
fncel-16-877131 October 1, 2022 Time: 10:1 # 1

TYPE Original Research
PUBLISHED 06 October 2022
DOI 10.3389/fncel.2022.877131

OPEN ACCESS

EDITED BY

Jessica M. Rosin,
University of British Columbia, Canada

REVIEWED BY

Alexei Verkhratsky,
The University of Manchester,
United Kingdom
Jason R. Plemel,
University of Alberta, Canada

*CORRESPONDENCE

Tsuyoshi Hattori
thattori@staff.kanazawa-u.ac.jp

SPECIALTY SECTION

This article was submitted to
Non-Neuronal Cells,
a section of the journal
Frontiers in Cellular Neuroscience

RECEIVED 16 February 2022
ACCEPTED 13 September 2022
PUBLISHED 06 October 2022

CITATION

Roboon J, Hattori T, Nguyen DT,
Ishii H, Takarada-Iemata M, Kannon T,
Hosomichi K, Maejima T, Saito K,
Shinmyo Y, Mieda M, Tajima A,
Kawasaki H and Hori O (2022) Isolation
of ferret astrocytes reveals their
morphological, transcriptional,
and functional differences from mouse
astrocytes.
Front. Cell. Neurosci. 16:877131.
doi: 10.3389/fncel.2022.877131

COPYRIGHT

© 2022 Roboon, Hattori, Nguyen, Ishii,
Takarada-Iemata, Kannon, Hosomichi,
Maejima, Saito, Shinmyo, Mieda,
Tajima, Kawasaki and Hori. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Isolation of ferret astrocytes
reveals their morphological,
transcriptional, and functional
differences from mouse
astrocytes
Jureepon Roboon1, Tsuyoshi Hattori1*, Dinh Thi Nguyen1,
Hiroshi Ishii1, Mika Takarada-Iemata1, Takayuki Kannon2,
Kazuyoshi Hosomichi2, Takashi Maejima3, Kengo Saito4,
Yohei Shinmyo4, Michihiro Mieda3, Atsushi Tajima2,
Hiroshi Kawasaki4 and Osamu Hori1

1Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University,
Kanazawa, Japan, 2Department of Bioinformatics and Genomics, Graduate School of Advanced
Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan, 3Department of Integrative
Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan,
4Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University,
Kanazawa, Japan

Astrocytes play key roles in supporting the central nervous system structure,

regulating synaptic functions, and maintaining brain homeostasis. The number

of astrocytes in the cerebrum has markedly increased through evolution.

However, the manner by which astrocytes change their features during

evolution remains unknown. Compared with the rodent brain, the brain of the

ferret, a carnivorous animal, has a folded cerebral cortex and higher white to

gray matter ratio, which are common features of the human brain. To further

clarify the features of ferret astrocytes, we isolated astrocytes from ferret

neonatal brains, cultured these cells, and compared their morphology, gene

expression, calcium response, and proliferating ability with those of mouse

astrocytes. The morphology of cultured ferret astrocytes differed from that of

mouse astrocytes. Ferret astrocytes had longer and more branched processes,

smaller cell bodies, and different calcium responses to glutamate, as well

as had a greater ability to proliferate, compared to mouse astrocytes. RNA

sequencing analysis revealed novel ferret astrocyte-specific genes, including

several genes that were the same as those in humans. Astrocytes in the ferret

brains had larger cell size, longer primary processes in larger numbers, and

a higher proliferation rate compared to mouse astrocytes. Our study shows
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that cultured ferret astrocytes have different features from rodent astrocytes

and similar features to human astrocytes, suggesting that they are useful in

studying the roles of astrocytes in brain evolution and cognitive functions in

higher animals.

KEYWORDS

neocortex, astroglia, primary culture, higher mammals, cell proliferation,
morphology, calcium, brain evolution

Introduction

Astrocytes are one of the three major glial cell types in
the brain and play multiple roles by supporting the central
nervous system structure (Schiweck et al., 2018), providing
neurotrophic factors (Schwartz and Nishiyama, 1994; Pöyhönen
et al., 2019), facilitating the formation of the blood-brain
barrier (Janzer and Raff, 1987; Abbott et al., 2006), regulating
synapse formation (Bolton and Eroglu, 2009; Chung et al., 2015),
and maintaining central nervous system homeostasis (Dani
et al., 1992; Gee and Keller, 2005). Astrocytes affect cognitive
processing, including learning, memory, and emotionality by
regulating the connectivity of neural networks (Orr et al.,
2015; Nagai et al., 2019). Astrocyte dysfunction is associated
with neurodevelopmental diseases such as tuberous sclerosis
complex, Rett syndrome, fragile X syndrome, and autism
spectrum disorder (McGann et al., 2012; Molofsky et al., 2012).
Interestingly, a previous study showed that mice engrafted with
human astrocytes exhibited improved learning, suggesting that
astrocytes contribute to improving brain function (Han et al.,
2013).

Crucial advances in the mammalian brain during evolution
include the expansion and folding of the cerebral cortex.
Moreover, the relative number of astrocytes to neurons in
the human cortex is higher than that in the rodent cortex
(Nedergaard et al., 2003). Human astrocytes have much larger
diameters, more complex structures, and longer processes
compared to rodent astrocytes (Colombo, 1996; Oberheim
et al., 2009). Although rodent astrocytes respond to both
ATP and glutamate by increasing their intracellular calcium
concentrations, fetal human astrocytes do not respond to
glutamate but respond to ATP (Zhang et al., 2016). The
propagation of calcium waves is faster in human astrocytes
than in rodent astrocytes (Oberheim et al., 2009; Han et al.,
2013). These studies suggest that the properties of astrocytes
were altered during evolution, which may contribute to the
brain structure and function in higher mammals. However,
the molecular and cellular mechanisms underlying changes in
astrocytes and their contribution to cerebral cortex evolution
remain unclear.

Compared with the rodent brain, the ferret brain has
a folded cerebral cortex, higher white to gray matter ratio,

and ventral hippocampus (Barnette et al., 2009). Therefore,
ferrets have been widely used to investigate the mechanisms
underlying the development and evolution of well-developed
brains (Gilardi and Kalebic, 2021). Ferret astrocytes in the
visual cortex have more territory volume and overlap with
neighboring astrocyte processes compared to mouse astrocytes
(López-Hidalgo et al., 2016; Zhang et al., 2016). Visually evoked
calcium responses in ferret visual cortex astrocytes are robust
and highly tuned to visual stimuli, whereas visual responses
in mouse astrocytes are weak (Schummers et al., 2008). These
studies indicate that investigating ferret astrocytes may facilitate
an understanding of their role in higher brain functions.

In this study, to clarify the features of ferret astrocytes, we
for the first time isolated and cultured astrocytes from neonatal
ferret brains. Our results show that cultured ferret astrocytes
have different cell morphology, gene expression, calcium
response, and proliferation ability from rodent astrocytes and
features similar to human astrocytes. Therefore, ferret astrocytes
may be a useful tool for studying the roles of astrocytes in brain
evolution and higher cognitive functions.

Materials and methods

Animals

Normally pigmented sable ferrets (Mustela putorius furo)
were purchased from Marshall Farms (North Rose, NY, USA)
and maintained as previously described (Kawasaki et al., 2004;
Iwai and Kawasaki, 2009). Wild-type ICR mice were maintained
as previously described (Roboon et al., 2021). The day of
birth was defined as postnatal day 0 (P0). All procedures
were performed in accordance with protocols approved by the
Animal Care and Use Committee of Kanazawa University (AP-
183919).

Astrocyte primary culture

Astrocyte cultures were prepared from the cerebral cortices
of postnatal day 1 (P1) to P3 neonatal mice and P1 ferrets
following the McCarthy and de Vellis (1980) astrocyte model.
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Briefly, cerebral cortices were digested at 37◦C in Hanks’
Balanced Salt Solution containing 2 mg/ml dispase II (383-
02281, Wako, Osaka, Japan). The cells were plated in poly
D-lysine-coated flasks (356537, Corning, Inc., Corning, NY,
USA) and cultured in Dulbecco’s modified Eagle’s medium (044-
29765, Wako) supplemented with 10% fetal bovine serum. After
14 days of cultivation, the culture flasks were shaken at 200 rpm
for 12 h and the supernatant was discarded. Astrocytes were
detached using 0.05% trypsin-EDTA (15400054, Thermo Fisher
Scientific, Waltham, MA, USA), plated at a density of 1 × 105

cells/cm2 into culture dishes, and cultured in the media for
glial cells described above. For cryopreservation, astrocytes were
frozen in 10% dimethyl sulfoxide (1340655, Nacalai Tesque,
Kyoto, Japan) in astrocyte culture medium for 24 h and then
transferred to a liquid nitrogen storage tank.

RNA sequencing transcriptome
profiling

Astrocytes were cultured in the culture media containing
10% fetal bovine serum for 3 days after plating, after which
the media were replaced with serum-free growth media [50%
Neurobasal Medium (21103049, Thermo Fisher Scientific), 50%
Dulbecco’s modified Eagle’s medium, 100 U/ml of penicillin,
100 µg/ml of streptomycin, 1 mm of sodium pyruvate, 2 mm
of L-glutamine, 1 µg/ml of transferrin (T1147, Sigma-Aldrich,
St. Louis, MO, USA), 1 µg/ml of bovine serum albumin,
0.16 µg/ml of putrescine (P5780, Sigma-Aldrich), 0.6 ng/ml
of progesterone (P8783, Sigma-Aldrich), 0.4 ng/ml of sodium
selenite (S5261, Sigma-Aldrich), 5 µg/ml of N-Acetyl Cysteine
(NAC), and 5 ng/ml of heparin-binding EGF-like growth factor
(E4643, Sigma-Aldrich)]. Total RNA from cultured ferrets and
mouse astrocytes was harvested on day 7 and used for RNA
library preparation using the TruSeq Stranded mRNA Sample
Preparation Kit (20020594, Illumina, San Diego, CA, USA), with
polyA selection for ribosomal RNA depletion. Libraries were
generated in duplicate using 500 ng of total RNA extracted
from cultured ferrets or mouse astrocytes. The libraries were
sequenced using an Illumina HiSeq 2000 to obtain paired-end
101-bp reads for each sample.

RNA-sequencing (RNA-seq) reads were aligned to their
reference genomes using STAR v2.7.0f (Dobin et al., 2013)
with default settings. The following Ensembl reference genomes
were used: ferret, MusPutFur1.0.99; mouse, GRCm38.99
(Cunningham et al., 2019). Gene expression profiles were
quantified using Cufflinks v2.2.1 (Trapnell et al., 2012) from
the aligned RNA-seq reads with gene annotation information
corresponding to the reference genomes (Liao et al., 2014). Gene
expression levels are represented as fragments per kilobase of
exon per million reads mapped (FPKM) and normalized by the
number of RNA fragments mapped to the reference genome and
total length of all exons in the transcript. Read counts from the

RNA mapping were obtained by “featureCounts” (Liao et al.,
2014). Read counts, FPKM and gene length of all the transcripts
were listed in the Supplementary Table 1.

Protein extraction and western blot
analyses

Astrocytes cultured in media containing serum for
4 days were lysed in RIPA lysis buffer containing 1% NP-
40, 0.1% sodium dodecyl sulfate, 0.2% deoxycholate, and
protease inhibitors (1 mm phenylmethylsulfonyl fluoride and
1 µg/ml aprotinin), and total protein was extracted. Equal
concentrations of denatured protein lysates were separated
by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
and transferred onto polyvinylidene fluoride membranes.
The membranes were blocked with 5% skimmed milk for
30 min and incubated with primary antibodies against GFAP
(1:2000; G9269, Sigma), vimentin (1:500, SC-7557, Santa Cruz
Biotechnology, Dallas, TX, USA), NDRG2 (1:1000, SC-19468,
Santa Cruz Biotechnology), EAAT1 (1:1000, DS130-095-
814-5-21-2, Miltenyi Biotec, Gladbach Bergisch, Germany),
SOX9 (1:1000, af3075, R&D Systems, Minneapolis, MN,
USA), PMP2 (1:1000, 12717-1-AP, Proteintech, Rosemont,
IL, USA), CALCOCO2 (1:1000, 12229-1-AP, Proteintech),
and β-actin (1:2000, 281-98721, FUJIFILM Wako Chemicals,
Osaka, Japan) at 4◦C for 16 h. The membranes were washed
three times with Tris-buffered saline containing Tween
20 and incubated with anti-rabbit (1:5000, sc-2004, Santa
Cruz Biotechnology), anti-goat (1:1000, sc-2354, Santa Cruz
Biotechnology), or anti-mouse (1:5000, sc-516102, Santa Cruz
Biotechnology) secondary antibodies at room temperature
for 2 h. Immunoreactivity was detected using an enhanced
chemiluminescence system (Luminata Forte HRP substrate,
61-0196-09, Merck Millipore, Billerica, MA, USA). The results
were quantified using ImageJ version 1.52p software (NIH,
Bethesda, MD, USA)1.

Calcium imaging

Astrocytes cultured in serum-containing media for 4 days
were loaded with a calcium indicator, 2.5 µm Fura-2AM
(Dojindo Laboratories, Kumamoto, Japan), and incubated at
37◦C for 40 min. After 15 min of incubation in the culture
media without Fura-2AM, the coverslip containing the cells was
transferred to an imaging chamber with an external solution
(140 mm NaCl, 2.5 mm KCl, 2 mm CaCl2, 1 mm MgCl2, 10 mm
HEPES, and 10 mm glucose, pH 7.4, adjusted with NaOH)
flowing at 1 ml/min at room temperature. Fluorescence images

1 https://imagej.nih.gov/ij/
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were acquired using an upright microscope (BX51WI, Olympus,
Tokyo, Japan) equipped with a water immersion objective (×40,
numerical aperture 0.8; Olympus), mercury light source, filter
wheel system (ProScan II, Prior Scientific, Rockland, MA, USA),
and a cooled CCD camera (CoolSNAP HQ2, Photometrics,
Tucson, TZ, USA). A set of two images at 340 and 380 nm
emission frequencies was recorded every 5 s through a dichroic
mirror (415 nm) and an emission filter (500–530 nm) using
imaging software (MetaFluor, Molecular Devices, Sunnyvale,
CA, USA). Fluorescence signals from selected regions of interest
were background-corrected and expressed as the ratio of
fluorescence intensities at 340 and 380 nm.

5-Bromo-2′-deoxyuridine labeling

The proliferation of astrocytes cultured in media containing
serum was evaluated through double labeling with 5-bromo-
2-deoxyuridine (BrdU, 05650-66, Nacalai Tesque) and GFAP-
positive cells on day 7. The cells were incubated with
BrdU (10 µm) in culture medium for 24 h, fixed with
4% paraformaldehyde (PFA), and permeabilized with 0.1%
Triton-X100. BrdU epitope was exposed by incubating the
cells in 2 M hydrochloric acid at 37◦C for 1 h, followed by
neutralization with 0.1 M sodium borate (pH 8.5) for 20 min.
The cells were then examined using immunocytochemistry, as
described below.

Immunocytochemistry

Cells cultured in serum-containing media were fixed with
4% PFA for 10 min and permeabilized with 0.1% Triton X-100
on day 7. The cells were blocked with 3% bovine serum albumin
and 0.3% Triton-X100 in phosphate-buffered saline (PBS) for
30 min. The cells were stained with antibodies against GFAP
(1:1000), MBP (1:500, MAB386, Merck Millipore), Iba1 (1:300,
019-19741, Wako), NeuN (1:300, MAB377, Merck Millipore),
β-III tubulin (1:500, MAB1637, Merck Millipore), BrdU (1:25,
B44, BD Biosciences, Franklin Lakes, NJ, USA), and Ki67 (1:300,
bs-2130, Bioss, Woburn, MA, USA). Immunocytochemical
labeling was visualized with Alexa FluorTM 488 (1:200, Thermo
Fisher Scientific) or Cy3 (1:200, Jackson ImmunoResearch
Laboratories, West Grove, PA, USA)-conjugated secondary
antibodies. Cell nuclei were visualized using DAPI (D1306,
Molecular Probes, Eugene, OR, USA).

Immunohistochemistry

The animals were deeply anesthetized with an anesthetic
mixture containing medetomidine, butorphanol, and
midazolam and subjected to transcardial perfusion with

PBS, followed by 4% PFA. The brains were post-fixed in 4% PFA
overnight and dehydrated in 30% sucrose for 72 h. The brains
were embedded in OCT compound and stored at −80◦C. Free-
floating coronal sections were prepared using a cryostat. The
sections were washed with PBST (0.3% Triton X-100 in PBS),
blocked with 3% bovine serum albumin and 0.3% Triton X-100
in PBS for 30 min, and incubated overnight with antibodies
against GFAP (1:1000), S100β (1:300, S2532, Sigma-Aldrich),
Ki67 (1:100) and GFP (1:500, 04404-84, Nacalai Tesque). The
sections were washed and labeled with secondary antibodies
conjugated to Alexa FluorTM 488 (1:200) or Cy3 (1:200). Cell
nuclei were visualized using DAPI.

In utero electroporation for ferrets and
mice

In utero electroporation for ferrets was performed as
described previously (Kawasaki et al., 2012; Shinmyo et al.,
2017). Briefly, the uterine horns of anesthetized pregnant ferrets
at E31 were exposed and kept wet by adding drops of PBS
intermittently. The location of embryos was visualized with
transmitted light delivered through an optical fiber cable.
Approximately 2 to 5 µl of DNA solution of pCAG-PBase
and pPB-CAG-EGFP described previously (Hamabe-Horiike
et al., 2021) were injected into the lateral ventricle using a
pulled glass micropipette. Each embryo within the uterus was
placed between tweezer-type electrodes with a diameter of
5 mm (CUY650-P5; NEPA Gene, Japan). Square electric pulses
(100 V, 50 ms) were passed five times at 1-s intervals using an
electroporator (ECM830, BTX, Cambridge, UK). The wall and
skin of the abdominal cavity were sutured, and the embryos were
allowed to develop normally. In utero electroporation for mice
was performed as described previously (Wakimoto et al., 2015).
The same DNA solution described above was injected into the
lateral ventricle at E15.

Image analysis

For in vitro studies, three to five independent cultures
were established, and cells in multiple fields were counted for
each culture. For in vivo studies, three to four brain sections
from each animal were analyzed. Each field was imaged using
z-stacks with 2 µm steps consisting of ten planes. To evaluate
astrocyte proliferation, we analyzed the ratio of Ki67/GFAP or
BrdU/GFAP double-positive to GFAP-positive cells. Astrocyte
proliferation was analyzed in the corpus callosum and layers 2–6
of the cortex. Images were captured using a BZ-x710 microscope
(Keyence, Osaka, Japan), and the cells were counted using
ImageJ software. Morphology of astrocytes was analyzed in layer
2–6 of the cortex. Fluorescence images (1 µm intervals) were
acquired with a laser confocal microscope (Dragonfly; Andor,
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Belfast, Northern Ireland) equipped with an water-immersion
objective lens (×60). Stacked images were obtained using the Fiji
package of ImageJ.

Statistical analysis

The results are expressed as the mean ± standard error of
the mean (SEM), with the number of experiments indicated
by n. An unpaired two-tailed Student’s t-test was used to
evaluate the statistical significance of the results. Differences
were considered statistically significant at P < 0.05.

Results

Isolation of ferret astrocytes

In the ferret brain, astrogenesis begins during the last
4 days of embryonic development (E38–E41) and continues for
2 weeks in the postnatal brain (Gilardi and Kalebic, 2021). In
mice, astrogenesis starts at approximately E18 and continues
for at least a week after birth (Reemst et al., 2016). To obtain
proliferating astrocyte cultures, we isolated mixed glial cells
from the cortices of neonatal P1 ferrets and P1–P3 mice
as described previously (McCarthy and de Vellis, 1980). To
achieve the proper astrocyte density, we cultured glial cells
from one ferret pup in four T75 tissue culture flasks. In
contrast, we used glial cells from the cortices of four mouse
pups in a single T75 flask. The mixed glial cells were cultured
in an astrocyte culture medium supplemented with 10% fetal
bovine serum for 14 days (Figure 1A). On day 7, ferret
cells grew faster than mouse cells and covered most of the
surface area of the culture flasks (Figure 1B). After 14 days of
growth, the flasks were shaken overnight, and the supernatant
was discarded to remove microglia and oligodendrocytes
from the mixed glial culture. The remaining astrocytes were
detached using trypsin-EDTA, replated on culture dishes,
and cultured in media containing serum. To examine the
purity of the astrocyte cultures at 4 days after plating, the
cells were immunostained with antibodies against cell type-
specific markers of astrocytes (GFAP), oligodendrocytes (MBP),
microglia (Iba1), and neurons (NeuN and βIII-tubulin). The
ferret astrocyte culture contained 97% astrocytes, 1% microglia,
and 2% neurons (Figures 1C,D). In contrast, the mouse
astrocyte culture contained 96% astrocytes and 4% microglia
(Figures 1C,E). In addition, the purity of replated ferret
astrocytes after freezing in liquid nitrogen and thawing was
100% (Supplementary Figure 1).

Next, to examine the morphological differences between
cultured astrocytes from ferret and mouse, we performed
phase contrast observation and immunocytochemistry using an
anti-GFAP antibody. There were more branched and longer
processes and smaller cell bodies in ferret astrocytes than

in mouse astrocytes (Figures 1F,G). Furthermore, although
mouse astrocytes showed a cobblestone-like pattern and closely
adhered to adjacent cells, ferret astrocytes did not adhere to each
other, even after they grew and covered most of the culture dish
surface.

Comparison of ferret and mouse
astrocyte transcriptomes

The gene expression profiles of cultured ferret and mouse
astrocytes were compared using RNA-seq. To reduce the effect
of serum in the culture media on gene expression (Foo
et al., 2011), total RNA was prepared from astrocytes cultured
in serum-free media for 4 days (days 3–7). We calculated
FPKM of each gene (Supplementary Table 1) and identified
ferret- or mouse-specific astrocyte genes (FPKM <1 in non-
enriched species, ranked by FPKM in enriched species; Table 1).
A comparison of the results with those of a previous study using
human and mouse astrocytes (Zhang et al., 2016) revealed that
several of the ferret astrocyte-specific genes were also present
in humans, including Calcoco2 and Pmp2 (Table 2). We further
confirmed that PMP2 and CALCOCO2 protein expression were
significantly higher in ferret astrocytes than in mouse astrocytes
(Supplementary Figure 2).

Next, we compared the expression of astrocyte-specific
genes (Boisvert et al., 2018) in the cells treated with serum-
free media. Astrocyte-markers were expressed in both species,
although the expression levels of Aqp4, Aldh1l1, Apoe, Ndrg2,
Slc1a2, and Slcla3 were lower in ferret astrocytes (Table 3). In
contrast, S100b and Aldoc were higher in ferret astrocytes.

Expression of astrocyte markers in
cultured ferret astrocytes

To further investigate the protein expression of astrocyte
markers in cultured ferret astrocytes, we performed western
blot analysis using antibodies against GFAP, vimentin, SOX9,
EAAT1, and NDRG2. All of these markers, except for NDRG2,
were expressed in ferret astrocytes (Figures 2A–F). The
expression levels of GFAP were significantly higher than those
of the other markers (Figures 2A–C), whereas the SOX9 and
EAAT1 expression levels were significantly lower in ferret
astrocytes than in mouse astrocytes (Figures 2A,D,E). These
results indicate that markers of rodent astrocytes, such as GFAP,
vimentin, and SOX9, can also be used for ferret astrocytes.

Calcium response of cultured ferret
astrocytes

Although rodent astrocytes respond to sensory input,
synaptic glutamate, and extracellular ATP by increasing their
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FIGURE 1

Purification and morphological analysis of ferret and mouse astrocytes. (A) Experimental procedure used to culture ferret and mouse astrocytes.
Mixed glial cells and astrocytes were cultured in media containing 10% fetal bovine serum. (B) Representative phase-contrast images of ferret
and mouse mixed glial culture at 7 and 14 days in vitro (DIV). Scale bars = 100 µm. (C) Cultured ferret and mouse astrocytes were subjected to
immunocytochemistry of GFAP, MBP, Iba1, NeuN, and β-III tubulin at 4 days after plating. Nuclei were counterstained with DAPI. Scale
bars = 100 µm. (D,E) Proportion of astrocytes, oligodendrocytes, microglia, and neurons in ferret and mouse astrocyte cultures. n = 3
independent cultures. (F,G) Representative images of phase-contrast and immunocytochemistry of ferret and mouse astrocytes at 4 days after
plating, with GFAP antibody. Nuclei were counterstained with DAPI. Scale bars = 20 µm.
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TABLE 1 Expression of top 20 species-specific genes.

Genes in ferret astrocytes not found in mouse astrocytes Genes in mouse astrocytes not found in ferret astrocytes

Gene symbol Ferret astrocyte
expression

Mouse astrocyte
expression

Gene symbol Ferret astrocyte
expression

Mouse astrocyte
expression

Calcoco2 180.2 0.02 Serpinf1 0.11 641.5

Ptp4a1 144.6 0.58 Lcn2 0.00 460.7

Cyp26a1 140.9 0.02 Tmem176b 0.06 201.5

Aldh1a3 115.8 0.30 Cavin2 0.34 179.0

Agt 108.6 0.71 Aldh1a1 0.63 153.9

Psmd5 102.6 0.63 Tyrobp 0.69 145.5

Rtl5 101.7 0.67 Cyp26b1 0.35 144.9

Pam 86.6 0.00 Cemip 0.21 123.0

Mpz 84.7 0.06 Tmem176a 0.00 121.9

Pmp2 78.2 0.09 C1qb 0.57 119.2

Pygm 69.6 0.46 Ctss 0.68 105.9

Ldoc1 51.2 0.03 Pcolce 0.71 90.7

Nts 49.4 0.00 Mpeg1 0.45 84.0

St6galnac2 48.0 0.28 Mgp 0.00 74.4

Ifi44l 47.9 0.06 Mfsd2a 0.76 66.9

Dut 41.4 0.00 Thbd 0.27 64.1

Pdlim3 39.0 0.12 C3 0.06 60.4

Ppp2r2c 35.1 0.56 Apobec1 0.00 58.7

Gpr83 33.0 0.08 Slc39a12 0.42 54.6

Sbspon 31.1 0.13 Laptm5 0.20 50.5

Genes were ranked by FPKM. Species-specific astrocyte genes have FPKM values <1 in astrocytes from non-enriched species.

TABLE 2 Human-astrocyte specific genes identified in ferret astrocytes (Zhang et al., 2016).

Genes in human and ferret astrocytes not found in mouse astrocytes

Gene symbol Ferret astrocyte expression Mouse astrocyte expression

Calcoco2 157.1 0.03

Pmp2 51.5 0.08

Top 20 Ferret-enriched genes were compared with top 20 human-enriched genes (Zhang et al., 2016). Genes in human and ferret astrocytes not found in mouse astrocytes
were ranked by FPKM.

intracellular calcium concentrations, cultured fetal human
astrocytes, which proliferate robustly, respond to ATP but not
to glutamate (Zhang et al., 2016). In contrast, cultured adult
human astrocytes that do not divide respond to both ATP
and glutamate. To investigate the calcium response in ferret
astrocytes, we performed calcium imaging experiments using
Fura-2AM. Cultured ferret astrocytes clearly responded to ATP
by increasing their increasing calcium levels but did not respond
to glutamate (Figures 3A,B). Therefore, the calcium response
properties are similar between cultured ferret neonatal and
human fetal astrocytes.

Proliferation and morphology of ferret
astrocytes

To compare the proliferation ability of ferret and
mouse astrocytes, we performed a BrdU assay and

immunocytochemistry of Ki-67, a cell proliferation marker, in
cultured cells. We observed a significantly higher rate of BrdU
incorporation and Ki-67 positive cells in ferret astrocytes than
in mouse astrocytes (Figures 4A–D). Immunohistochemical
analysis of Ki-67 and GFAP antibodies in the postnatal and
adult brains of ferrets and mice showed that the proliferation
rate was higher in postnatal brains than in adult brains
(Figures 5, 6). The proliferation rate was significantly higher
in ferrets than in mice in the cortex and corpus callosum
(Figures 5A–D). In adult brains, although the proliferation rate
was low in both ferret and mouse brains, it was still higher in
ferrets than in mice, both in the cortex and corpus callosum
(Figures 6A–D). These results indicate that ferret astrocytes
have a greater ability to proliferate compared to mouse
astrocytes. In addition, the morphology of GFAP-positive
astrocytes was consistent with that of cultured ferret astrocytes
(Figure 1G). Ferret protoplasmic astrocytes had more branched
and longer processes than mouse astrocytes in the postnatal
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TABLE 3 Expression levels of astrocyte-specific marker genes (FPKM)
in ferret and mouse astrocytes.

Astrocyte-specific markers

Gene symbol Ferret
astrocyte

expression

Mouse
astrocyte

expression

Gfap 1,501.6 1,487.1

Vim 1,229.8 4,261.9

Aqp4 23.2 205.7

S100b 245.5 60.2

Aldh1l1 9.8 82.7

Apoe 12.0 3,174.9

Aldoc 1,659.6 965.4

Sox9 17.6 33.5

Ndgr2 20.8 161.2

Slc1a2 0.1 49.4

Slc1a3 80.5 180.8

(Figures 5Aiii,Biii) and adult brains (Figures 6Aiii,Biii).
A similar trend was observed for ferret fibrous astrocytes in
the corpus callosum (Figures 5Ai,Bi). To investigate detailed
morphology of ferret and mouse astrocytes in the developing
brain, we performed in utero electroporation of GFP-expressing
vectors in the cortex during astrogenesis by using the piggybac

system (Hamabe-Horiike et al., 2021). In consistent with a
previous study of ferret visual cortex using fluorescent dyes
(Lopez-Hidalgo et al., 2016), ferret protoplasmic astrocytes had
larger cell size, longer primary processes in larger numbers, less
spherical shapes, and more invaginations than mouse astrocytes
(Figure 5E).

Discussion

We investigated the features of ferret astrocytes using ferret
and mouse astrocytic culture systems. Cultured ferret astrocytes
had longer and branched processes and smaller cell bodies
compared to mouse astrocytes. There were common genes
in ferret and human astrocytes that were not expressed in
mouse astrocytes. Ferret astrocytes showed a calcium response
similar to that of human fetal astrocytes, along with a higher
proliferation rate than that of mouse astrocytes in vitro and
in vivo. These results suggest that the features of ferret astrocytes
differ from those of mouse astrocytes and are common to those
with human astrocytes.

We observed that cultured ferret astrocytes had long
branched processes and small cell bodies (Figure 1). These
features were similar to those of human astrocytes cultured
without serum (Zhang et al., 2016). In the cortex, ferret
protoplasmic astrocytes had larger cell size, more number of

FIGURE 2

Expression of astrocyte-specific markers. (A) Ferret and mouse astrocytes cultured with serum for 4 days were subjected to western blot
analysis of astrocyte-specific markers GFAP, vimentin, SOX9, EAAT1, NDRG2, and β-actin. (B–F) Relative optical density of astrocyte-specific
markers normalized to the loading control β-actin. n = 5 independent cultures. Data represent the means ± SEM. The P-values were
determined using paired Student’s t-test. ∗P < 0.05 and ∗∗P < 0.01.
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FIGURE 3

Calcium responses of ferret astrocytes. (A) Effect of bath-applied glutamate (10 µm) and ATP (10 µm) on intracellular calcium concentration
[(Ca2+)i] of ferret astrocytes. The [Ca2+]i was measured from the fluorescent images of cells and expressed as the ratio of Fura-2 intensities at
340 and 380 nm (F340/F380). The time course of changes in the F340/F380 of individual cells shown in the inset are plotted by the
corresponding-colored lines depicting the regions of interest. (B) Summary plots representing the changes in Fura-2 ratio following treatments
of individual cells with glutamate and ATP, expressed as delta ratio (peak ratio during reagent application minus ratio prior to application). The
mean values (±SEM, n = 22 cells from 1 independent culture) of the delta ratios induced by each reagent are plotted beside the individual data.

elongated primary processes (Figure 5E). These features are
similar to those of human protoplasmic astrocytes. Human
protoplasmic astrocytes had longer processes in larger numbers,
larger cell diameters, and more overlap with adjacent cells than
with mouse astrocytes (Vasile et al., 2017). These features may

contribute to the coverage of more synapses and are considered
to locally integrate information from a large number of cortical
synapses (Vasile et al., 2017). However, we did not explore
whether ferret astrocytes share their territories with other
astrocytes in the cortex and corpus callosum, as observed in the
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FIGURE 4

Proliferation of ferret and mouse astrocytes. (A–D) Ferret and mouse astrocytes cultured with serum for 4 days were subjected to
immunocytochemistry with antibodies against GFAP, BrdU, and Ki67. Nuclei were counterstained with DAPI. Scale bars = 50 µm. (B,D)
Proportion of BrdU- or Ki67-positive cells in GFAP-positive astrocytes. n = 5 independent cultures. Data represent the means ± SEM. The
P-values were determined using paired Student’s t-test. ∗∗P < 0.01.

human brain. Additionally, other types of astrocytes, such as
interlaminar astroglia in cortical layer I and varicose projection
astroglia in layers V–VI, are present in the human brain
(Oberheim et al., 2009). Interestingly, these cells are also found
in primates, although their roles in brain function remain largely
unknown. Thus, further studies of the territorial overlap and
types of astrocytes in the ferret brain are necessary to understand
the functional roles of astrocytes in higher mammals. As a
candidate gene responsible for morphological features, Pmp2
may be involved in regulating ferret astrocyte size. We found
that Pmp2 was expressed in ferrets but not in mouse astrocytes

(Table 2). Previous studies reported that PMP2 is expressed
in humans but not in mouse astrocytes; infection of mouse
astrocytes with a PMP2-expressing virus increased the cell
diameter and number of primary processes (Kelley et al., 2018).
Furthermore, PMP2 transports fatty acids to the cell membrane,
contributing to lipid homeostasis in myelinating Schwann cells
(Zenker et al., 2014). Because astrocytes contribute to the
substantial fraction of lipids incorporated into the myelin of the
central nervous system (Camargo et al., 2017), lipid metabolism
in astrocytes may be enhanced to expand the white matter in
higher mammals.

Frontiers in Cellular Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fncel.2022.877131
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-16-877131 October 1, 2022 Time: 10:1 # 11

Roboon et al. 10.3389/fncel.2022.877131

FIGURE 5

Proliferation of ferret and mouse astrocytes in the developing brain. (A,B) Representative images of GFAP and Ki67 in the cortex and corpus
callosum of the postnatal ferret at P16 (A) and mouse at P8 (B). Nuclei were stained with DAPI. Arrowheads indicate Ki67-positive astrocytes.
(C,D) Proportion of Ki67-positive cells in GFAP-expressing astrocytes in the corpus callosum (C) and cortex (D) of ferret and mouse brains.
(E) Representative images of GFP-transfected astrocytes in the cortex of the ferret (P36) and mouse (P30). Scale bars = 100 µm in (A i) and (B i);
200 µm in (A ii) and (B ii); 50 µm in (A iii) and (B iii); and 30 µm in panel (E). n = 4 animals each group. Data represent the means ± SEM. The
P-values were determined using paired Student’s t-test. ∗∗P < 0.01.

Cultured ferret astrocytes showed a calcium response
to ATP but not to glutamate (Figures 3A,B), similar to
human fetal astrocytes. Human fetal astrocytes do not
react to glutamate, whereas mature astrocytes derived from
the brain of people 8–68 years of age show elevated
intracellular calcium levels in response to glutamate and ATP
(Zhang et al., 2016). Accordingly, mature ferret astrocytes

derived from post-astrogenesis stages (later than P14) may
respond to glutamate. The application of glutamate to mature
human astrocyte cultures induces a sharp and dose-dependent
increase in intracellular Ca2+ levels by activating metabotropic
glutamate receptor 5 (mGluR5) (Zhang et al., 2016). This
phenomenon has also been observed in mouse astrocytes, and
even in the neonatal brain (Sun et al., 2013). However, in
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FIGURE 6

Proliferation of ferret and mouse astrocytes in the adult brain. (A,B) Representative images of GFAP and Ki67 in the cortex and corpus callosum
of adult ferret at P100 (A) and mouse at P70 (B). Nuclei were stained with DAPI (blue). Arrows indicate Ki67-positive astrocytes. (C,D) Proportion
of Ki67-positive cells in GFAP-expressing astrocytes in the corpus callosum (C) and cortex (D) of ferret and mouse brains. Scale bars = 100 µm
in (A i) and (B i); 200 µm in (A ii) and (B ii); and 50 µm in (A iii) and (B iii). n = 4 animals each group. Data represent the means ± SEM. The
P-values were determined using paired Student’s t-test. ∗P < 0.05.

our RNA-seq analysis, the mGluR5 expression levels in ferret
astrocytes were similar to those in mouse astrocytes. mGluR1,
another group I metabotropic glutamate receptor, showed lower
expression in ferret astrocytes (data not shown), which may
account for the differences in their calcium responses compared

to in mouse cells. In addition, some mGluR5 expression levels
in cultured astrocytes are different from those in the brain
and affected by reactivity of the cells (Spampinato et al., 2018).
Further in vivo study is needed to clarify the calcium response to
ATP and glutamate in the ferret brain.
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Consistent with the higher proliferation rate of cultured
ferret astrocytes (Figure 4), ferret astrocytes, particularly in
the postnatal cortex, showed higher proliferation than mouse
astrocytes (Figures 5A,C). This higher proliferative ability of
ferret astrocytes likely contributes to their high astrocyte counts
and large brain size (Nedergaard et al., 2003). We prepared
astrocyte cultures from P1 ferrets and P1–3 mouse cortices and
observed that the astrocytes proliferated in P16 ferret brains and
P8 mouse brains. These developmental stages in each species
appear to correlate with the timing of astrogenesis. Astrogenesis
occurs from E18 to around P7 in mice (Reemst et al., 2016),
whereas in ferret it starts from E38 (4 days before birth) and
finishes by approximately P14 (Gilardi and Kalebic, 2021).
However, it is difficult to accurately compare the proliferation
ability of astrocytes both in vivo and in vitro, as the period of
astrogenesis in each species is not the same, and the proliferation
rate of astrocytes changes during cortical development (Shoneye
et al., 2020). In addition to proliferation ability, the duration
of astrogenesis and brain development in ferrets is longer than
that in the rodent brain (Barnette et al., 2009), which may also
contribute to the generation of a large number of astrocytes in
ferret brains.

Astrocytes have evolved to play important roles in brain
function in higher animals. To understand their detailed roles
in leading to higher cognitive functions with increased brain
size, purified astrocytes from higher mammals must be analyzed.
Isolation of ferret astrocytes using the McCarthy and de Vellis
(1980) model was a good experimental tool for this study
because of the ease of purification, large number of cells, low
cost, efficient revival after freezing, and common features with
human astrocytes. We found that Calcoco2 and Pmp2 were
expressed in humans and ferrets but not in mouse astrocytes
(Table 2). These molecules may be related to the specific
roles of astrocytes in brain evolution in higher mammals.
We observed high protein expression levels of PMP2 and
CALCOCO2 in cultured ferret astrocytes (Supplementary
Figure 2). PMP2 increases the size and processes of human
astrocytes and is involved in lipid homeostasis in Schwann
cells (Zenker et al., 2014; Kelley et al., 2018). In contrast,
CALCOCO2 acts as an autophagic receptor for phosphorylated
tau, facilitating its clearance and modulating inflammation by
regulating nuclear factor-κB signaling downstream of the Toll-
like receptor pathways (Till et al., 2013; Kim et al., 2014). Ferret
astrocytes may exhibit different inflammatory responses under
different pathological conditions (Li et al., 2021). Our culture
system used serum-containing media and 3 weeks of cultivation
were required to perform assays after harvesting the cortices.
Serum exposure appears to alter astrocyte transcriptomes and
morphology, resulting in fewer processes and hypertrophied cell
bodies (Foo et al., 2011). Further gene expression analyses, cell
proliferation assays, and calcium imaging studies on directly
isolated astrocytes and in developing ferret brains are necessary
to confirm our findings.

In conclusion, the characteristics of cultured ferret
astrocytes differ from those of mouse astrocytes, such as
their morphology, gene expression, calcium response, and
proliferation ability, which are similar to the features of human
astrocytes. Cultured ferret astrocytes may be useful for studying
the roles of astrocytes in brain evolution, higher cognitive
function, and dysfunction, such as in schizophrenia and autism,
in higher mammals.
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