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Ischemic stroke (IS) is a high-incidence disease that seriously threatens human

life and health. Neuroinflammation and immune responses are key players in

the pathophysiological processes of IS. However, the underlying immune

mechanisms are not fully understood. In this study, we attempted to identify

several immune biomarkers associated with IS. We first retrospectively

collected validated human IS immune-related genes (IS-IRGs) as seed genes.

Afterward, potential IS-IRGs were discovered by applying random walk with

restart on the PPI network and the permutation test as a screening strategy.

Doing so, the validated and potential sets of IS-IRGs were merged together as

an IS-IRG catalog. Two microarray profiles were subsequently used to explore

the expression patterns of the IS-IRG catalog, and only IS-IRGs that were

differentially expressed between IS patients and controls in both profiles

were retained for biomarker selection by the Random Forest rankings.

CLEC4D and CD163 were finally identified as immune biomarkers of IS, and

a classificationmodel was constructed and verified based on the weights of two

biomarkers obtained from the Neural Network algorithm. Furthermore, the

CIBERSORT algorithm helped us determine the proportions of circulating

immune cells. Correlation analyses between IS immune biomarkers and

immune cell proportions demonstrated that CLEC4D was strongly correlated

with the proportion of neutrophils (r = 0.72). These resultsmay provide potential

targets for further studies on immuno-neuroprotection therapies against

reperfusion injury.
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Introduction

Stroke, which is common among elderly patients, is often

associated with a poor prognosis. Ischemic stroke (IS) accounts

for up to 87% of the total stroke burden worldwide (Saini et al.,

2021), and it represents an increasing economic and health

burden as the population ages (Benjamin et al., 2018). To

date, clinically approved treatments for acute IS, including

intravenous thrombolysis (IVT) and endovascular treatment

(EVT), are still limited and restricted with narrow time

windows after the appearance of symptoms (Saver and

Adeoye, 2021). The main goal of such therapies is to ensure

the reperfusion of the ischemic penumbra, a region that remains

viable over a limited period before irreversible ischemic neuronal

death occurs (Moskowitz et al., 2010). Remarkably, reperfusion

has a definite therapeutic effect on IS, and the inclusion of

neuroprotection would also revolutionize the treatment of this

disease.

IS a disease with a complex and intricate pathophysiology.

During the past decades, several trigger elements have been

unraveled to be associated with brain injury after IS, including

excitotoxic and microvasculature injuries, blood-brain barrier

(BBB) disruption, edema, and neuronal death induced by glucose

and oxygen deprivation (OGD) (Iadecola et al., 2020; Levard

et al., 2021). Besides, immune responses also play an important

role in the mechanisms underlying IS. Post-ischemic

inflammation can be regarded as the immune system’s

response to the disruption of tissue homeostasis (Anrather

and Iadecola, 2016). According to the danger theory (Liesz

et al., 2015), the release of damage-associated molecular

patterns (DAMPs) caused by primary damage to brain cells

defines a common pathway that facilitates both innate and

adaptive immune responses within the brain and,

subsequently, the peripheral circulation (Shi et al., 2019). Over

the last 2 decades, researchers have made great progress in

characterizing the general pattern of immune responses/

inflammation in the brain after IS. Besides, numerous

attempts have been made to identify potential biomarkers that

may help predict the outcomes or guide the treatment decisions

of IS (Xu et al., 2020; Wang et al., 2021; Xu et al., 2021; Li et al.,

2022; Zhong et al., 2022). However, there are still several

limitations that need to be overcome to obtain a

comprehensive understanding of the immune landscape of IS.

There have been previous studies on immune responses after IS,

most were conducted on experimental models and a few on

human post-mortem brain tissue. Thus, the paucity of human in

vivo data has limited our exploration of this important topic. In

addition, there is little clinical evidence of peripheral immune

cells mobilization and vascular inflammation (Shi et al., 2019).

Given the abovementioned limitations, identifying immune

biomarkers of IS patients at the level of the peripheral

circulation is a crucial task for unveiling the underlying

mechanisms of this complex disease, and may provide

molecular grounds for the development of efficient

neuroprotective strategies.

In recent years, the principle of “guilt by association” (Oliver,

2000), whose central idea is that functional similar genes and

their products often have either physical interactions or

functional associations, which plays a prominent role in the

development of computer algorithms for predicting novel

relative genes based on known disease genes (Wu et al., 2008;

Luo et al., 2019; Liang et al., 2021; Zhang et al., 2021; Wang et al.,

2022). The STRING database (Keshava et al., 2009) is a reliable

database that contains large amounts of molecular protein-

protein interaction (PPI) data obtained from various sources.

In this network, the associations between proteins are quantified

by confidence scores. Thus, based on the associations between

potential genes and known IS immune-related genes obtained

from the PPI network, it is possible for us to predict more novel

genes involved in immune responses after IS.

In this study, we applied the random walk with restart

(RWR) algorithm (Köhler et al., 2008), a strategy that belongs

to network propagation (Cowen et al., 2017), on the PPI network

to identify potential IS immune-related proteins with the input of

the previously validated ones we collected. Thus, a gene catalog

consisting of both the validated and predicted IS immune-related

genes (IS-IRGs) was constructed. Then, differentially expressed

genes (DEGs) between IS patients and controls in twomicroarray

profiles were identified for further verification of the IS-IRG

catalog we constructed. To screen for key molecular features at

the acute phase of IS, we incorporated two machine learning

strategies: the Random Forest (RF) algorithm and Neural

Networks to the IS-IRGs representing the overlap of DEGs

between IS and non-IS samples and the catalog we

constructed. Lastly, we established the characteristics of

circulating immune cells in each sample using the

CIBERSORT algorithm. This study will enhance the

understanding of the role of immune responses/inflammation

in IS with the ultimate aim of providing a rationale for

neuroprotective therapies for IS.

Materials and methods

Collection of human validated IS immune-
related genes

Using the key search terms “ischemic stroke” AND

“immune”, we manually searched the PubMed database

(https://pubmed.ncbi.nlm.nih.gov/) for articles published

in English at any time before 16 November 2021. Only the

Homo sapiens species of the immune-related genes was

considered. We thoroughly read the 5,980 items that

resulted from our searches and picked out the validated

human IS immune-related genes that met the following

criteria: i) the gene was present in at least three IS
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samples (including blood and brain tissue samples); ii) the

gene was validated through reliable basic biological

experimental methods such as RT-PCR and Western Blot;

and iii) the gene was differentially expressed at mRNA or

protein level (p < 0.05). Finally, a total of 76 validated human

IS immune-related genes were identified and eventually used

as seed genes for identifying novel candidate genes associated

with the immunity involved in the pathogenesis of IS.

PPI network

We downloaded the files named “9606.protein.links.v11.5.txt.gz”

and “9606.protein.info.v11.5.txt.gz” from the STRING database

(Keshava et al., 2009) to construct the PPI network. The former

file contains 11,938,498 human PPI pairs, and each PPI pair includes

two proteins displayed by their Ensembl IDs, as well as a confidence

score representing the PPI strength. The latter one lists the

correspondences between Ensembl IDs and gene symbols. The

confidence scores range from 1 to 999. Here, two proteins that are

highly functionally associated with each other achieve a high score.

Since 900 is the cutoff value for the highest confidence, we only

retained PPI pairs with confidence scores of >899. The retained PPIs
were used to build the high-confidence PPI network which termed G

in subsequent sections.

Random walk with restart

In the present study, additional genes with the potential for

functional association with the seed genes were identified by the

algorithm of RWR based on the PPI network.

The mathematical process of the RWR was run through the

formula below:

P(t + 1) � (1 − α)MTP(t) + αP(0)

P (0) represents the initial vector, and it contained 19,247

(number of total proteins in PPIs) components. Each

component of the vector represented the probability that

the corresponding node would be an IS-IRG. Here, P (0), the

probability scores of the components that represent seed

genes (namely validated IS-IRGs) were set at 1/76 while those

of other components were set at 0. M represents the column-

wise normalized adjacency matrix of the PPI network, G. The

parameter α, a value ranging from 0 to one that represents

the probability of the walker returning to the initial nodes,

was set at 0.3 according to a previous study (Li et al., 2021). P

(t+1) is the network node’s rank in step (t +1) when the

probability vector became stable, which was measured using

‖P (t+1) − P(t)‖< 10−6, the RWR algorithm stopped and out-

put P (t+1) as the result. A gene that was assigned a high

probability was more likely to be a potential IS-IRG. We set

the threshold 10–4 for selecting candidate IS-IRGs.

Permutation test

Since there are inevitable false positive interactions in the

network G, we performed permutation test to authenticate our

results. In this test, 1,000 gene sets were randomly produced, each

of which comprised 76 Ensembl IDs. Then, 76 Ensembl IDs in

each set were used as seed nodes in the RWR algorithm to yield a

probability for each node in the network G. After testing all

1,000 gene sets, each gene in network G got 1,000 probabilities.

For each candidate IS-IRG g, a measurement called the

permutation FDR was calculated using the formula below:

FDR(g) � δ

1000

Where δ represents the number of randomly produced sets in

which the score of gene g is larger than the score yielded by the

validated IS-IRGs. As shown in the formula, candidate genes with

high FDR scores are more likely to be false-positive genes because

they are not specifically identified by validated IS-IRGs. That is to

say, we should select potential IS-IRGs with low p-values. Given

that 0.05 is the standard threshold p-value for statistical

significance, we set this value as the threshold FDR value. The

remaining genes were designated as potential IS-IRGs.

Enrichment analysis

Here, we constructed a gene catalog of IS-IRGs by merging

validated human IRGs and potential IS-IRGs. To explore the

biological functions among IS-IRGs, we applied gene ontology

(GO) and the Kyoto encyclopedia of genes and genomes (KEGG)

pathway analysis using the R package “clusterProfiler” (version

4.2.0). The GO and KEGG pathway databases originated from

the “org.Hs.eg.db” package. The threshold for statistical

significance was set at a p-value of 0.05 for selecting enriched

GO terms and KEGG pathways. The results were visualized using

the “ggplot2” R package.

Datasets collection and data processing

The following two human microarray profiles

(GSE16561 and GSE58294) and one high throughput

sequencing dataset (GSE102541), which are available in the

Gene Expression Omnibus (GEO) database, were used in this

study. Details of the selected microarray datasets are presented in

Table 1. The GSE16561 and GSE58294 datasets were used to

screen for IS immune biomarkers and construct Neural Network

models, while the GSE102541 profile was used to verify such a

model. Data processing was performed using R (version 4.1.1).

The series matrix file of each dataset was downloaded from the

GEO database. The R package “AnnoProbe” was used to conduct

the quantile normalization and background correction of data.
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The differentially expressed genes (DEGs) between IS and

healthy control samples were identified using the “limma”

package with an adjusted p-value of <0.05 and a fold-

change (FC) of 1.2 as the threshold. The heatmap plots were

generated using the “ComplexHeatmap” R package.

Screening of key immune-related
biomarkers of IS

The intersection set of GSE16561 DEGs, GSE58294 DEGs,

and IS-IRG catalog was selected as candidate immune

biomarkers of IS for further analysis. Random Forest is an

ensemble learning algorithm that combines many individual

decision trees into a single predictive algorithm. The

algorithm repeatedly subsamples the input data to create

regression trees that best fit the relationship between

predictors and responses. It is a powerful ranking algorithm

that was used to identify the key features (immune biomarkers)

of IS patients in our study. Using the “randomForest” R package,

we calculated the Gini importance scores for candidate immune-

related signatures separately in the GSE16561 and

GSE58294 datasets according to the respective gene expression

values. Subsequently, 25% of all biomarkers with stronger

importance in each dataset were retained according to the

Gini mean decrease index, while the remaining 75% of them

were discarded. By taking the intersection set of biomarkers

retained above in the GSE16561 and GSE58294 datasets, IS

immune biomarkers were finally identified.

The Neural Network fits a model by taking the predictors as

inputs into artificial neurons and firing when the weighted inputs

reach a certain level. It is typically used for modeling the complex

nonlinear relationship between the dependent and predictor

variables. For Neural Network model construction, we

transformed the normalized gene expression matrix into a

binary gene expression (0,1) matrix. For a sample, if the

expression level of an up-regulated IS immune biomarker was

equal to or greater than the median expression of this biomarker

across all samples, then the matrix value for that biomarker in

that sample was assigned as 1, otherwise, it was assigned as 0. A

similar pattern, although reversed, was true for down-regulated

IS immune biomarkers. The binary matrix was subsequently

input into the Neural Network model, which was constructed by

the “neuralnet” (v1.44.2) package of R. And the R package

‘NeuralNetTools’ (v1.5.3) was used for visualization. The

number of hidden neurons in each layer was set at 5, the

activation function was set as “logistic”, and the rest of the

arguments were left as default. The classification performance

of the combination of immune-related biomarkers in each

training set was assessed via the ROC multifactor analysis.

The model with the higher AUC was validated in the test

dataset. The “pROC” package for R was used to obtain the

area under the ROC curve.

Evaluation of circulating immune cell
distribution

The main function of the CIBERSORT algorithm is to infer

the infiltrating fractions of 22 sub-types of immune cells from

expression profiling referring to leukocyte signature matrix

LM22 (Newman et al., 2015). We performed CIBERSORT via

the provided R script (https://cibersortx.stanford.edu) using

1,000 permutations without quantile normalization in the

local R environment. The v-SVR function was implemented

by the “e1071” (version 1.7–9) R package. Only samples with

a significant p-value (p < 0.05) in the CIBERSORT results were

considered more accurate evaluations of the immune cell

composition, and such samples were picked out for further

analysis. All evaluated 22 sub-types of immune cell fractions

added up to one for each sample. GSE16561 was used to quantify

the infiltrated immune cells at the acute phase of IS.

Results

Construction of a human IS-IRG catalog

We manually collected a total of 76 genes that were

experimentally validated to be associated with the

immunopathological process of IS (Supplementary Table S1).

Based on these validated IS-IRGs, we performed GO (Figure 1A)

and KEGG (Figure 1B) enrichment analyses. The results of the

GO enrichment analysis suggested that these validated IS-IRGs

TABLE 1 Information of GEO datasets.

ID Sample type Platform IS sample Control sample

Training set

GSE16561 Peripheral whole blood GPL6883 39 24

GSE58294 Peripheral whole blood GPL570 69 23

Test set

GSE102541 Peripheral whole blood GPL22755 6 3
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were mainly enriched in terms such as “regulation of

inflammatory response,” “positive regulation of cytokine

production,” peptidyl-tyrosine phosphorylation-associated

procedures, and JAK-STAT-related pathways (Figure 1A). We

identified a total of 60 KEGG pathways (p < 0.05) via the KEGG

pathway enrichment analysis. The top ten pathways and the

corresponding gene ratios are presented in Figure 1B. KEGG

results revealed that the validated IS-IRGs were mainly enriched

in the “cytokine-mediated signaling pathway”, “positive

regulation of response to external stimulus”, “positive

regulation of cytokine production”, “regulation of

inflammatory response”, “regulation of cell-cell adhesion”, etc.

To identify more genes that tended to be associated with the

immunopathological process of IS, we used the RWR algorithm

to the high-confidence PPI network and the permutation test to

reduce the number of false positives. In the PPI network G we

constructed, 19,247 proteins served as nodes and 247,200 PPIs as

edges. Seventy-six validated IS-IRGs were mapped into G as seed

genes, after which we used the RWR algorithm in network G to

score all genes apart from seed genes. Thus, we generated a

ranking list of scores representing the probabilities of each gene

in G being a candidate IS-IRG. Genes with probabilities of >10−4
were retained, and there were 5,838 such genes. We then used the

permutation test to filter out the false-positive genes among the

5,838 genes, which yielded 263 genes (Supplementary Table S2)

as the potential IS-IRGs. By merging validated and potential IS-

IRGs, a catalog of IS-IRGs was constructed, which contained

339 genes. GO enrichment analysis (Figure 1C) and the KEGG

pathway enrichment analysis (Figure 1D) were applied based on

the IS-IRG catalog we identified. The GO analysis results of the

FIGURE 1
Items of GO and KEGG enrichment analysis. (A)GO analysis for validated IS-IRGs. (B) KEGG analysis for validated IS-IRGs. (C)GO analysis for the
IS-IRG catalog. (D) KEGG analysis for the IS-IRG catalog. GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular
function; KEGG, Kyoto Encyclopedia of Genes and Genomes; IS-IRGs, ischemic stroke-immune related genes.
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IS-IRG catalog were similar to those of validated IS-IRGs

(Figure 1C). The KEGG analysis revealed that the IS-IRG

catalog was enriched in “Cytokine-cytokine receptor

interaction”, “T cell receptor signaling”, “Yersinia infection”,

“Natural killer cell-mediated cytotoxicity” and “JAK−STAT

signaling” pathways. (Figure 1D).

Identification of DEGs and expression
patterns of the IS-IRG catalog

The DEGs between IS and healthy control samples in the

GSE16561 and GSE58294 datasets were identified using the

“limma” package of R with an adjusted p-value of <0.05 and

FC of 1.2 as the threshold. As shown in Figures 2A, B, we

obtained 1,254 down-regulated genes and 911 up-regulated genes

from the GSE16561 dataset. In the GSE58294 dataset, a total of

3,510 down-regulated genes and 3,415 up-regulated genes were

isolated (Figures 2C, D).

DEGs belonging to the IS-IRG catalog were obtained by the

intersection of the following three gene sets: DEGs of GSE16561,

DEGs of GSE58294, and the IS-IRG catalog. As a result, we finally

obtained 36 genes present in all the three gene sets above, and

they were defined as potential IS immune biomarkers for further

analyses (Figure 2E). The up-regulated and down-regulated

trends of these 36 potential biomarkers followed the same

trend in GSE16561 and GSE58294. Among the 36 potential

biomarkers, 16 genes were up-regulated and 20 genes were

FIGURE 2
Identification of DEGs and IS immune-related DEGs. (A,C) Heatmap showing the differences in DEGs between ischemic stroke patients and
controls in the microarray dataset. (A) represents the GSE16561 data set and (C) represents the GSE58294 data set. (B,D) Volcano plot showing the
differences in DEGs between ischemic stroke patients and controls in the microarray dataset. (B) represents GSE16561 data set and (D) represents
GSE58294 data set. (E) Venn diagram representation of the intersection of the following three sets: DEGs in the GSE16561 dataset, DEGs in the
GSE58294 dataset, and IS-IRGs catalog.
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down-regulated, and 10 genes were seed genes while 26 genes

were potential IS-IRGs. The details of these biomarkers are

shown in Supplementary Table S3.

Enrichment and correlation analysis of
potential IS immune biomarkers

Based on the 36 IS immune-related biomarkers, we performed

GO and KEGG enrichment analyses. As shown in Figure 3A, the

GO items were mainly enriched in immune response-related

procedures, the antigen receptor-mediated signaling pathway, and

T cell and B cell receptor signaling pathways. Besides, the top

10 enriched KEGG terms were as follows (Figure 3B): Th1 and

Th2 cell differentiation, T cell receptor signaling pathway, Th17 cell

differentiation, PD-L1 expression, and PD-1 checkpoint pathway in

cancer, Natural killer cell-mediated cytotoxicity, Hematopoietic cell

lineage, Chagas disease, Human immunodeficiency virus one

infection, Measles, Fc epsilon RI signaling pathway.

A correlation analysis between the potential IS immune

biomarkers was performed and the correlations between

biomarkers were measured using Pearson’s correlation

coefficient. The results showed a similar pattern in the

GSE16561 (Figure 3C) and GSE58294 (Figure 3D) datasets.

Screening of Key Features among IS
immune biomarkers

We used the RF algorithm to identify the key features of IS

immune-related pathogenesis at the level of gene expression.

This machine learning method was applied to the sample data of

FIGURE 3
Enrichment and correlation analyses of potential IS immune biomarkers. (A)GOanalysis of potential IS immune biomarkers. (B) KEGG analysis of
potential IS immune biomarkers. (C,D) Heatmap showing the correlation analysis of potential IS immune biomarkers in the GSE16561 and
GSE58294 datasets. The correlation coefficient (Corr) was determined via Pearson’s correlation analysis. Blank spaces indicate that correlations were
not statistically significant (p > 0.05).
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the GSE16561 and GSE58294 datasets. The error was minimum

when the number of optionTrees was 15 and 138 in dataset

GSE16561 and GSE58294, respectively. According to the Mean

Decrease Gini index of each biomarker, the top 25% of all

potential IS immune biomarkers with stronger importance in

each dataset were retained. The key IS immune biomarkers in

GSE16561 were CD163, CLEC4D, ADM, MMP9, NCR3,

MBTPS1, FCGR1A, EPHA1, and EPHB1 (Figures 4A, B). In

GSE58294, the key IS immune biomarkers were CD79B,

CLEC4D, CD163, CD19, S100A12, CD72, PLCG1, SLA, and

MIF (Figures 4C,D). A total of two IS immune biomarkers

were obtained by taking the intersection of these two datasets,

which were CD163 and CLEC4D (Figure 4E).

Classification performance of two key
immune biomarkers in IS

Thereafter, we calculated the expression values of these two

immune biomarkers in IS patients and normal controls. According

FIGURE 4
Screening of Key Features of IS immune biomarkers. (A,B) Random Forest model screening for key features in the GSE16561 dataset. (C,D)
Random Forest model screening for key features in the GSE58294 dataset. (E) Venn diagram showing the intersection of key features between the
GSE16561 and GSE58294 datasets.
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FIGURE 5
The Diagnostic Value of Three Key Immune-Related Biomarkers in IS. (A,B) Box plot analysis showing the expression values of IS immune-
related biomarkers in IS patients vs controls. (The p-valuewas obtained from the t-test. ****p < 0.0001.) (C)Neural Networkmodel constructed using
GSE16561. (D) Neural Network model constructed using GSE58294. (E) ROC curves of the Neural Network diagnostic model constructed using
GSE16561. (F) ROC curves of the Neural Network diagnosticmodel constructed using GSE58294. (G) Validation of the Neural Networkmodel in
the GSE102541 dataset.
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to the results, both datasets showed the same trend in the gene

expression of CLEC4D and CD163, which were up-regulated in IS

patients compared to normal controls (all p < 0.001, Figures 5A, B).

To construct a model with optimal performance in

distinguishing between IS and non-IS, we used the Neural

Network algorithm to calculate the weight of each immune

biomarker we picked. The classification models (which we call

“double-biomarkers” here) were constructed separately based on

GSE16561 and GSE58294 as we described above (Figures 5C, D). In

the hidden layers of the Neural Network model, the weighting

factors of each biomarker were calculated and further used in the

multifactor ROC analysis. As shown in Figures 5E, F, the “double-

biomarkers” had a high accuracy in distinguishing IS patients from

healthy controls in GSE16561 (AUC = 0.872, 95%CI: 0.785–0.942)

and GSE58294 (AUC = 0.906, 95%CI: 0.852–0.949). The Neural

Network model trained on the GSE58294 dataset was then used to

the GSE102541 test dataset. Figure 5G shows that this model also

had a similar performance in the test dataset (AUC = 0.857, 95%CI:

0.714–1.000).

Evaluation of the circulating immune cell
distribution

CIBERSORT was used to perform immune subset

deconvolution in the GSE16561 dataset. As shown in

FIGURE 6
Peripheral Blood Immune Cell Infiltration in IS. (A) Violin plot of 22 kinds of immune cells’ differentially infiltrated fractions in peripheral blood
between healthy controls and IS patients. (B) Heatmap showing the correlation between IS immune-related biomarkers and 22 circulating immune
cells. Correlation coefficients were calculated using Spearman’s correlation analysis. The correlation was interpreted primarily according to the
magnitude of the correlation coefficient: Corr >0.70 indicates a strong correlation; Corr of 0.50–0.70 indicates a moderate correlation; Corr of
0.30–0.50 indicates a weak-moderate correlation, and Corr <0.30 indicates a weak correlation.
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Figure 6A, the violin plot presents the fractions of each of the

22 kinds of immune cells both in the groups of IS patients and

controls. Compared with healthy samples, the IS ones generally

contained a higher proportion of macrophages M0 (p < 0.001),

neutrophils (p < 0.001), T cells gamma delta (p = 0.020), and

activated mast cells (p = 0.029), whereas the proportion of naïve

resting B cells (p = 0.009), T cells CD8 (p < 0.001), T cells

follicular helper (p = 0.035), Tregs (p = 0.035), activated NK cells

(p < 0.001), resting dendritic cells (p = 0.001) was relatively lower.

The correlation between biomarkers and immune cells was

measured using Spearman’s correlation coefficient, and the

results are shown in Figure 6B. The expression of CD163

demonstrated a moderate positive correlation with the

fractions of macrophages M0 and neutrophils. The expression

level of CLEC4D positively correlated with the fractions of

neutrophils, M0 macrophages, activated mast cells, and

gamma-delta T cells. Furthermore, it is worth noting that

CLEC4D was strongly correlated with the proportion of

neutrophils (Spearman’s Corr = 0.72).

Discussion

Inflammation/immune responses to ischemic stroke have

become a new hotspot in the field of IS pathogenesis research

nowadays. Recent studies have illustrated that systemic

leukocytosis is a marker of the inflammatory response after IS

(Veltkamp and Gill, 2016). Thus, exploring immune biomarkers

and clarifying their correlation with immune cells in peripheral

blood may not only be valuable for mechanistic studies, but also

suggest novel molecular targets for the treatments of IS. Our

group started the present study by collecting previously validated

human data and created a catalog of IS immune-related genes

incorporating both the validated and predicted data using the

RWR algorithm. Then, we reduced our large catalog to a small set

of predictive biomarkers with the help of a series of machine

learning strategies. Last, the evaluation of the immune cell

composition helped us gain insight into the immune

landscape of the peripheral blood of IS patients.

Recently, numerous bioinformatic methods variated from

network propagation have been proposed for identifying genetic

associations. The mathematical propagation processes of these

approaches can be summarized as follows: randomwalk, random

walk with restart (RWR) and diffusion kernel (Cowen et al.,

2017). The RWR algorithm can transform a short list of seed

genes into a genome-wide profile of gene scores based on their

proximity to seed genes in a gene network. Furthermore, RWR

performs better in capturing the local topology of the interactions

in PPI network compared to random walk and diffusion kernel.

To study the pathogenesis of different human diseases, several

studies applied the RWR on the PPI network to predict novel

disease-related genes based on known ones (Zhang et al., 2018;

Lu et al., 2019; Liang et al., 2021). In the present study, the RWR

and permutation test were applied to achieve a relatively

comprehensive inference of novel IS-IRGs. Then, the

expression patterns of the IS-IRG catalog were verified using

microarray profiles data. It is important to mention here the

reason why the GSE16561 and GSE58294 datasets were chosen as

verification profiles for the IS-IRG catalog. It is widely known

that the critical time points of gene expression profiling are quite

necessary for analyzing the pathophysiology of progressive

disease. As shown in Supplementary Table S1, the time points

of gene expression analysis by biological low-throughput

methods are concentrated on the early stage of IS (≤24 h),
which is the peak stage of immune response activation, which

is why the datasets we mentioned above were chosen for further

validation.

We identified a total of 36 IS-IRGs that were differentially

expressed in both datasets we mentioned above between IS and

control samples. These IS-IRGs were further performed with

enrichment analyses, and the results illustrated that the

regulation and activation of cell surface receptor signaling

pathways were the most enriched GO items. Receptor-ligand

interactions have been shown to be widely involved in the

immune responses of IS. During the early immune responses of

IS, Toll-like receptors recognize components of damaged cells

known as DAMPs. Such a receptor-ligand link leads to the

activation of the NF-κB pathway and then to the activation of

microglia (Cserép et al., 2020). Recent evidence suggests that

chemokine and chemokine receptor signaling, such as

CC3CL1/CX3CR1 signaling and CCL2/CCR2 signaling, are

also present in the processes of peripheral immune cell

recruitment into the ischemic brain (Garcia-Bonilla et al.,

2016; Wattananit et al., 2016; Cisbani et al., 2018). As for

the enriched KEGG pathways, the T cell receptor signaling

pathway and Th1, Th2, Th17 cell differentiation were the top

items. Several published papers have demonstrated that

multiple subtypes of T lymphocytes play a vital role in early

inflammation and brain injury following ischemic stroke (Brait

et al., 2012). Th1, Th2, and Th17 cells are effector T cells

differentiated from naive CD4+ T cells (Prass et al., 2003; Liesz

et al., 2009). indicated that there is a shift from Th1 to

Th2 cytokine production in the peripheral blood of IS

patients, and this phenomenon may be due to the “stroke-

induced immunodeficiency syndrome” that occurs as early as

12 h after the onset of symptoms and may persist for several

weeks. Several previous studies have demonstrated that

Th17 cell abundance is elevated in ischemic brain tissue and

may indicate a poor prognosis (Dolati et al., 2018; Chen et al.,

2021), possibly through the activation of MMPs and BBB

breakdown (Arya and Hu, 2018).

To explore a minimum number of IS molecular immune

features, we utilized machine learning methods to narrow down

the 36 IS-IRGs, which were validated to be expressed differentially

between IS patients and controls in microarray datasets, for further

detection of key features. The RF algorithm is widely used to address
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feature ranking problems with an integrated tree classifier kernel.

This method can help avoid the problem of overfitting to a great

extent and has the advantages of strong model generalizability and

excellent accuracy (Albaradei et al., 2021). By constructing RF

models through the analysis of two distinct datasets, we

identified two IS immune biomarkers, CLEC4D and CD163.

CLEC4D (also known as CLECSF8, MCL) is expressed only in

selected populations of myeloid cells (particularly abundant on

classical monocytes but relatively rare on dendritic cells and

macrophages) and neutrophils within the peritoneal cavity,

blood, spleen, and bone marrow (Wong et al., 2011; Graham

et al., 2012). As a member of the C-type lectin receptors (CLRs)

family,CLEC4D has been identified as a pivotal “sensor” onmyeloid

cells in the host’s defense against fungal and bacterial infections

(Kerscher et al., 2016; Wang et al., 2016; Huang et al., 2018; Xue

et al., 2019). To date, studies on CLEC4Dmainly focus on its role in

anti-mycobacterial immunity, and it was shown to be required for

the induction of Mincle following stimulation with TDM (Miyake

et al., 2013), through CARD9-dependent NF-κB p65 activation

(Zhao et al., 2014). Also, CLEC4D can form a heteromeric

complex with Mincle to regulate anti-mycobacterial immunity

(Kerscher et al., 2016); however, the underlying mechanisms still

remain unclear. Remarkably, Suzuki et al. found that the expression

level of Mincle was up-regulated in immune, neuronal, and

endothelial cells in human brain tissue after cerebral ischemia

(Suzuki et al., 2013). Thus, it might be speculated that CLEC4D

is involved in the pathogenesis of IS, just like in anti-mycobacterial

immunity. Future studies should be aimed at determining the

underlying mechanisms. Neural Network is commonly used for

binary classification problems in the medical field; thus, we applied

this algorithm to discover the diagnostic performance of the

combination of the two IS biomarkers and found that the model

constructed byGSE58294 performed better than that constructed by

GSE16561 in distinguishing IS. Furthermore, the test set

GSE102541 using the GSE58294 model also confirmed the

distinguishing ability of the Neural Network model.

We also determined the differences in the fractions of circulating

immune subsets between IS patients and controls, after whichwe used

Spearman’s correlation analysis to detect the associations between

multi-biomarkers and immune cells. Strikingly,CLEC4Dwas strongly

correlated with the proportion of neutrophils. Identifying the specific

role of CLEC4D in the pathogenesis of IS would be an important

future research direction.

Additionally, our study still has several limitations. First, our

manually collected data set of human IS-IRGs may not be

comprehensive as expected. Second, it would be desirable to verify

the two IS immune biomarkers through functional experiments in

vivo and in vitro. Nonetheless, we presented a newmethod to identify

several immune biomarkers associated with IS, and these results may

provide potential targets for further study of immune neuroprotective

therapy against reperfusion injury.
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