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Abstract. Biochemical recurrence (BCR) is common in 
prostate cancer (PCa), and patients with BCR usually have a 
poor prognosis. Cuproptosis is a unique type of cell death, and 
copper homeostasis is crucial to the occurrence and develop‑
ment of malignancies. The present study aimed to explore the 
prognostic value of cuproptosis‑related long non‑coding RNAs 
(lncRNAs; CRLs) in PCa and to develop a predictive signature 
for forecasting BCR in patients with PCa. Using The Cancer 
Genome Atlas database, transcriptomic, mutation and clinical 
data were collected from patients with PCa. A total of 121 
CRLs were identified using Pearson's correlation coefficient. 
Subsequently, a 6‑CRL signature consisting of AC087276.2, 
CNNM3‑DT, AC090198.1, AC138207.5, METTL14‑DT and 
LINC01515 was created to predict the BCR of patients with 
PCa through Cox and least absolute shrinkage and selection 
operator regression analyses. Kaplan‑Meier curve analysis 
demonstrated that high‑risk patients had a low BCR‑free 
survival rate. In addition, there was a substantial difference 
between the high‑ and low‑risk groups in the immune micro‑
environment, immune therapy, drug sensitivity and tumor 
mutational burden. A nomogram integrating the Gleason score, 
6‑CRL signature and clinical T‑stage was established and 
evaluated. Finally, the expression of signature lncRNAs in PCa 
cells was verified through reverse transcription‑quantitative 
PCR. In conclusion, the 6‑CRL signature may be a potential 

tool for making predictions regarding BCR in patients with 
PCa, and the prognostic nomogram may be considered a 
practical tool for clinical decision‑making.

Introduction

Prostate cancer (PCa) is one of the most common malignant 
tumors in men (1). In 2021, ~248,530 new PCa cases were diag‑
nosed and ~34,130 male patients died from PCa in the United 
States, according to the National Cancer Institute (2). Surgical 
resection can only effectively treat PCa at the early stages (3); 
however, in most cases, patients are not suiTable for surgical 
treatment due to being diagnosed at an advanced stage. The 
treatment options for the middle and advanced stages of PCa 
include chemotherapy, endocrine therapy and radiotherapy (4). 
Despite these treatments being performed in the early stages, 
numerous patients face the risk of resistance to treatment and 
biochemical recurrence (BCR) (4). BCR occurs in 15‑45% of 
treated patients (5), and it affects both patient survival and 
quality of life. Early identification of the patients at a high risk 
of BCR serves an essential role in improving patient prognosis.

Copper, an essential trace element with oxidative and 
essential biological properties, is the third most abundant 
transition metal ion (6). Copper is a critical cofactor in a 
number of metalloproteins; hence, a comprehensive biological 
system for balancing copper concentration is essential. Copper 
deficiency or excess are known causes of Wilson and Menkes 
diseases, respectively, and copper concentration in cancer 
cells is higher than that in normal cells (7,8). Cuproptosis, a 
unique mode of cell death resulting from copper accumulation 
in cells, was recently introduced by the Harvard‑MIT Broad 
Institute (9). This form of cell death differs from the currently 
known signaling cascades and molecularly defined effector 
mechanisms of cell death, such as necroptosis, pyroptosis 
and apoptosis (10). Copper binds to DLAT, resulting in its 
oligomerization and reduced lipid acylation leading to reduced 
Fe‑S cluster proteins, glutathione depletion and decreased 
mitochondrial respiration levels (9). In contrast to the Warburg 
effect, cancerous prostate tissue increases mitochondrial 
energy metabolism (11). Exploring copper‑related genes may 
provide a strategy for identifying novel biomarkers for PCa 
prognosis and treatment.

Long non‑coding RNA (lncRNA) is a non‑coding RNA 
molecule that consists of >200 nucleotides (12). In addition 
to transcriptional, silencing, chromosome modification and 
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intranuclear transport functions, lncRNAs can reprogram 
the energy metabolism of cancer cells (13). Previous studies 
have suggested that lncRNAs may function as biomarkers for 
several malignancies, including hepatocellular carcinoma, 
lung cancer and PCa (14‑16). lncRNAs serve a critical role 
in PCa proliferation (17), docetaxel and enzalutamide resis‑
tance (18,19), bone metastasis (20) and energy metabolism (21). 
Shang et al (22) reported that the lncRNA PCAT1 can activate 
the AKT and NF‑κB signaling pathways in castration‑resistant 
PCa.

For PCa, BCR risk prediction is mainly based on clinico‑
pathological parameters, including prostate‑specific antigen 
(PSA), Gleason score, tumor pathology and T stage (23,24). 
The classification of the BCR risk population based on the 
Gleason score and PSA doubling time, as recommended by 
the European Association of Urology guidelines, is not highly 
accurate for predicting the clinical outcome of patients (25). 
Therefore, the existing strategies for assessing the risk of 
BCR in patients with PCa based on clinicopathological 
parameters need to be further optimized. Inappropriate risk 
assessment may lead to overtreatment, a waste of medical 
resources and can increase the economic burden of patients. 
Due to the rapid development of sequencing technology, 
biomarker identification based on DNA, RNA or protein is 
becoming increasingly important in the diagnosis, treatment 
and prognosis of diseases (26,27). Notably, cuproptosis is 
closely related to cancer development, and an increasing 
number of studies have shown that lncRNA can be used as 
an essential marker of diagnosis, prognosis and treatment in 
tumors (15,28,29); therefore, the construction of a signature 
based on cuproptosis‑related lncRNAs (CRLs) to predict the 
prognosis of patients with PCa, especially BCR, was investi‑
gated. The aim of the present study was to construct a CRL 
signature for predicting the BCR of patients with PCa, and to 
explore the predictive accuracy of this signature.

Materials and methods

Data collection. Using The Cancer Genome Atlas Prostate 
Adenocarcinoma (TCGA‑PRAD) dataset, the transcriptomic 
(Tpm) and gene mutation data (originating from the ‘simple 
nucleotide variation’ file), and the clinical information of 
497 patients with PCa were extracted (https://portal.gdc.
cancer.gov). Next, those patients with PCa who satisfied 
the following criteria were included in the present study: 
i) Patients with clear BCR data, including the BCR status and 
time; and ii) patients with complete and clear follow‑up data. 
To minimize information and statistical biases, the following 
exclusion criteria were applied: i) Patient follow up time was 
<30 days; and ii) patients without clear BCR and follow‑up 
data. Finally, 418 patients with PCa were included in the 
current study. A total of 19 cuproptosis‑related genes (CRGs) 
were obtained from published research (30‑35).

Construction of the CRL signature. lncRNAs associated with 
cuproptosis were identified using Pearson's correlation coef‑
ficient, with cut‑off criteria of P<0.001 and |R|>0.3. A Sankey 
diagram was drawn through R package ‘ggalluvial’ (http://cory‑
brunson.github.io/ggalluvial/) and ‘ggplot2’ (https://ggplot2.
tidyverse.org) to show the correlation between lncRNA and 

CRGs. For the purpose of constructing and validating a predic‑
tive signature correlated with the BCR‑free survival (BFS) 
of patients with PCa, a ratio of 7:3 was applied to divide the 
418 samples into training and testing sets [training set (n=295) 
and testing set (n=123)]. All samples were identified as the entire 
set. The clinicopathological data of the three sets (training set, 
testing set and entire set) are described in Table I. To identify 
the association of CRLs with the BFS of patients with PCa, 
univariate Cox regression analysis was used. Those lncRNAs 
with P<0.05 were subjected to least absolute shrinkage and 
selection operator (LASSO) regression analysis. Subsequently, 
the R package ‘glmnet’ (https://glmnet.stanford.edu) was used 
to lower the risk of overfitting with LASSO regression. To 
select the final candidates and construct the signature, a step‑
wise multivariate Cox regression analysis was used. lncRNAs 
with P<0.05 were identified as the final genes. The validation 
was performed on both the testing and the entire sets. Using 
the following formula, the risk of every patient with PCa was 
computed. The formula was as follows: Risk score=(LINC01
515x1.4055761678005+AC090198.1x0.171855258101095+AC0
87276.2x‑1.75799460466145+AC138207.5x0.13071889632113
9+CNNM3‑DTx0.0800687027705137+METTL14‑DTx3.135
64874470709).

Validation of the 6‑CRL signature in testing and entire sets. 
Depending on their median risk scores, the patients were 
categorized into high‑ and low‑risk groups. Kaplan‑Meier 
(K‑M) survival curves were analyzed using the R package 
‘survival’ (https://github.com/therneau/survival) to estimate 
differences in BFS between the two groups. The R pack‑
ages ‘Rtsne’ (https://lvdmaaten.github.io/tsne/), ‘timeROC’ 
(https://CRAN.R‑project.org/package=timeROC) and 
‘survival’ were used to conduct principal component analysis and 
time‑dependent receiver operating characteristic (ROC) curve 
analysis, to assess the stability and accuracy of the signature. 
Additionally, the R packages ‘rms’ (https://hbiostat.org/R/rms/), 
and ‘pec’ (https://CRAN.R‑project.org/package=pec) were 
used to conduct conformance index (C‑index) analysis.

Independent prognostic analysis. To identify the independent 
prognostic indicators associated with the BFS of patients with 
PCa, univariate and multivariate Cox regression analyses were 
carried out.

Subset group K‑M survival analysis for BFS. A stratified 
analysis was conducted to examine if the signature maintained 
predictive capacity across subgroups (age, and pathological 
and clinical T‑stage) using the ‘survival’ R package.

Construction and evaluation of a nomogram. A nomogram 
was developed to predict 1‑, 3‑ and 5‑year BFS using the 
R software ‘regplot’ package (https://CRAN.R‑project.
org/package=regplot). The prognostic accuracy was evaluated 
using the ROC and calibration curve analyses.

Functional enrichment analysis and immune analysis. The 
‘limma’ R package (https://bioinf.wehi.edu.au/limma/) was 
used to conduct a differential expression analysis between 
high‑ and low‑risk samples (criteria: |log2 fold change|>1 
and P<0.05). The ‘Clusterfiler’ R package (https://yulab‑smu.
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top/biomedical‑knowledge‑mining‑book) was used to 
perform Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses with the 
significance threshold set at P<0.05. The R packages ‘GOplot’ 
(https://github.com/wencke/wencke.github.io) and ‘ggplot2’ 
(https://github.com/tidyverse/ggplot2) were used to present the 
enrichment analysis results.

In order to evaluate the difference of immune cell 
infiltration between high‑ and low‑risk PCa samples, the 
CIBERSORT algorithm was applied to analyze the infiltration 
of 22 types of immune cells in PCa samples (36). By reviewing 
the literature, it was revealed that researchers analyzed these 
22 types of immune cells; therefore, these 22 immune cells 
were selected for the present study (37‑39). The ‘ggpubr’ 
package (https://rpkgs.datanovia.com/ggpubr/) was used to 
draw boxplots. To evaluate the reactivity of immunotherapy 
in different risk groups, the tumor immune dysfunction and 
exclusion (TIDE) score files of PCa were obtained from the 
TIDE website (http://tide.dfci.harvard.edu/) (40), showing the 
difference in TIDE score between high‑ and low‑risk groups.

Tumor mutat ional burden (TMB) analysis.  The 
‘maftools’ package (https://bioconductor.org/packages/ 
release/bioc/vignettes/maftools/inst/doc/maftools.html) was 
used to determine the mutation frequency within patients 
with PCa in different risk groups. The differential analysis of 

TMB between the high‑ and low‑risk group was conducted 
to determine whether TMB was related to risk scores. Based 
on the K‑M method, the BFS rates of patients were compared 
between the low‑ and high‑TMB groups.

Drug sensitivity analysis. To calculate the half maximal inhib‑
itory concentration (IC50) for different drugs, the R packages 
‘pRophetic’ (http://genemed.uchicago.edu/~pgeeleher/pRRo‑
phetic/) and ‘ggplot2’ were used. The Wilcoxon rank sum test 
was applied to compare the IC50 values between the high‑ and 
low‑risk groups.

Cell culture and reverse transcription‑quantitative PCR 
(RT‑qPCR). The immortalized prostate primary epithelial 
cell line RWPE1, and the PCa cell lines PC3 and DU145 
were obtained from the American Type Culture Collection. 
According to the manufacturer's instructions, RWPE1 cells 
were grown in serum‑free keratinocyte medium (ScienCell 
Research Laboratories, Inc.), PC3 cells were cultured in 
F12K medium and DU145 cells were cultured in the RPMI 
1640 medium (Gibco; Thermo Fisher Scientific, Inc.). The 
aforementioned media were supplemented with 1% peni‑
cillin/streptomycin and 10% FBS (Shanghai ExCell Biology, 
Inc.). Cells were cultured at 37˚C and 5% CO2.

TRIzol® (Invitrogen; Thermo Fisher Scientific, Inc.) was 
used for RNA extraction. In accordance with the manufacturer's 

Table I. Clinicopathological characteristics of selected patients with prostate cancer in the training set, testing set and entire set.

Clinical characteristic Training set (%) Testing set (%) Entire set (%) P‑value

Age, years    0.562
  ≤65 210 (71.19) 91 (73.98) 301 (72.01)
  >65 85 (28.81) 32 (26.02) 117 (27.99)
cT stage    0.159
  T1 102 (34.58) 48 (39.02) 150 (35.89) 
  T2 105 (35.59) 47 (38.21) 152 (36.36) 
  T3 39 (13.22) 8 (6.50) 47 (11.24) 
  T4 0 (0.00) 1 (0.81) 1 (0.24) 
  Unknown 49 (16.61) 19 (15.45) 68 (16.27) 
pN stage    0.876
  N0 209 (70.85) 89 (72.36) 298 (71.29) 
  N1 47 (15.93) 20 (16.26) 67 (16.03) 
  Unknown 39 (13.22) 14 (11.38) 53 (12.68) 
pT stage    0.073
  T2 96 (32.54) 55 (44.72) 151 (36.12) 
  T3 191 (64.75) 64 (52.03) 255 (61.00) 
  T4 5 (1.69) 2 (1.63) 7 (1.67) 
  Unknown 3 (1.02) 2 (1.63) 5 (1.20) 
Gleason score    0.634
  6 28 (9.49) 9 (7.32) 37 (8.85) 
  7 139 (47.12) 64 (52.03) 203 (48.56) 
  8 38 (12.88) 19 (15.45) 57 (13.64) 
  9 87 (29.49) 31 (25.2) 118 (28.23) 
  10 3 (1.02) 0 (0) 3 (0.72) 
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instructions, a RT kit (Tiangen Biotech Co., Ltd.) was used for 
RT, according to the manufacturer's protocol. Subsequently, 
fluorescence qPCR was conducted according to the manufac‑
turer's instructions using StepOne Plus (Applied Biosystems; 
Thermo Fisher Scientific, Inc.) and SYBR Green qPCR Mix 
(Thermo Fisher Scientific, Inc.). The primers used for qPCR 
were obtained from Sangon Biotech Co., Ltd., and the sequences 
are shown in Table II. The thermocycling conditions used for 
qPCR were: 30 sec at 95˚C for 1 cycle; followed by 40 cycles 
at 95˚C for 15 sec and 60˚C for 30 sec. ACTB was used as an 
internal control for normalization, and the 2‑ΔΔCq method was 
used to calculate the relative mRNA expression (41).

Stat is t ical  analysis.  R sof tware (version 4.2.0; 
https://www.r‑project.org/) was used to conduct the bioinfor‑
matics analysis. qPCR data were analyzed using GraphPad Prism 
(version 9.5; Dotmatics) by one‑way ANOVA and Dunnett's 
multiple comparisons post hoc test. The χ2 test or Fisher's exact 
test was used to statistically analyze the clinicopathological 
characteristics between the training and testing sets. Survival 
differences between high‑ and low‑risk groups were assessed 
using log‑rank test. Statistical differences in quantitative 
data between high‑ and low‑risk groups were determined by 
unpaired Student's t‑test. Unless otherwise indicated, P<0.05 
was considered to indicate a statistically significant difference.

Results

Identification of CRLs. The overall flowchart of the present 
study is shown in Fig. 1. Based on the exclusion criteria, 418 
PCa samples were obtained from TCGA database, along with 
Tpm and clinical data. The clinical parameters of the selected 
patients are given in detail in Table I. The statistical analysis 
showed no significant difference between the training and 
testing sets regarding clinicopathological features, including 
age, clinical T stage, pathological N stage, pathological T stage 
and Gleason score. A total of 19 CRGs were obtained from 
previous studies (30‑35), and the related gene expression 
profile was extracted from TCGA‑PRAD dataset. A total 
of 121 lncRNAs were identified as CRLs by investigating 
the association between lncRNAs and CRGs. Moreover, the 
internal connections between CRLs and CRGs were visual‑
ized using a Sankey diagram (Fig. S1).

Establishment of the CRL prognostic signature. To deter‑
mine the CRLs associated with the BFS of patients with 

PCa, a univariate Cox regression analysis was conducted, 
and 18 CRLs were obtained (Fig. 2A). Subsequently, these 
CRLs were subjected to LASSO regression analysis (Fig. 2B 
and C). Finally, six CRLs were identified and used to build 
a prognostic signature using step‑wise multivariate Cox 
regression (Table III). In TCGA‑PRAD dataset, all patients 
had calculated risk scores according to the aforementioned 
signature.

Depending on the median risk score, patients were catego‑
rized into high‑ and low‑risk groups. The distribution of risk 
scores for patients with PCa is shown in Fig. 2D. Notably, as 
the risk score increased, the BCR rate increased (Fig. 2F). 
A total of 5/6 signature lncRNAs (LINC01515, AC090198.1, 
AC138207.5, CNNM3‑DT and METTL14‑DT) exhibited 
increased expression in the high‑risk group compared with in 
the low‑risk group, whereas AC087276.2 had lower expression 
(Fig. 2E). The K‑M survival analysis revealed that patients at 
high risk had a worse BFS rate (P=8.03x10‑6; Fig. 2H). For the 
1‑, 3‑ and 5‑year BFS of the signature, the area under the ROC 
curve (AUC) values were 0.728, 0.740 and 0.783, respectively, 
which suggested that the signature accurately predicted the 
BFS of patients with PCa (Fig. 2G).

Validation of the CRL signature. The predictive ability of the 
risk signature was confirmed in the testing and entire sets. In 
both sets, the risk scores of patients with PCa were determined 
using the same formula, and the same cut‑off value was used 
to classify patients into high‑ and low‑risk groups. The risk 
score and BCR status distribution for the two sets are shown in 
Fig. 3A‑D. In addition, the expression of the 6‑CRL signature 
genes in different risk groups in the testing set (Fig. 3E) and 
entire set (Fig. 3F) was shown through heat maps. Subsequently, 
the K‑M survival analysis revealed a considerable difference 
in the BFS rate between different risk groups (testing set, 
P=2.08x10‑2 entire set, P=7.56x10‑7; Fig. 3G and H).

Moreover, AUCs for the 1‑, 3‑ and 5‑year BFS rates for 
the testing set were 0.667, 0.715 and 0.831, respectively 
(Fig. 3I), while the relevant values for the entire set were 
0.717, 0.729 and 0.781, respectively (Fig. 3J). Principal 
component analysis was conducted to assess if the 6‑CRL 
signature could identify patients with different risk. It was 
found that the signature could clearly distinguish between 
patients with different risks across all sets (Fig. S2A‑C). 
The 6‑CRL signature provided excellent performance in 
both the testing and entire sets. In addition, the relationship 
between the 6‑CRL signature lncRNAs and the 19 CRGs is 

Table II. Primer sequences of signature long noncoding RNAs and ACTB.

Primer Forward sequence, 5'‑3' Reverse sequence, 5'‑3'

LINC01515 GTCCGAAGCAAGACATGTGAC GCTAAACTGCCCAGTGGCAT
CNNM3‑DT TCAGCACACTCAATCGCACA TTCGTCCACACCTACAGGCT
METTL14‑DT AATCATGGACGATGCTGCCA GGAAAGTGAGGTGCTCTCCA
AC090198.1 CAGCAGCCACAGTTGGAAATC TCTCTCGCAAGGGTAGAGGT
AC087276.2 ACCCTCCAATCTGTATCACTGG TCCTTGGCAAAGGTGGTAGC
AC138207.5 TGAGACAGGGTCTTTGTTGC AAATTTCAGGGCTGGACGTG
ACTB TCTCCCAAGTCCACACAGG GGCACGAAGGCTCATCA
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displayed in Fig. S2D. The results showed that AC087276.2 
was closely related with 15 CRGs, AC090198.1 with 
17 CRGs, AC138207.5 with five CRGs, CNNM3‑DT with 
seven CRGs, LINC01515 with 13 CRGs, and METTL14‑DT 
with 10 CRGs. The lncRNAs most closely associated with 
CRGs were AC090198.1, AC087276.2, and LINC0151515. 
In addition, the association between the 6‑CRL signature 
and progression‑free survival (PFS) was investigated using 
the K‑M survival analysis. A lower PFS was found to be 
associated with high‑risk patients in all sets (Fig. S3A‑C). 
The C‑index analysis revealed that the C‑index values of the 
signature were 0.737, 0.624 and 0.712 in the training, testing 
and entire sets, respectively (Table SI). This indicated that the 
signature's accuracy was highest in the training set, followed 
by the entire set and testing set.

Independent and subgroup analyses. Cox regression analysis 
was performed in every dataset. The results showed that the 
clinical T stage and the 6‑CRL signature were the indepen‑
dent variables related to the BFS of patients with PCa in 
the training set; in the testing set, the clinical T stage and 
Gleason score were independent factors; in the entire set, the 
clinical T stage, Gleason score and the 6‑CRL signature were 
independent prognostic factors (Table IV).

Moreover, the applicability of the 6‑CRL signature was 
evaluated by performing a subgroup K‑M survival analysis of 
clinical characteristics, including pathological T stage, clinical 
T stage and age. A worse BFS was observed for patients at 
high risk in each subgroup, showing that the signature had 
good applicability in all patients at early and advanced stages 
(Fig. S3D‑I).

Table III. Multivariate Cox stepwise regression analysis of 6 cuproptosis‑related long noncoding RNAs associated with biological 
recurrence‑free survival in patients with prostate cancer.

ID Coefficient HR HR.95L HR.95H P‑value

LINC01515 1.405576 4.077876 1.725672 9.636284 0.001358
AC090198.1 0.171855 1.187506 0.997997 1.413001 0.052701
AC087276.2 ‑1.75799 0.17239 0.062314 0.476914 0.000709
AC138207.5 0.130719 1.139647 0.976757 1.329702 0.09669
CNNM3‑DT 0.080069 1.083361 0.985118 1.191403 0.098774
METTL14‑DT 3.135649 23.00355 3.594882 147.1991 0.000929 

HR, hazard ratio; HR.95L, high 95% confidence interval of HR; HR.95L, low 95% confidence interval of HR.

Figure 1. Flowchart of the present study. TCGA‑PRAD, The Cancer Genome Atlas Prostate Adenocarcinoma; lncRNA, long noncoding RNA; LASSO, least 
absolute shrinkage and selection operator; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; K‑M, Kaplan‑Meier; ROC, receiver 
operating characteristic; TIDE, tumor immune dysfunction and exclusion.

https://www.spandidos-publications.com/10.3892/ol.2024.14659
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Construction and evaluation of a nomogram. To predict the 
1‑, 3‑ and 5‑year BFS rates for patients with PCa, a nomogram 
containing risk and Gleason scores, and clinical T stages 

was developed (Fig. 4A). The K‑M analysis implicated that 
patients with high risk evaluated by the nomogram had a 
poorer prognosis than those with low risk (Fig. 4B). C‑index 

Figure 2. Signature construction based on CRLs in the training set. (A) Forest plot showed the univariate Cox regression analysis of CRLs. (B) In the LASSO 
analysis, the optimal penalty λ value was chosen. (C) LASSO coefficient profiles of 10 CRLs. (D) Risk score plot showed the distribution of the risk score 
of each patient with PCa. (E) Heatmap showed the differential expression of six prognostic‑related CRLs for each patient. (F) Scatter plot showed the BCR 
status and BFS time of patients with PCa with different risk scores. (G) Receiver operating characteristic curves for the 6‑CRL signature at 1, 3 and 5 years. 
(H) Survival analysis showed the Kaplan‑Meier survival curves of the BCR‑free survival between the different risk groups. CRL, cuproptosis‑related long 
noncoding RNA; LASSO, least absolute shrinkage and selection operator; PCa, prostate cancer; BCR, biochemical recurrence; BFS, BCR‑free survival; AUC, 
area under the receiver operating characteristic curve.
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Figure 3. Validation of the 6‑CRL prognostic signature in testing and entire sets. Risk score plot showed the distribution of the risk scores for each patient 
with PCa in the (A) testing set and (B) entire set (B). The scatter plot showed the BCR status and survival time of patients with PCa with different risk scores 
in the (C) testing set and (D) entire set (D). The heatmap showed the differential expression of the six signature lncRNAs for each patient in the (E) testing set 
and (F) entire set (F). The survival analysis showed the Kaplan‑Meier survival curves of the BCR‑free survival between different risk groups in the (G) testing 
set and (H) entire set (H). Receiver operating characteristic curves for the 6‑CRL signature at 1, 3 and 5 years in (I) testing set and (J) entire set. CRL, 
cuproptosis‑related long noncoding RNA; PCa, prostate cancer; BCR, biochemical recurrence; AUC, area under the receiver operating characteristic curve.

https://www.spandidos-publications.com/10.3892/ol.2024.14659
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and time‑dependent ROC curve analysis were applied to 
assess the prediction accuracy of the nomogram. The find‑
ings demonstrated that the 1‑, 3‑ and 5‑year AUC values were 
all >0.75 (Fig. 4C), and the C‑index value was 0.744 (range, 
0.700‑0.788), demonstrating that the predictive performance 
of the nomogram was strong. Additionally, agreement between 
the actual and expected BFS rates was found in the calibration 
plots (Fig. 4D‑F), which further confirmed the aforementioned 
conclusion.

Function and pathway analyses. There were 214 differ‑
entially expressed genes (DEGs) identified between the 
high‑ and low‑risk groups, including 112 upregulated 
and 102 downregulated genes (Fig. 5A). The mechanism 
underlying the DEGs was examined using GO and KEGG 
analyses. The KEGG analysis demonstrated that DEGs 
were primarily abundant in metabolic pathways and 
cardiovascular pathways; the metabolic pathways included 
‘Glycerolipid metabolism’ and ‘Nitrogen metabolism’, and 

Table IV. Cox analysis of the signature and clinicopathological traits in each set.

A, Training set   

 Univariate analysis Multivariate analysis
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Variable HR (95% CI) P‑value HR (95% CI) P‑value

Age 1.022 (0.972‑1.075) 0.388 1.005 (0.955‑ 1.059) 0.835
Clinical
T stage 2.147 (1.337‑ 3.448) 0.002 1.731 (1.009‑ 2.970) 0.046
Pathological T stage 2.414 (1.134‑ 5.139) 0.022 1.400 (0.545‑3.595) 0.484
Pathological
N stage 2.005 (0.953‑4.215) 0.067 0.972 (0.415‑2.277) 0.949
Gleason score 1.547 (1.089‑ 2.198) 0.014 1.243 (0.815‑1.895) 0.313
Risk score 1.112 (1.070‑ 1.155) 4.349x10‑8 1.106 (1.063‑1.152) 8.014x10‑7

B, Testing set   

 Univariate analysis Multivariate analysis
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Variable HR (95% CI) P‑value HR (95% CI) P‑value

Age 0.993 (0.901‑1.094) 0.885 0.942 (0.843‑1.053) 0.296
Clinical
T stage 3.241 (1.329‑7.905) 0.010 10.017 (2.295‑43.718) 0.002
Pathological T stage 4.871 (1.565‑15.156) 0.006 1.327 (0.172‑10.256) 0.786
Pathological
N stage 3.002 (0.875‑10.297) 0.080 0.672 (0.126‑3.580) 0.642
Gleason score 3.490 (1.587‑7.673) 0.002 6.274 (1.789‑22.007) 0.004
Risk score 1.090 (0.953‑1.247) 0.207 1.057 (0.875‑1.276) 0.566

C, Entire set   

 Univariate analysis Multivariate analysis
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Variable HR (95% CI) P‑value HR (95% CI) P‑value

Age 1.016 (0.972‑1.062) 0.478 0.995 (0.953‑1.040) 0.832
Clinical
T stage 2.361 (1.555‑3.586) 5.546e‑05 1.836 (1.177‑2.862) 0.007
Pathological T stage 2.931 (1.584‑5.422) 0.0006 1.594 (0.725‑3.504) 0.246
Pathological
N stage 2.219 (1.175‑4.187) 0.014 0.956 (0.469‑1.947) 0.901
Gleason score 1.844 (1.349‑2.521) 0.0001 1.480 (1.027‑2.134) 0.035
Risk score 1.111 (1.074‑1.150) 1.308x10‑9 1.104 (1.064‑1.146) 1.381x10‑7



ONCOLOGY LETTERS  28:  526,  2024 9

the cardiovascular pathways included ‘Cardiac muscle 
contraction’, ‘Adrenergic signaling in cardiomyocytes’, 
‘Hypertrophic cardiomyopathy’, and ‘Dilated cardiomyop‑
athy’ (Fig. 5B). The GO enrichment analysis indicated that 
‘muscle system process’, ‘muscle contraction’, and ‘striated 
muscle tissue development’ were the main enriched biolog‑
ical process terms. The main enriched cellular component 
terms were ‘contractile fiber’, ‘myofibril’ and ‘sarcomere’. 
The top three enriched molecular function terms were 
‘structural constituent of muscle’, ‘actin filament binding’ 
and ‘actin binding’ (Fig. 5C).

Immune analysis of the 6‑CRL signature. The immune cell 
infiltration in the high‑ and low‑risk groups is presented in 
Fig. 5D; there was statistically significant difference between 
the groups regarding immune cells, including M1 macro‑
phages, resting natural killer cells, follicular T helper cells 
and monocytes. Subsequently, the potential difference in the 
expression of immune checkpoint genes between the risk 
groups was investigated. Only IDO1 was downregulated in 

the high‑risk group (Fig. S4A). Immunotherapy response was 
predicted using the TIDE score. The TIDE score was lower 
for the high‑risk group compared with that of the low‑risk 
group (Fig. 5E), indicating that immunotherapy was more 
likely to be effective for those at a higher risk. In addition, the 
present study investigated the difference between dysfunction 
and exclusion ratings across the risk categories. The results 
illustrated that the low‑risk group had a higher dysfunction 
score and a lower exclusion score than the high‑risk group 
(Fig. S4B and C).

TMB and drug sensitivity analyses. The characteristics of 
somatic mutations for the different risk groups are displayed 
in waterfall plots (Fig. 6A and B). It was revealed that 
SPOP (15%), TTN (9%) and TP53 (8%) were the three most 
commonly mutated genes in the high‑risk group, mean‑
while, the most commonly mutated genes in the low‑risk 
group were TP53 (11%), SPOP (7%) and TTN (11%). 
However, there were no significant differences in TMB 
between the low‑ and high‑risk groups (Fig. S4D). As shown 

Figure 4. Construction and evaluation of a nomogram. (A) Nomogram showed that the 1‑, 3‑ and 5‑year BFS rate of patients with prostate cancer was predicted 
through the clinical characteristics and risk score. (B) Kaplan‑Meier survival curves of the BFS between different nomogram risk groups. (C) Receiver oper‑
ating characteristic curves for the nomogram at 1‑, 3‑ and 5‑years. (D) Calibration curve of the nomogram for forecasting the 1‑year BFS rate. (E) Calibration 
curve of the nomogram for forecasting the 3‑year BFS rate. (F) Calibration curve of the nomogram for forecasting the 5‑year BFS rate. BFS, biochemical 
recurrence‑free survival; AUC, area under the receiver operating characteristic curve.

https://www.spandidos-publications.com/10.3892/ol.2024.14659
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in Fig. 6C, the K‑M survival curves revealed that patients 
with a higher TMB had a greater likelihood of having a 
poor BFS. Patients with high TMB but low‑risk scores 
had the greatest BFS rate, whereas those with high TMB 
and high‑risk scores had the lowest BFS rate (Fig. 6D). 
The present study further examined the variations in drug 
sensitivity between different risk groups by estimating 
and comparing the IC50 values of the following 10 drugs: 
Axitinib, bosutinib, bicalutamide, cisplatin, doxorubicin, 

etoposide, tipifarnib, paclitaxel, sunitinib and gemcitabine. 
Except for bicalutamide, the IC50 values of all medications 
were lower in the high‑risk group (Fig. 7), which indicated 
that these drugs may be potential anticancer compounds for 
high‑risk patients. Low‑risk patients may exhibit a better 
response to bicalutamide.

Validation of the expression of the signature lncRNAs. 
Compared with in normal prostate cells, AC087276.2, 

Figure 5. Functional enrichment analysis and immune analysis. (A) Volcano plot for differentially expressed genes between high‑ and low‑risk groups. 
(B) Kyoto Encyclopedia of Genes and Genomes pathway analysis. (C) Gene Ontology analysis. (D) Immune cell infiltration analysis. (E) TIDE analysis. 
*P<0.05, **P<0.01. FC, fold change; BP, biological process; CC, cellular component; MF, molecular function; TIDE, tumor immune dysfunction and exclusion.
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CNNM3‑DT, AC090198.1, AC138207.5 and METTL14‑DT 
were downregulated, whereas LINC01515 was upregulated in 
PCa cell lines (Fig. 8). Despite the fact that the expression of 
AC090198.1, AC087276.2 and AC138207.5 was not signifi‑
cantly altered between the RWPE1 cells and DU145 cells, the 
expression trend was downregulated in the PC3 cells.

Discussion

Patients with PCa and BCR are commonly treated with 
radiotherapy, chemotherapy and androgen deprivation therapy, 
increasing the economic burden on patients and reducing their 
quality of life. In order to improve prognosis, it is crucial to 
establish biological markers that adequately detect the risk of 
BCR for patients with PCa. To the best of our knowledge, there 
is currently no reliable indicator that may predict the risk of 
BCR for patients with PCa.

Copper homeostasis is crucial for tumor cell growth 
and proliferation (42,43). Denoyer et al (44) reported that 
the functional supply of copper is essential for the develop‑
ment of PCa in mice. When the copper intake of PCa cells 
is reduced, the proliferative ability of cells is significantly 
inhibited (45). Previous studies have shown that the copper 
signaling pathway may be a promising therapeutic target for 
PCa (46,47). However, limited research has been carried out 
on cuproptosis in PCa, and the significance of CRGs in the 
occurrence and progression of PCa, as well as their prog‑
nostic value, remains unclear. In multiple tumors, including 
hepatocellular carcinoma, glioma and clear cell renal cell 
carcinoma, the predictive significance of CRLs has been 
demonstrated (48‑50). Despite this, to the best of our knowl‑
edge, the prognostic significance of CRLs in PCa has not yet 
been explored. In addition to establishing a 6‑CRL signature 
for predicting the BFS of patients with PCa, the function of 

Figure 6. TMB analysis. Top 15 most frequently mutated genes and mutation rate in (A) low‑risk and (B) high‑risk groups. (C) Kaplan‑Meier BCR‑free survival 
analysis of the TMB. (D) Kaplan‑Meier BCR‑free survival analysis of the TMB and risk score. TMB, tumor mutation burden; BCR, biochemical recurrence.

https://www.spandidos-publications.com/10.3892/ol.2024.14659
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cuproptosis in the immunological microenvironment of PCa 
was investigated.

In the present study, patients were randomly divided into 
a training set and a testing set. Statistical analysis between 
the two datasets showed no statistical difference in age, 
pathological T stage, clinical T stage, pathological N stage 

and Gleason score between the two datasets. This indicates 
that the two datasets are independent, and the partitioning 
of datasets is reasonable. The 6‑CRL signature effectively 
categorized patients with PCa into high‑ and low‑risk 
groups, and the principal component analysis also validated 
the distinguishing ability of the signature in all three sets. 

Figure 7. Drug sensitivity analysis. The box plots show the difference in IC50 values between high‑ and low‑risk groups for 10 drugs. IC50, half maximal 
inhibitory concentration.
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The BFS rate of the high‑risk group was significantly lower 
compared with that in the low‑risk group. The predictive 
accuracy of the signature was estimated and validated through 
the time‑dependent ROC curves in training, testing and entire 
sets. Notably, the highest AUC value of the signature was in 
year 5, followed by years 3 and 1. The ROC curves indicated 
that the signature had a stronger predictive power for BCR 
of patients with PCa in the long term. In addition, through 
C‑index analysis, it was shown that the C‑index value of the 
signature in the training and entire sets was >0.7, while the 
relevant value for the testing set was only >0.6. The signature 
in the testing set was less accurate than that in the training 
and the entire set; the reason for this difference may be that 
the sample size of the testing set was small (n=123). The same 
reason applies to independent prognostic analysis. In the Cox 
regression analysis, the signature was identified as an inde‑
pendent prognosis factor in both the training set and the entire 
set, but not in the testing set. The reason for this difference 
may also be due to the large sample size difference.

By evaluating the accuracy of the six CRLs in each dataset, 
it was shown that the signature may be a good indicator for 
predicting BFS in PCa, which was suiTable for both the early and 
advanced stages. It was also revealed that the signature was related 
to the PFS of PCa, emphasizing its significance in predicting 
PCa survival. High‑risk patients expressed lower levels of IDO1 
than low‑risk patients, and these patients had a worse prognosis. 
Ferreira et al (51) reported that patients with PCa who expressed 
lower levels of IDO1 had a shorter BFS, which is consistent with 
the findings of the present study that revealed a negative associa‑
tion between IDO1 expression and BCR risk.

In the GO analysis, it was shown that the DEGs between 
the high‑ and low‑risk groups were mainly enriched in terms 

associated with the muscle system. In the KEGG analysis, 
it was demonstrated that the DEGs were involved in steroid 
hormone biosynthesis. Androgens are steroid hormones that 
serve an important role in the occurrence and development 
of PCa. It may be hypothesized that differences in the ability 
to synthesize androgens contributes to the difference in BCR 
risk between the two groups. Moreover, the low‑risk group 
had higher TIDE scores. Notably, it has been reported that 
higher TIDE scores indicate decreased sensitivity to both 
anti‑PD‑1 and anti‑CTLA‑4 treatments (52). The TIDE 
analysis hypothesized that high‑risk patients with PCa may 
respond better to immunotherapy, and the low‑risk popula‑
tion may not be sensitive to immunotherapy. Based on the 
TIDE score difference, unnecessary immunotherapy may 
be avoided. The TMB analysis revealed that patients with 
higher TMB levels had a poor BFS, which was consistent 
with the findings of a previous study by Luo et al (53). In the 
K‑M survival analysis of integrated TMB score and 6‑CRL 
signature, the BFS rate was the lowest for the high‑risk group 
with high‑TMB, whereas the highest BFS rate was detected 
in the low‑risk group with high‑TMB. Finally, the risk score, 
Gleason score and pathological T stage were incorporated into 
a predictive nomogram to predict the 1‑, 3‑ and 5‑year BFS 
rates in patients with PCa. ROC curves, calibration curves 
and C‑index analysis assessed the predictive capability of the 
nomogram, which has the potential to become a practical tool 
in clinical decision‑making.

In the potential clinical application, this signature could 
be used to distinguish between BCR high‑ and low‑risk 
patient with PCa. For high‑risk patients, active measures, 
such as shortening the review time and changing the original 
treatment regimen, may be taken to reduce the risk of BCR 

Figure 8. Expression of AC087276.2, CNNM3‑DT, AC090198.1, AC138207.5, METTL14‑DT and LINC01515 in a normal prostate epithelial cell line (RWPE1) 
and prostate cancer cell lines (DU145 and PC3), as determined by reverse transcription‑quantitative PCR. ns, not significant; *P<0.05, ***P<0.001 ****P<0.0001.

https://www.spandidos-publications.com/10.3892/ol.2024.14659
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in this population. In addition, through the nomogram, the 
probability of BCR in the next 5 years can be calculated, the 
high‑risk population can be identified, and early intervention 
or enhanced follow‑up can be carried out to improve the 
prognosis of patients. Since this signature only requires the 
expression of six lncRNAs to calculate the risk score, and does 
not increase the economic burden on patients, it may have 
potential clinical application. Furthermore, since only other 
patient clinicopathological parameters have to be integrated to 
calculate the probability of BCR through the nomogram, this 
indicates the simplicity of this signature.

Although Ren et al (54) also built a CRL signature to predict 
the BCR of PCa, the present study differs from this previous 
study. In the previous study, the CRLs extracted by the author 
were based on 10 CRGs, whereas the present study was based 
on 19 CRGs. The number of CRGs included was more exten‑
sive and relatively more comprehensive. In addition, only ROC 
curve analysis was used in the previous study to evaluate the 
model prediction efficiency. By contrast, principal component 
analysis was also performed in the present study, providing 
a more comprehensive evaluation of the model. Moreover, in 
the previous study, only an overall ROC curve analysis was 
performed and ROC curve analyses at multiple time points 
was not carried out, whereas the present study evaluated the 
prediction efficiency at 1, 3 and 5 years in a more detailed 
manner. The AUC values in their models were 0.766, 0.613 
and 0.693, respectively. The 1‑, 3‑ and 5‑year AUC values of 
the model generated in the present study for the training set 
were 0.728, 0.740 and 0.783, respectively; those for the testing 
set were 0.667, 0.715 and 0.831 respectively; and those for the 
entire set were 0.717, 0.729 and 0.781, respectively. Therefore, 
the model generated in the present study is probably more 
accurate than that generated in the previous study. Although 
the model in the present study was also built based on six 
lncRNAs, the lncRNAs in the two models were completely 
different. The RT‑qPCR results of the cell lines used in the 
present study showed that, except for LINC01515, the expres‑
sion levels of the other five lncRNAs in PCa cells were lower 
than those in RWPE1 cells. In particular, the expression levels 
of CNNM3‑DT and METTL14‑DT in the PC3 and DU145 
advanced PCa cells were lower than those in RWPE1 cells. 
These results suggested that CNNM3‑DT and METTL14‑DT 
may play an important role in the progression of advanced 
PCa.

Notably, the signature assessed in the present study also 
has certain limitations with regard to its clinical applica‑
tion. First, the construction of this signature was based on 
patient tumor samples from TCGA, and most of the patients 
in TCGA dataset are from North America. The applicability 
of this signature to Asian countries requires further clinical 
verification. Second, the evaluation of the accuracy of this 
model was based on retrospective data, and further prospec‑
tive multicenter clinical studies are required to support its 
accuracy. In addition, this model was only applicable to 
patients undergoing radical prostatectomy, but not radical 
radiotherapy.

The present study also has several limitations. Data from 
other databases are required for external validation, since just 
TCGA database was used for internal validation. In addition, 
although PCa cell lines were used to validate the expression 

of the signature lncRNAs, the regulatory effect and under‑
lying mechanisms of CRLs in PCa require further biological 
research.

In the current study, a new signature for predicting BCR 
based on six lncRNAs was established. Notably, the generated 
prognostic nomogram containing the 6‑CRL signature and 
other patient clinicopathological characteristics may serve as a 
clinical tool for decision‑making.
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