive eating behavior in animal models. (A) Rats fed a cafeteria diet show resistance to devaluation procedures; from Reichelt et al.

(2014). In this procedure, rats were fed continuously a high-fat cafeteria diet, consisting of four commercially available foods: half-sweet (cakes, cookies) and

half-savory (pies, dim sims) items. After 2 weeks, rats were trained to consume sucrose deliveries (either cherry or grape flavored) paired with a stimulus (tone or noise,

respectively). Following training, one of these sucrose solutions was devalued by specific satiety, where rats could drink one particular flavor ad libitum prior to testing.

Head entries during sucrose-paired stimulation were measured for both the devalued and non-devalued flavor of sucrose. A decrease in head entries compared to the

non-devalued condition indicates devaluation, or goal-directed behavior; whereas no decrease in head entries indicates habitual behavior. (B) Rats withdrawn from a

highly palatable, chocolate diet display anxiety-like behaviors; adapted with permission from Iemolo et al. (2013). In this paradigm, animals are either continuously fed

a standard chow food (“Chow/Chow”) or intermittently cycled between a standard chow food for 5 days and a highly-palatable, high-sucrose food for 2 days

(“Chow/Palatable”). After chronic, intermittent palatable diet exposure rats were tested for anxiety-like behavior in a light/dark apparatus during withdrawal from

chronic, intermittent access to the palatable diet. Shorter time spent in the light side of the apparatus indicates higher anxiety-like behavior compared to “Chow/Chow”

control rats. (C) Food intake in rats with a history of intermittent access to palatable food is resistant to the aversiveness of a light/dark conflict test; adapted with

permission from Ferragud et al. (2017). In this experiment, animals were trained in an operant chamber to self-administer food pellets that consisted of a standard

chow food (“Chow”) or a highly-palatable, high-sucrose food (“Palatable”) for 1 h each day. Following escalation of palatable food responding, animals were tested for

compulsive-like behavior in the light/dark conflict test. This test consists of a light/dark apparatus where a food cup containing the same food received during

self-administration is positioned in the aversive, light compartment. “Compulsive-like eating” is operationalized as the amount of food eaten during the trial compared

to control “Chow” conditions, where eating behavior is typically suppressed due to the aversiveness of the light compartment. *p < 0.05 Bonferonni corrected.

FIGURE 2 | Neurobiological substrates of compulsive eating behavior in animal models. (A) Rats that habitually overeat display increased activation of the dorsolateral

striatum; from Furlong et al. (2014). In this procedure, rats were given either control chow only, or chow + continuous or restricted (2 h daily) access to palatable food,

consisting of sweetened-condensed milk (22% fat; 67% sugar, 10% protein). After 2 weeks, rats were tested in a devaluation procedure to assess habitual responding

for food reward. The restricted access group displayed resistance to devaluation procedures, or habitual responding for palatable food, while control animals and the

continuous access group retained goal-directed responding. Following this procedure, cFos immunoreactivity (cFos-IR) was quantified in the dorsolateral striatum,

and habitually responding, restricted access rats displayed an increase in cFos IR compared to control and continuous access groups. (B) Rats withdrawn from a

highly palatable, chocolate diet display increased CRF in the CeA; adapted with permission from Cottone et al. (2009a). In this paradigm, animals are either

continuously fed a standard chow food (“Chow/Chow”) or intermittently cycled between a standard chow food for 5 days and a highly-palatable, high-sucrose food

for 2 days (“Chow/Palatable”). After chronic, intermittent palatable diet exposure rats display anxiety- and depressive-like behavior during withdrawal from palatable

food. This negative emotional state is accompanied by an increase in CRF expression in the CeA of withdrawn rats. (C) Compulsive, binge eating rats have reduced

TAAR1 expression in the PFC; adapted with permission from Ferragud et al. (2017). In this experiment, animals were trained in an operant chamber to self-administer

food pellets that consisted of a standard chow food (“Chow”) or a highly-palatable, high-sucrose food (“Palatable”) for 1 h each day. Following escalation of palatable

food responding, “Palatable” rats display compulsive-like eating in the light/dark conflict test, as well as a decrease in TAAR1 expression in the PFC. *p < 0.05.

brain-stimulation reward responsiveness in obese rats (Johnson
and Kenny, 2010) and decreased motivation for rewards in
animals with a history of prolonged palatable food consumption
(Vendruscolo et al., 2010). During withdrawal from palatable
food, the emergence of a negative emotional state, characterized
by anxiety- and depressive-like behavior (Figure 1B; Iemolo
et al., 2012) (Cottone et al., 2008; Sharma et al., 2013), and
enhanced stress-responsiveness (Avena et al., 2008; Blasio et al.,

2014a), is observed. When access to palatable food is renewed,
subjects display compulsive-like eating (Avena et al., 2008;
Cottone et al., 2009b; Rossetti et al., 2014) and withdrawal-
induced anxiety- and depressive-like behaviors are paradoxically
reversed (Iemolo et al., 2012). Thus, evidence suggests the
emergence of a negative emotional state is induced by withdrawal
from palatable food, and that compulsive eating behavior is
driven by its ability to relieve such a state.
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Within-system neuroadaptations are hypothesized to occur
during palatable food overconsumption, which may repeatedly
stimulate and eventually desensitize the mesolimbic system,
resulting in reward deficiency. There is evidence of reduced
dopaminergic signaling in striatal regions of obese individuals,
observed as lower D2R availability (Volkow et al., 2008), reduced
neural response to consummatory food reward (Stice et al., 2008,
2010), and blunted amphetamine-induced dopamine release in
the NAc (van de Giessen et al., 2014). High fat and high sugar
diet exposure has been shown to alter dopaminergic signaling
observed as downregulation of striatal D2Rs (Johnson and
Kenny, 2010), decreases in baseline extracellular dopamine in the
NAc (Zhang et al., 2015), and decreases in dopamine transporter
expression and function (Hajnal and Norgren, 2002; Hryhorczuk
et al., 2016). Thus, it is hypothesized that palatable food-related
reward is diminished, and compulsive overeating reflects an
attempt to reactivate a hypofunctional reward circuit (Wang
et al., 2001; Geiger et al., 2009).

Between-system neuroadaptations are also hypothesized to
cause the emergence of a negative emotional withdrawal state
and are largely characterized by recruitment of stress systems in
the extended amygdala (Koob et al., 2014), an area consisting
of the central nucleus of the amygdala (CeA), the bed nucleus
of the stria terminalis (BNST), and a transition area in the
NAc shell. In the CeA, corticotropin-releasing factor (CRF) and
its type-1 receptor (CRF1R) are recruited following extended
access to palatable food (e.g., palatable food withdrawal-induced
increases in CRF expression and CRF1R electrophysiological
responsiveness) (Figure 2B; Cottone et al., 2009a) (Teegarden
and Bale, 2007; Iemolo et al., 2013). Increased anxiety-like
behavior observed during withdrawal is mediated by the CRF-
CRF1 system in the CeA (Cottone et al., 2009a; Iemolo et al.,
2013), and renewed consumption of the palatable diet reverses
both the withdrawal-dependent behaviors and the heightened
CRF expression levels (Teegarden and Bale, 2007; Cottone
et al., 2009a; Iemolo et al., 2013). In addition, stress-induced
overconsumption of the palatable diet can be blocked by
administration of CRF1R antagonists into the BNST (Micioni Di
Bonaventura et al., 2014). These studies indicate a critical role for
CRF-CRF1R system in both food withdrawal-like behavior and
negative reinforcement-driven palatable food overconsumption.

During withdrawal, the endocannabinoid system is engaged,
likely to compensate for the recruitment of the CRF-system,
and acts to restore homeostasis in amygdalar circuits (Sidhpura
and Parsons, 2011; Koob et al., 2014). The endocannabinoid
system of the amygdala is hypothesized to serve as a “buffer
system” to dampen the negative emotional state driven by
withdrawal with food and drugs (Sidhpura and Parsons, 2011;
Blasio et al., 2013; Koob et al., 2014). Indeed, withdrawal from
palatable food recruited the endocannabinoid system in the
CeA, induced the upregulation of 2-arachidonoylglycerol (2-
AG) and cannabinoid type-1 receptor (CB1R) (Blasio et al.,
2013). Blocking CB1R with the inverse agonist rimonabant
into the CeA precipitated anxiety-like behavior and hypophagia
during palatable food withdrawal (Blasio et al., 2013, 2014a).
Rimonabant is associated with an emergence of severe psychiatric
side-effects in obese patients (Christensen et al., 2007), which

we hypothesize may be due to a precipitation of a withdrawal-
like syndrome in a subpopulation of obese individuals abstaining
from palatable food as they attempt to lose weight (e.g., by
dieting).

OVEREATING DESPITE AVERSIVE
CONSEQUENCES

In drug addiction, loss of control over behavior concerning
the drug-seeking or taking in spite of negative consequences
represents one of the elements of compulsivity associated with
the disorder (Koob and Volkow, 2010; American Psychiatric
Association, 2013). Similarly, in many forms of pathological
eating, both humans and animals will fail to suppress food
seeking and taking in adverse conditions where behaviors would
be inhibited (Oswald et al., 2011; Curtis and Davis, 2014;
Dore et al., 2014; Velazquez-Sanchez et al., 2014). In humans,
negative consequences associated with overeating include social
impairment, emotional disturbances, psychiatric disorders, and
life-threatening medical conditions associated with weight gain.
In animal models, this element of compulsivity is observed as
continued consumption of palatable food even when associated
with an adverse physical or emotional consequence (e.g., eating
while receiving a footshock, or eating in an aversive environment;
Figure 1C; Ferragud et al., 2017) (Oswald et al., 2011; Cottone
et al., 2012; Curtis and Davis, 2014; Rossetti et al., 2014;
Velazquez-Sanchez et al., 2015). This element of continued
overeating despite aversive consequences is characterized by
failure of inhibitory control processes contributing to a loss of
control over eating behavior. Indeed, high trait impulsive action
(i.e., inability to withhold a response) has been shown to predict
compulsive-like eating behavior (Velazquez-Sanchez et al., 2014).

Inhibitory control over behavior is largely regulated by the
prefrontal cortex (PFC), and dysfunctions in cortico-striatal
circuitries are thought to underlie compulsive eating behaviors
(Volkow et al., 2013). In addictive disorders, it is hypothesized
that in one functional domain, PFC areas are hyper-responsive
to food cues, resulting in high levels of craving. In a separate
functional domain, a general hypo-activation of prefrontal
circuits involved in inhibitory control results in impulsivity,
incentive salience and reengagement of habit systems via the
disinhibition of the basal ganglia and negative emotional states
via disinhibition of the stress systems of the amygdala (Koob
and Volkow, 2016). The two opposing systems have been
conceptualized as a “GO” system (dorsolateral PFC, anterior
cingulate cortex, and orbitofrontal cortex), which is sensitized
in compulsive eating, and a “STOP” system (ventromedial PFC),
which is impaired in compulsive eating (Koob and Volkow,
2016). Abnormalities of the PFC are observed in individuals
with BED and some forms of obesity. For instance, decreased
baseline activity (Volkow et al., 2008) and enhanced food-cue
induced activation (Dimitropoulos et al., 2012) is observed in
prefrontal cortical areas of obese individuals; and higher BMI
has been linked with diminished PFC activity during regulation
of palatable food craving (Giuliani et al., 2014; Silvers et al.,
2014). Medial prefrontal dysregulation is associated with deficits
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in inhibitory control (Batterink et al., 2010; Balodis et al., 2013;
Hege et al., 2015) and impaired dietary restraint in individuals
with BED (Balodis et al., 2013). Furthermore, lower functional
connectivity between dmPFC and amygdalar brain regions was
found to be associated with higher disinhibited eating behavior
(Dietrich et al., 2016).

Multiple neurotransmitter systems in the PFC are involved
in the emergence of compulsive eating behavior, including mu-
opioid (MOR), Sigma 1 receptors (Sig1R), and Trace Amine-
Associated Receptor 1 (TAAR1) (Blasio et al., 2014b; Velazquez-
Sanchez et al., 2014; Selleck et al., 2015; Smith et al., 2015;
Ferragud et al., 2017). In animal models of compulsive-
like eating, limited access to a palatable diet resulted in the
altered expression of genes coding for the opioid peptides pro-
opiomelanocortin (POMC) and pro-dynorphin (PDyn; increased
and decreased, respectively) in the medial PFC; in addition,
site specific injection of naltrexone, a non-selective opioid
receptor antagonist, into the PFC was able to reduce binge-
like eating (Blasio et al., 2014b). In binge eating humans,
treatment with a MOR antagonist reduced consumption of
palatable food (Ziauddeen et al., 2013), motivation for high
calorie food stimuli (Cambridge et al., 2013), and hedonic
responses toward a sweet food reward (Ziauddeen et al., 2013).
Similarly, in animal studies, the Sig1R, a receptor involved in
alcohol and drug reinforcement (Sabino et al., 2009, 2017),
was upregulated in prefrontal cortical brain regions following
limited access to a palatable diet, and peripheral administration
of a Sig1R antagonist blocked binge and compulsive-like eating
(Cottone et al., 2012). TAAR1, a receptor expressed in the
striatum and prefrontal cortices is activated by trace amines
and has been shown to modulate cortical glutamate and
dopaminergic transmission (Leo et al., 2014; Espinoza et al.,
2015). Protein expression of TAAR1 is decreased in the medial
PFC of compulsive-like, binge-eating rats, and TAAR1 agonism
injected into the infralimbic cortex blocked excessive intake
of palatable food (Figure 2C; Ferragud et al., 2017). TAAR1
agonism also improved perseverative behavior and impulsivity
(Espinoza et al., 2015), thus its effects on compulsive-like eating
are likely occurring through restoring a loss of function of the
“STOP” system. Prefrontal neurotransmitter systems are thought
to influence compulsive behavior through the modulation of
glutamatergic signaling in cortico-striatal pathways (Kalivas
and Volkow, 2005; Cottone et al., 2012). Indeed, prolonged
access to palatable food resulted in dysregulated glutamatergic
plasticity of NAc neurons (Brown et al., 2015): accordingly,
the uncompetitive antagonist of glutamate N-methyl-D-aspartate
glutamate receptors (NMDARs)memantine, which was shown to
effectively reduce alcohol and drug reward/reinforcement (Popik
et al., 2003; Sabino et al., 2013), reduced binge-like eating when
microinfused directly into the NAc (Smith et al., 2015).

CONCLUSIONS

The field of mental health is moving toward a transdiagnostic
approach to understanding the neurobiological mechanisms
underlying psychiatric disorders. At the National Institutes of

Health, a Research Domain Criteria (RDoC) initiative by The
National Institute of Mental Health is concentrating efforts
into the identification of key domains of function common to
multiple disorders (The National Institute of Mental Health,
2013). For example, in addiction disorders, an Addiction
Neuroclinical Assessment Framework has been proposed that
incorporates the 3 major functional domains derived from
the neurocircuitry of addiction: Incentive salience, Negative
Emotionality, and Executive function (Kwako et al., 2016).
Here, measurement of these domains in epidemiologic, genetic,
clinical, and treatment studies are hypothesized to provide
ultimately a reconceptualization of the nosology of addiction
disorders for better prevention and treatment (Kwako et al.,
2016).

Under this perspective, a better understanding of the
construct of compulsive eating is warranted. Within the
preclinical field, development and use of appropriate animal
models that adequately model these functional domains is
critical. Modeling complex behavioral constructs, such as those
as presented in this review, may lead understanding of the
development and progression of underlying neurobiological
processes of the elements of compulsive eating behavior.
Knowledge of the vulnerability factors, neuroadaptive
mechanisms, and their interactions that lead to compulsive
eating behavior has the potential to significantly improve
behavioral and pharmacological intervention for millions of
people.
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