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Prospective Acceleration of Diffusion Tensor Imaging
with Compressed Sensing Using Adaptive Dictionaries
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Purpose: Diffusion MRI requires acquisition of multiple diffusion-

weighted images, resulting in long scan times. Here, we investi-
gate combining compressed sensing and a fast imaging sequence

to dramatically reduce acquisition times in cardiac diffusion MRI.
Methods: Fully sampled and prospectively undersampled diffu-
sion tensor imaging data were acquired in five rat hearts at

acceleration factors of between two and six using a fast spin
echo (FSE) sequence. Images were reconstructed using a com-
pressed sensing framework, enforcing sparsity by means of

decomposition by adaptive dictionaries. A tensor was fit to the
reconstructed images and fiber tractography was performed.

Results: Acceleration factors of up to six were achieved, with
a modest increase in root mean square error of mean apparent
diffusion coefficient (ADC), fractional anisotropy (FA), and helix

angle. At an acceleration factor of six, mean values of ADC
and FA were within 2.5% and 5% of the ground truth, respec-

tively. Marginal differences were observed in the fiber tracts.
Conclusion: We developed a new k-space sampling strategy for
acquiring prospectively undersampled diffusion-weighted data,

and validated a novel compressed sensing reconstruction algo-
rithm based on adaptive dictionaries. The k-space undersampling

and FSE acquisition each reduced acquisition times by up to 6�
and 8�, respectively, as compared to fully sampled spin echo
imaging. Magn Reson Med 76:248–258, 2016. VC 2015 The
Authors. Magnetic Resonance in Medicine published by Wiley
Periodicals, Inc. on behalf of International Society for Mag-
netic Resonance in Medicine. This is an open access article
under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.
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INTRODUCTION

Diffusion MRI (dMRI) is a noninvasive technique that
measures the displacement of water molecules as a

marker of cell orientation and integrity. In the myocar-

dium, fiber and sheet orientation have been shown to
coincide with the eigenvectors of the diffusion tensor
(1,2). In diffusion tensor imaging (DTI), diffusion-

weighted (DW) measurements are performed in a mini-
mum of six directions plus one nondiffusion weighted
scan, and the data are fitted with a monoexponential ten-
sor model (3). As a result, scan times can be long, limit-

ing the clinical application of DTI. This has led to the
development of several methods for accelerating cardiac
dMRI including reduced encoding sequences (4), parallel

imaging (5), and simultaneous multislice imaging (6).
In recent years, compressed sensing (CS) has emerged

as a popular method for reconstructing undersampled
MRI data (7). The requirements for CS reconstruction of

undersampled MRI data are that the images are sparse in
a specific transform domain, and that the reconstruction
artefacts from the transform are incoherent with those

from undersampling (7).
The problem of how best to sparsify dMRI signals has

been widely discussed in recent years. Several studies
use wavelet transforms for sparsifying the diffusion

propagator (8,9) or signal in image-space (10). Spherical
ridgelets, based on wavelet theory, also offer a means to
sparsely represent diffusion signals (11). Recently, Mani

et al (12) proposed a compressed sensing reconstruction
algorithm based on a multitensor model (13), where the
diffusion signal at each voxel was modelled using contri-

butions from a dictionary consisting of one isotropic
component and several anisotropic components. How-
ever, such dictionaries were intended for application in

white matter in the brain, and their suitability for the
heart is unclear given the lower anisotropy of cardiac tis-
sue (14). Adaptive dictionaries (15,16) provide a method

of sparsely representing diffusion signals without making
assumptions about the underlying diffusion processes.

In dMRI, undersampling may be performed in k-space
(8,10,12,17–19), or in q-space (13,15,16,20–23). Q-space

undersampling is generally applied when the number of
diffusion-encoding directions is high, such as in high
angular resolution diffusion imaging or diffusion spectrum
imaging. When the number of diffusion-encoding direc-

tions is low, k-space undersampling is more commonly
performed. Furthermore, a different k-space sampling
scheme may be used to acquire each image volume so as to

decrease coherence in data sampling (8,10,12,18).
To the best of the authors’ knowledge, previous pub-

lished work accelerating DTI with CS have been limited
to retrospectively undersampled data. In this work, we

present and evaluate a complete system for prospectively
accelerated acquisition and reconstruction of three-
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dimensional (3D) DTI data, with the aim of reducing
total acquisition time. The acquisition combines variable
density k-space undersampling with a fast spin echo
sequence. The reconstruction algorithm exploits sparsity
by means of adaptive dictionaries (24,25), and incorpo-
rates T2-weighting correction. The T2-weighting correc-
tion supports fast echo-train imaging methods, and leads
to greater flexibility in k-space trajectory designs. We
compared retrospectively and prospectively under-
sampled ex vivo cardiac data, and validated the recon-
structions against fully sampled data acquired during the
same session. A preliminary version of this work was
presented in McClymont et al (26).

METHODS

MR Setup and Acquisition

MRI was performed using a 9.4 Tesla (T) preclinical

scanner (Agilent Technologies, Santa Clara, CA), a

shielded gradient system (1 T/m) and a quadrature-

driven transmit/receive birdcage coil of 20 mm inner

diameter (Rapid Biomedical, Rimpar, Germany). Fully

sampled 3D fast spin echo (FSE) DTI data were acquired
with the following parameters: TR/TE¼250/9.3 ms, echo
spacing¼ 4.9 ms, echo train length¼ 8, resolution¼ 100
mm isotropic, acquisition matrix (kx � ky � kzÞ¼
200 � 160 � 160, field-of-view¼ 20 � 16 � 16 mm,
number of non-DW images¼ 8, number of DW
directions¼61, diffusion duration (d)¼ 2 ms, diffusion
time (D)¼ 5.5 ms, b-value¼ 1000 s/mm2, acquisition
time¼ 15 h 20 m. The receiver gain was optimized for
DW and non-DW scans. Noise data were acquired using
an identical sequence, without radiofrequency (RF)
pulses and with TR¼ 67 ms.

Prospectively undersampled data were acquired at 2�,
3�, 4�, 5�, and 6� acceleration factors, with a different
randomized undersampling mask for each image volume.
The parameters used were identical to the fully sampled
data, with the following differences: number of non-DW
images¼ 4, number of DW directions¼30. The diffusion
scheme used here corresponded to the first 30 of 61 DW
directions of the fully sampled data (27). The acquisition
times were 3 h 46 min, 2 h 31 min, 1 h 53 min, 1 h 30
min, and 1 h 15 min, respectively. In addition, 3D

FIG. 1. Prospective and retrospective undersampling (US) schemes. a: An example sampling mask of the retrospective 2� undersam-
pling scheme, color-coded by echo number (red corresponds to the first echo, blue to the eighth). The read-out, kx, is fully sampled.

Un-sampled locations are coloured white. b: The sampling probability density function (PDF) along kz ¼ 0, and the corresponding
bands of uniform width in ky. c,d: The sampling mask and sampling PDF for prospective undersampling, and the corresponding bands

whose areas under the curve are approximately equal.
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multiecho spin echo data were acquired for T2 mapping.

The following parameters were used: TR/TE1¼ 250/4.7

ms, echo spacing¼ 4.7 ms, echo train length¼ 16, reso-

lution¼100 mm isotropic.

k-Space Sampling

In an FSE acquisition, the number of echoes per excita-

tion is fixed. In the fully sampled datasets, the two phase-

encoding directions ky and kz were traversed in a stand-

ard center-out interleaved and linear manner, respec-

tively. This resulted in a stepped filter of equal width

bands across ky modulated by T2 relaxation. To imple-

ment the prospectively undersampled DTI sequence, a

sampling scheme was generated that divides ky into

bands of variable widths, whilst maintaining a center-out

phase encoding scheme to mitigate discontinuities in T2-

weighting. Figure 1 illustrates the sampling schemes for

both retrospectively and prospectively undersampled

data. First, a probability density function (PDF) was gen-

erated in ky ; kz for each acceleration factor, f . Following

(10), this PDF was constructed using a polynomial of

order f þ 1, with the central 15% of k-space fully

sampled. In the prospectively undersampled case, bands

in ky were defined such that the integral of the PDF in

each band was approximately equal at kz ¼ 0. Although

the same PDF was used for each imaging volume, the

sampling schemes were generated independently to

decrease coherence. Samples were randomly allocated

based on the PDF, first in kz and then in ky , independ-

ently for each half of k-space (ky > 0 and ky � 0). Each

read-out (kx) was fully sampled. The retrospectively

undersampled k-space data were sampled in the same

locations as the prospectively undersampled data.

Notation

Matrices and arrays are denoted using upper case bold

letters; vectors are denoted using lower case bold. Images

are represented interchangeably as arrays, as in

I � ZX�Y�Z�N , or as matrices, as in I � ZN�V where

V ¼ X � Y � Z is the total number of voxels. X , Y , and

Z refer to the dimensions of the data in the read-out and

two phase encoding directions, respectively. N refers

to the number of image volumes including DW and

non-DW data. Elements of arrays are denoted using

subscripts, such as Ix;y ;z;n. Column v of matrix I is

denoted iv .

Image Reconstruction

Images were reconstructed using the compressed sensing

framework shown in Figure 2. The input k-space data to

the reconstruction algorithm were initialized using a

“sliding window” approach (8,28), in which unsampled

locations are filled with those of the nearest acquired dif-

fusion direction. This was performed independently for

the non-DW and DW data.
Although noise in magnitude MR images follows a Rician

distribution, given a sufficiently high signal-to-noise ratio

(SNR) it can be approximated as Gaussian (29). However,

FIG. 2. Flowchart describing the
compressed sensing reconstruc-

tion. Images are reconstructed
by simultaneously minimizing

terms corresponding to data
consistency, sparsity, and total
variation. In the data consis-

tency module, the estimated k-
space consists of the sum of

contributions from each echo. In
the total variation module, the
sum of finite differences in the

magnitude image is minimized.
In the sparsity module, two

example points are displayed.
Point p1 corresponds to a voxel
in the myocardium, and requires

four dictionary atoms to be
adequately represented. Point
p2 is in the buffer, and can be

represented by a single diction-
ary atom.
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the different receiver gain settings introduce heteroscedas-
ticity between the non-DW and DW data. Therefore, data
whitening must first be performed so that errors can be
assumed to follow a Gaussian distribution, and can, there-
fore, be minimized using the computationally efficient ‘2-
norm. The noise level at each receiver gain was computed as
the standard deviation of the real component of the noise
data in k-space. Before reconstruction, the non-DW and DW
images were whitened by dividing the data in k-space by the
appropriate noise level. Following reconstruction, the
images were unwhitened by multiplying by the respective
noise level.

The complex diffusion weighted images,
I � ZX�Y�Z�N , were reconstructed by solving the follow-
ing optimization problem:

I* ¼ argmin
I

jjF Ið Þ � Yjj22 þ l1jj jIj jjTV þ l2jjf jIjð Þjj1: [1]

The first term in Eq. [1] refers to data consistency,
where Y denotes the whitened k-space data, and F Ið Þ is
the k-space of the reconstructed image, as follows:

F kx ;ky ;kz ;n Ið Þ ¼
X

x;y ;z

Ix;y ;z;n e�i2p kx x
X þ

ky y

Y þ
kzz
Z

� �
e
�TE kyð Þ�TE 1ð Þ

T2x;y;z : [2]

This definition differs from the discrete Fourier trans-
form in that it incorporates the echo time, TE ky

� �
, at

each phase encoding location, and the T2 at each voxel,
T2x;y ;z. This term mitigates the ringing and blurring arte-
facts due to discontinuous T2-weighting in k-space
(30,31). T2 maps were obtained by fitting the multiecho
spin echo data with a monoexponential relaxation curve
using weighted linear regression. The TE 1ð Þ term allows
the approximation of the T2 relaxation that would have
occurred, had all of the data been acquired at the TE of
the first echo.

The second term in Eq. [1] controls image smoothness.
The total variation (TV) was computed from the magni-
tude of the diffusion-weighted images jIj as follows:

jjjIjjjTV ¼
X

x;y ;z;n

jjIxþ1;y ;z;nj � jIx;y ;z;njj þ jjIx;yþ1;z;nj � jIx;y ;z;njj

þ jjIx;y ;zþ1;nj � jIx;y ;z;njj:
[3]

Finally, the third term in Eq. [1] controls the sparsity
of the image under the transformation f. Here, jjf jIjð Þjj1
refers to the ‘1-norm of the linear decomposition by a
dictionary, as described in the following section. Tuning
parameters l1 and l2 control the relative weights of the
total variation and sparsity terms.

Sparse Representation

Let x � ZN�1 denote the magnitude of the diffusion-
weighted signal at a particular voxel. Following Gramfort
et al (16), x was modeled as follows:

x ¼ Daþ e [4]

where D � ZN�D refers to the dictionary, a 2 ZD�1 are the
coefficients, and e � ZN�1 is a noise term. The coefficient

vector a should be sparse (i.e., use as few columns of the
dictionary as possible), while minimizing the magnitude
of the residuals e. Given that x is strictly nonnegative, it
follows that D and a are also nonnegative (16).

Given a set of whitened training data X ¼
x1; . . . ; xVtr
½ � � ZN�Vtr , the dictionary was trained as fol-
lows (25):

D*;A* ¼ argmin
D�0;A�0

1

Vtr

X

v

jjav jj0 s:t: jjxv � Dav jj22 � N [5]

where A ¼ a1; . . . ;aVtr
½ � � ZD�Vtr contains the sparse coef-

ficients. As the data was whitened such that the noise
has a variance of 1, the residual sum of squares should
be less than or equal to N . To prevent D from having
arbitrarily large values, its columns d1; . . . ; dD are con-
strained to each have an ‘2-norm of less than or equal to
one.

During reconstruction, the magnitude image jIj � ZN�V

in Eq. [1] was ‘0-“norm” decomposed using iteratively
re-weighted ‘1-norm decomposition (32,33). The decom-
position was performed using the trained dictionary as
follows:

A� ¼ argmin
A�0

jjWAjj1 s:t: jj jIj � DAjj22 � l [6]

where W ¼ 1
Aþe

. The stability parameter, e, was 0.01.
Thus, jjWAjj1 	 jjAjj0. The error term, l, was N in the
first iteration of the reconstruction algorithm. In subse-
quent iterations, l was equal to N

V

P
v jjjIv j � DAv jj22, using

A from the previous iteration.
The sparsity term, jjf jIjð Þjj1, in Eq. [1] is defined asP
jjAjj1 þ jjjIj � DAjj1ð Þ. This is equivalent to represent-

ing residuals using additional columns of the dictionary,
dDþ1 ¼ 1; 0; . . . ; 0½ �T, dDþ2 ¼ 0; 1; . . . ; 0½ �T, . . ., dDþN ¼
0; 0; . . . ; 1½ �T, thus maximizing their ‘1-norm.

Iterative Reconstruction

Nonlinear conjugate gradient descent was used to per-
form the reconstruction. Seventy iterations were typi-
cally sufficient for convergence. The tuning parameters
l1 and l2 were 1 and 10 in the 2D phantom reconstruc-
tions, and 10�4 and 0.1 in the 3D ex vivo data recon-
structions, respectively. The number of dictionary
columns, D, was 100. These parameters were empirically
tuned using additional data, not included in this study.
Dictionary learning and sparse decomposition was per-
formed using the SPAMS toolbox of Mairal et al (25),
using the weighted LASSO algorithm (34) for sparse
decomposition. The ‘0-norm decomposition required
only two iterations of weighted ‘1-norm decomposition.

In the case of the numerical phantom data, the diction-
ary was trained using the fully sampled (ground truth)
data. In the case of the ex vivo data, dictionary training
was performed for each of the five ex vivo heart samples
in turn, using fully sampled data from the remaining
four samples. The training data consisted of all voxels
containing cardiac tissue, and 1% of the remaining vox-
els (randomly sampled from air, buffer, and gel). The
data were whitened before training. The training was
performed using orthogonal matching pursuit (35), with
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200 iterations and a batch size of 512. These parameters,
provided they were sufficiently large, were not found to

significantly affect the dictionaries.
The reconstruction was performed in 3D using MATLAB

R2013a (Mathworks, Natick, MA). For the ex vivo data,

this required approximately 11 h per reconstruction on a
12 core 2.7 GHz Mac Pro, primarily due to the large num-
ber of 3D Fourier transforms associated with the T2-weight-

ing correction, as well as the sparse decomposition step.

Numerical Phantom Simulation

A 2D numerical cardiac phantom, displayed in Figure 3,

was generated to evaluate the performance of the CS
reconstruction. The geometry and MRI parameters of the

phantom simulated a simplified left ventricle. The phan-
tom was oriented in a short-axis view with the read-out

oriented through-plane, and the two phase encoding
directions oriented in-plane with an acquisition matrix
of 160 � 160: The phantom contained three concentric

annuluses corresponding to buffer, tissue, and gel. The
T2 values of the three components were 40, 24, and 30

ms, respectively. The diffusion in the buffer and gel
components was isotropic, with diffusion coefficients of

2:3 and 2:2� 10�3 mm2=s, respectively.
The signal in the tissue component was generated

based on a diffusion tensor model, whose primary, sec-
ondary, and tertiary eigenvalues were 1:3; 1:0, and

0:7� 10�3 mm2=s. Thus, the mean apparent diffusion
coefficient (ADC) was 1:0� 10�3 mm2=s, and the frac-

tional anisotropy (FA) was 0.29. The projection of the
primary eigenvectors (m1) in the short-axis plane had a

circumferential orientation, and the helix angle (HA), as
defined as the elevation angle of m1 with respect to the
short-axis plane, had a linear transition between �90
 at

the outer radius (subepicardium) to 90
 at the inner
radius (subendocardium). The tertiary eigenvectors (m3)

were and oriented radially. The secondary eigenvectors
(m2) were oriented perpendicular to m1 and m3. The proton

density of tissue was 80% of that of the buffer and gel.
Rician noise was added such that the SNR, defined as

the mean divided by the standard deviation in the tissue

component of the non-DW magnitude images, was 60.

Experimental Validation of Numerical Phantom Simulation

Simulated k-space data were generated for the phantom

in 2D, omitting the read-out direction. T2 decay was

simulated according to Eq. [2] for both the retrospective

and prospective sampling schemes (i.e., with both con-

stant and variable steps in ky). Next, white noise was

added independently to the real and imaginary compo-

nents of k-space. Finally, undersampling at acceleration

factors between two and six was performed. The images

were reconstructed as described above. The ground truth

consisted of the phantom without noise or T2 effects.
The reconstructed magnitude images were fitted with

a diffusion tensor model. Parametric maps of mean ADC,

FA, and HA were computed. The mean and standard

deviation of the mean ADC and FA, and the root-mean-

squared-error (RMSE) values of the HA difference maps

were calculated. These calculations were performed for

voxels corresponding to tissue only.

Animal Preparation

Hearts were excised from five Sprague-Dawley rats,

weighing between 199 and 221 g, during terminal anaes-

thesia. Isolated hearts were swiftly perfused in Langen-

dorff constant pressure mode at 80 mmHg with

oxygenated (95% O2/5% CO2) Krebs-Henseleit buffer at

37
C (mM): NaCl 118, KCl 4.7, MgSO4.7H2O 1.2,

NaHCO3 25, KH2PO4 1.2, Glucose 11, CaCl2.H2O 1.8,

and arrested using high potassium cardioplegic solution.

They were subsequently perfusion-fixed and immersed

in isosmotic Karnovsky’s fixative with 2 mM Gadolinium

contrast agent (Prohance; Bracco, MN). Experimental

investigations conformed to the UK Home Office guid-

ance on the Operations of Animals (Scientific Proce-

dures) Act 1986 and were approved by the University of

Oxford’s ethical review board.

FIG. 3. The numerical phantom consisting of concentric annuluses simulating air, gel (outer annulus), tissue (middle annulus) and buffer

(inner disc). The gel and buffer components exhibit isotropic diffusion, while the tissue component exhibits orthotropic diffusion. The
color of each ellipsoid in the tissue component denotes the helix angle. In the myocardium, the projection of the primary eigenvectors in
the short-axis plane are oriented circumferentially, while the helix angles have a linear transition between the subepicardium and the

subendocardium. The tertiary eigenvectors in the myocardium are oriented radially. For display purposes, the phantom has been down-
sampled by a factor of five.
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Experimental Validation of Ex Vivo Data

The ex vivo data ground truth consisted of the fully

sampled DTI data with 61 diffusion-encoding directions

and 8 b¼ 0 images. The retrospectively undersampled

data consisted of the first 30 diffusion directions and

4 b¼ 0 images. The sampling locations for the prospec-

tively and retrospectively undersampled data were iden-

tical. However, the associated T2-weighting were

different in the two schemes. Given that the image

reconstruction algorithm incorporates a correction for T2-

weighting during the echo train, the reconstructed pro-

spectively undersampled data have a different profile in

ky compared with the ground truth. Therefore, for com-

parison purposes, we applied the T2-weighting profile of

the ground truth images to the reconstructed images fol-

lowing reconstruction, so that their T2-weighting profiles

were matched. This is illustrated in Figure 4.
The magnitude images for the ground truth and under-

sampled data were fitted to a diffusion tensor model.

The mean and standard deviation of the mean ADC and

FA over all myocardial voxels for each sample is

reported. The mean and standard deviation RMSE for

three parameters (mean ADC, FA, and HA) in the tissue

voxels over the five samples is also reported. Wild boot-

strapping (36) was used to measure the 95% cone-of-

uncertainty (COU) of the three eigenvectors in the recon-

structed data. The bootstrapping was performed using

the Rademacher distribution formulation with 1000 repe-

titions (37).
Regional analysis of the reconstructed parameter maps

was performed in small regions-of-interest (ROIs) in the

left and right ventricle of a single basal, midventricular,

and apical slice (i.e. six ROIs per sample). ROIs were

drawn manually in 2D on fully sampled non-DW

images. The right ventricle (RV) ROI enclosed as much

of the RV as possible. The left ventricle (LV) ROI

enclosed the lateral wall. The RMSE within each ROI

was computed for mean ADC, FA, and HA parameter

maps. The 95% COU of m1, m2, and m3 were also com-

puted in the ROIs.
Fiber tracking was performed along m1, m2, and m3 using

Diffusion Toolkit and Trackvis (38), in the following

data: ground truth, zero-filled retrospectively 6� under-

sampled data, and CS-reconstructed retrospectively and

prospectively 6� undersampled data.

RESULTS

Table 1 presents the mean of the mean ADC and FA, and
the RMSE of HA, in the simulated phantom for both
sampling schemes. The mean ADC was overestimated by
0.8–1.1% in the retrospective scheme, and by 1.2–2.2%
in the prospective scheme. The FA was underestimated
by 3.2–3.9% in the retrospective scheme, and by 4.5–
7.3% in the prospective scheme. The RMSE of the HA
was 4.33–4.73
 in the retrospective scheme, and 5.09–
5.73
 in the prospective scheme.

Figure 5 displays T2-matched mean ADC, FA, and HA
maps in a single sample based on retrospective and pro-
spective undersampling at acceleration factors of two
and six. In general, the retrospectively undersampled
reconstructed images were visually sharper than the pro-
spectively undersampled reconstructed images. The
images became increasingly unsharpened with increased
acceleration.

As per the phantom experiments, FA was underesti-
mated as a result of the prospective undersampling and
reconstruction. Table 2 presents the mean and standard
deviation of the mean ADC and FA over all voxels in the
myocardium for prospectively undersampled data. At an
acceleration factor of two, the mean ADC was approxi-
mately 0.5% higher, and the FA was approximately
2.5% lower, than the ground truth. At an acceleration
factor of six, the mean ADC was approximately 1%
lower, and the mean FA was approximately 5% lower,
than the ground truth. The standard deviation of both
parameters also decreased with increased acceleration.

In the retrospectively undersampled data, the mean
RMSE of the mean ADC over the five samples was 2:4
� 10�5 mm2=s for an acceleration factor of two, increas-
ing to 5:2 � 10�5 mm2=s at an acceleration factor of
six. The mean RMSE of the FA was 0:014 for an accelera-
tion factor of two, and 0:023 for an acceleration factor of
six. The mean RMSE of the HA was 3:1



for an accelera-

tion factor of two, and 4:9



for an acceleration factor of
six. Joint histograms of mean ADC, FA, and HA at 6�
acceleration are shown in Figure 6. The spread of the
data is larger for all parameters in prospectively under-
sampled data, and increases with acceleration. Figure 6
also displays the RMSE values for mean ADC, FA, and
HA. These data are also presented in Table 2 for the pro-
spectively undersampled data, as is the COU values for
the three eigenvectors.

FIG. 4. The effect of T2-weighting correction. a: Fully sampled ground truth image (b 6¼ 0). b: The prospectively 2�-undersampled and
reconstructed image without T2-weighting correction. c: The image reconstructed with T2-weighting correction. Arrows indicate regions
that have been sharpened by the T2-weighting correction. d: The image with T2-weighting matched to the ground truth.
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The RMSE values of the prospectively undersampled
data were higher than those of the retrospectively
undersampled data. The mean RMSE of the mean ADC
was 3:8 � 10�5 mm2=s and 6:7 � 10�5 mm2=s for
acceleration factors of two and six, respectively. The
mean RMSE of the FA was 0.022 for an acceleration fac-
tor of two, and 0.032 for an acceleration factor of six.
Finally, the mean RMSE of the HA was 5:0



for an

acceleration factor of two, and 6:6



for an acceleration
factor of six.

Although the RMSE for mean ADC, FA, and HA
increases with acceleration factor, the cones of uncer-
tainty for all three eigenvectors decreased for acceleration

factors of three or greater. Wild bootstrapping yielded
95% COU in v1 of 4.7
 and 3.0
 at acceleration factors of
two and six, respectively, in the prospectively sampled
data, and 3.7
 in the ground truth data. The COU in v2

was 19.4
 and 12.3
 at factors of two and six, respectively,
and 14.7
 in the ground truth data. The COU in v3 was
19.0
 and 12.0
 at factors of two and six, and 14.4
 in the
ground truth data.

Regional analysis showed that the RMSE in the LV
was lower than the RV. At an acceleration factor of
two and in a midventricular slice, the mean ADC RMSE
in the LV was 31% lower, the FA RMSE was 17%
lower, and the HA was 47% lower than the RV. At an

Table 1
Error Metrics for the Numerical Phantom Reconstructionsa

Sampling
scheme

Acceleration factor

Parameter 2 3 4 5 6

Retrospective Mean apparent
diffusion coefficient

(10�3 mm2=s)

1:01 6 0:04 1:01 6 0:05 1:01 6 0:05 1:01 6 0:05 1:01 6 0:05

Fractional

anisotropy

0:28 6 0:02 0:28 6 0:02 0:28 6 0:03 0:28 6 0:03 0:28 6 0:03

Helix angle RMSE
(
)

4.33 4.34 4.52 4.63 4.73

Prospective Mean apparent
diffusion coefficient

(10�3 mm2=s)

1:01 6 0:05 1:02 6 0:06 1:02 6 0:06 1:02 6 0:07 1:02 6 0:07

Fractional
anisotropy

0:28 6 0:02 0:27 6 0:02 0:27 6 0:03 0:27 6 0:03 0:27 6 0:03

Helix angle RMSE
(
)

5.09 5.65 5.66 5.72 5.73

aIn the case of the mean apparent diffusion coefficient and fractional anisotropy, the mean and standard deviation over all voxels corre-
sponding to tissue is presented. In the case of the helix angle, the RMSE is presented.

FIG. 5. Parameter maps of mean apparent diffusion coefficient (ADC), fractional anisotropy (FA) and helix angle (HA) at acceleration fac-

tors of 2 and 6 for retrospectively and prospectively undersampled data with matched T2-weighting.

254 McClymont et al.



acceleration factor of six, the mean ADC RMSE in the LV

was 36% lower, the FA RMSE was 31% lower, and the

HA RMSE was 59% lower than in the RV. In the LV,

the mean ADC, FA, and HA RMSE values were lowest in

the midventricular slice. In the RV, the RMSE was low-

est in the apical slice for the ADC, basal slice for the FA,

and midventricular slice for the HA. The 95% COU of v1

was lowest in the midventricular slice for both the LV

and RV. The 95% COU of v1 was consistently lower in

the LV than in the RV. In the case of v2 and v3, the 95%

COU in the LV was higher in the basal slice, approxi-

mately equal in the midventricular slice, and lower in

the apical slice than in the RV.

Figure 7 illustrates fiber tracking in the whole heart
based on m1, m2, and m3. Fiber tracts based on m1 in each
undersampled case were virtually indistinguishable from
the ground truth data. Smoothing of m2 and m3 tracts are
prominent in the zero-filled retrospectively undersampled
data. In contrast, m2 and m3 tracts were well preserved in
the CS-reconstructed cases, with marginal differences in
the lateral wall of the midaxial myocardium.

DISCUSSION

In this work, a novel dictionary-based approach is pro-
posed and evaluated for accelerating DTI. Prospective
undersampling up to a factor of 6� was performed,

Table 2
Mean and RMSE of Mean ADC, FA, HA, and 95% Cones of Uncertainty for Acceleration Factors between Two and Six for Prospectively

Undersampled T2w-Matched Dataa

Parameter Ground truth

Acceleration factor

2 3 4 5 6

Mean ADC (�10�3 mm2=s) 1:07 6 0:02 1:07 6 0:02 1:07 6 0:02 1:06 6 0:02 1:07 6 0:02 1:07 6 0:02

Mean FA 0:26 6 0:01 0:26 6 0:01 0:25 6 0:01 0:25 6 0:01 0:25 6 0:01 0:25 6 0:01
ADC RMSE �10�5 mm2=s

� �
- 3:78 6 0:17 4:84 6 0:17 5:57 6 0:17 6:14 6 0:17 6:64 6 0:16

FA RMSE �10�2
� �

- 2:24 6 0:06 2:85 6 0:19 2:83 6 0:12 3:00 6 0:11 3:16 6 0:13
HA RMSE (
) - 4:96 6 0:44 5:70 6 0:43 5:99 6 0:50 6:40 6 0:64 6:61 6 0:66
v1 COU (
) 3:7 6 0:2 4:7 6 0:2 2:9 6 0:3 2:9 6 0:2 3:0 6 0:2 3:0 6 0:3

v2 COU (
) 14:7 6 1:0 19:4 6 1:4 12:1 6 1:4 12:1 6 1:3 12:3 6 1:3 12:3 6 1:4
v3 COU (
) 14:4 6 1:0 19:4 6 1:5 11:8 6 1:5 11:8 6 1:4 12:1 6 1:4 12:0 6 1:4

aMean and standard deviation are reported over five hearts.

FIG. 6. Joint histograms of mean apparent diffusion coefficient (ADC), fractional anisotropy (FA) and helix angle (HA) for 6� accelerated

retrospectively (left column) and prospectively (middle column) undersampled data in the global myocardium. Right column: Root mean-
squared error (RMSE) versus acceleration factor for mean ADC, FA, and HA. The mean and standard deviation of the RMSE over the

five samples is presented.
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reducing the total acquisition time from 7 h 30 min to

1 h 15 min. Furthermore, the correction of artifacts aris-

ing from discontinuous T2-weighting is incorporated into

the reconstruction algorithm.
We observed that the prospectively undersampled data

had higher errors than the retrospectively undersampled
data. Our simulations show that this arises from the dif-

ference in T2-weighting between the two schemes. As a

result of the narrower grouping of the initial echoes

about the center of ky in the prospectively undersampled

data, its SNR is lower than that of the retrospectively

undersampled data. The corollary is that for echo train

imaging sequences, additional shots and time would be
required to provide the same T2-weighting as the retro-

spectively undersampled data. Therefore, it is more

accurate to state that the SNR in retrospectively under-

sampled data is artificially enhanced. While for single-

echo imaging sequences such as a spin or stimulated

echo sequences variable T2-weighting is not an issue,

these sequences require significantly longer acquisition

times (e.g., factor of 8 in this case).
The variable band spacing in our prospective under-

sampling scheme increasingly unsharpened the point

spread function as the acceleration factor increased. The

T2-weighting correction compensates for this and

amplifies the edges of k-space. This leads to sharper but

noisier images and truncation artefacts. However, these

artefacts are mitigated by the total variation (image

smoothness) component of the reconstruction algorithm.
Acquiring a T2 map added 1 h 46 min to the total scan

time. It has been shown that discontinuous T2-weighting
in fast spin echo can be corrected using only a single

excitation, adding just seconds to the scan time (31).

However, this approach assumes that the data in each

echo train can be characterized by a single T2, and is bet-

ter suited for homogeneous samples. Alternatively,

acquiring a lower resolution T2 map should suffice, thus

reducing the scan time overhead. In the absence of a T2

map, the T2-weighting correction can be omitted from

the reconstruction algorithm, yielding images with the

same T2-weighting as the acquired data. However, in this

work it was necessary to correct the T2-weighting to

compare the reconstructed images with the ground truth.
Comparing the RMSE values for the retrospectively

undersampled reconstructions with those from a recent

distributed compressed sensing study using the wavelet

transform (10), we found that our mean RMSE values
were 60% lower for FA and 30% lower for HA. The

mean RMSE values for mean ADC were comparable in

both studies. We note, however, that the mean ADC in

FIG. 7. Fiber tracking in a 5-voxel-thick mid-myocardial axial slab based on the 1st, 2nd, and 3rd eigenvectors (m1, m2, and m3; top, mid-
dle, bottom). Tracts were reconstructed from ground truth data, zero-filled retrospectively undersampled data, CS-reconstructed retro-

spectively undersampled data, and CS-reconstructed prospectively undersampled data (left to right). In the undersampled images, the
acceleration factor was 6. Tracts based on m1 were virtually indistinguishable in each case. While significant smoothing of m2 and m3

tracts were observed in the tracts reconstructed using the zero-filled data, these tracts were well preserved in the CS-reconstructed
data when compared with the ground truth. Marginal differences observed in the lateral wall are highlighted with arrows.
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the samples of (10) were considerably lower (< 50%)
than the mean ADC reported in this study, and thus the
mean RMSE as a proportion of the mean ADC was also
lower using our approach. The differences in mean ADC
may have stemmed from differences in sample prepara-
tion, such as the fixative used and the ambient
temperature.

Regarding the mean values of tensor parameters over
the myocardium, the mean ADC was relatively robust to
acceleration, being underestimated in prospectively 6�
undersampled data by approximately 2.5%. The frac-
tional anisotropy were less robust to acceleration, being
underestimated by approximately 5%. This bias was also
observed in the simulated phantom reconstructions, and
is most likely a result of the dictionary not being suffi-
ciently flexible in describing anisotropic diffusion at a
range of orientations. Future research will focus on opti-
mal representation of diffusion signals using diction-
aries. Furthermore, the system would be more practical
without the requirement of external training data. Dic-
tionary training based on undersampled data will also be
investigated in future work.

The 95% COU values for the reconstructed data were
low, indicating a high level of precision. The COU val-
ues for an acceleration factor of two were higher than
those of the ground truth data, possibly as a result of the
T2-weighting correction amplifying high frequency data.
At acceleration factors of three to six, the compressed
sensing reconstruction has a de-noising effect, yielding
lower COU values than the ground truth.

Regional analysis showed that the reconstruction per-
formance in the left ventricle was better than in the right
ventricle. One reason for this is that the LV is larger than
the RV, and less susceptible to partial voluming. The
loss of high frequency data will, therefore, have a greater
impact on reconstruction of the right ventricle. In addi-
tion, the 95% COU in m1 is higher in the RV than in the
LV. The reconstruction of the LV in the midventricular
ROI was better than in the apical or basal ROIs. The mid-
ventricular LV ROI also had the lowest 95% COU in m1.
This could be related to the higher SNR at the center of
the RF coil.

The fiber tracking results indicate that tracking of m1 is
relatively robust to undersampling, even with simple
zero-filling. On the other hand, m2 and m3 are harder to
reliably measure. Here, CS-reconstruction of both retro-
spectively and prospectively undersampled data recon-
structed with CS show excellent agreement in m1, m2, and
m3 tracts compared with the ground truth.

Although the diffusion tensor model was fit in this
work, the sampling scheme and reconstruction pipeline
is not limited to diffusion tensor imaging. The algorithm
reconstructs diffusion-weighted images without fitting an
explicit model of diffusion to the data. Therefore, this
algorithm could be used to reconstruct data with a
higher number of samples in q-space, such as in diffu-
sion spectrum imaging.

CONCLUSIONS

A novel system for accelerating DTI that combines a
fast imaging sequence with compressed sensing was

implemented. This was achieved using a variable density

phase encoding scheme for undersampling 3D FSE data,
and a compressed sensing framework incorporating

adaptive dictionaries and T2-weighting correction for

reconstruction of undersampled DTI data. We acquired
DTI data prospectively undersampled in k-space by up

to a factor of 6. This combined with an echo train length

of 8 to reduce effective scan times by up to 48� as com-
pared to fully sampled spin echo imaging. The quality of

reconstructions of undersampled data compared favor-

ably to the literature, and the reconstructed parameter
maps and fiber tracking were in good agreement with the

ground truth data. The combination of echo train sequen-
ces and compressed sensing can dramatically reduce

acquisition times in DTI, and this could lead to improve-

ments in spatial resolution, flexibility in diffusion
schemes, and clinical feasibility.
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