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Response inhibition is an important component of adaptive behavior. Substantial prior research has focused on reactive in-

hibition, which refers to the cessation of a motor response that is already in progress. More recently, a growing number of

studies have begun to examine mechanisms underlying proactive inhibition, whereby preparatory processes result in a re-

sponse being withheld before it is initiated. It has become apparent that proactive inhibition is an essential component

of the overall ability to regulate behavior and has implications for the success of reactive inhibition. Moreover, successful

inhibition relies on learning the meaning of specific environmental cues that signal when a behavioral response should be

withheld. Proactive inhibitory control is mediated by stopping goals, which reflect the desired outcome of inhibition and

include information about how and when inhibition should be implemented. However, little is known about the circuits and

cellular processes that encode and represent features in the environment that indicate the necessity for proactive inhibition

or how these representations are implemented in response inhibition. In this article, we will review the brain circuits and

systems involved in implementing inhibitory control through both reactive and proactive mechanisms. We also

comment on possible cellular mechanisms that may contribute to inhibitory control processes, noting that substantial

further research is necessary in this regard. Furthermore, we will outline a number of ways in which the temporal dynamics

underlying the generation of the proactive inhibitory signal may be particularly important for parsing out the neurobio-

logical correlates that contribute to the learning processes underlying various aspects of inhibitory control.

An essential feature of adaptive behavior is the ability to meet the
changing demands of complex environments. Of particular im-
portance is the inhibition of responses that are inappropriate or
maladaptive. Over the past decade it has become well established
that successful inhibitory control involves both “reactive” and
“proactive” control mechanisms (Braver et al. 2007; Jaffard et al.
2007, 2008; Aron 2011; Braver 2012). Research regarding the for-
mer largely emphasizes the cessation of a motoric process, specif-
ically as a reaction to a cue or event in the environment (a
so-called stop-signal) that occurs after the response process has
been initiated. In contrast, proactive inhibition involves a prepa-
ratory process that influences whether the response will be initiat-
ed in the first place. Unlike reactive processes, proactive inhibition
can also be initiated by endogenous factors (Chikazoe et al. 2009b;
Verbruggen and Logan 2009a,b; Aron 2011). In addition, proac-
tive inhibitory control can be generated in advance and can ex-
tend across time. By comparison, reactive inhibition occurs only
in the temporal proximity of the stop-signal. Proactive inhibition
is also different from reactive inhibition in that it is mediated by a
stopping goal, which is a representation in working memory of
the desired outcome of inhibition that includes information
about how and when inhibition should be implemented
(Verbruggen and Logan 2009a; Hughes et al. 2014; Wessel and
Aron 2014; Best et al. 2016). Stopping goals may be defined ac-
cording to the immediate context or retrieved from short-term
or long-term memory.

With these distinctions in mind, we begin this article by
reviewing what is currently known about the neural circuits and
systems related to reactive and proactive inhibition (definitions
of key terms used through the article are noted in Table 1). We
note that although there appears to be some overlap in the sub-

strates underlying reactive and proactive inhibition, this may be
due in part to the presence of both reactive and proactive process-
es in the behavioral procedures that have been used to date. We
then discuss how other aspects of cognitive function can influ-
ence inhibitory processes and how the temporal dynamics of pro-
active inhibition might be used to isolate this process. This is
followed by consideration of the behavioral and neural mecha-
nisms through which learning can contribute particularly to pro-
active inhibitory control, and we describe behavioral paradigms
that may be useful in furthering studying the role of learning in
proactive inhibition. We close by describing how impairments
in proactive and reactive inhibition manifest in various forms of
mental illness.

Neural substrates of reactive and proactive inhibition

Reactive inhibition
Reactive inhibition commonly refers to the cue-triggered stop-
ping of a response that has already been initiated (Aron 2011).
This is most commonly studied using the stop-signal task (SST;
Logan and Cowan 1984; Logan 1994), which provides an index
to assess the efficiency of response inhibition. In this procedure,
a “go-signal” is presented on all trials, to which the individual
makes a particular behavioral response (e.g., keyboard or lever
press). Occasionally, a “stop-signal” is presented after a go-signal
has occurred; in this instance, the response must be aborted.
The measure of interest is the stop-signal reaction time (SSRT),
which serves as a quantitative estimate of the time needed to abort
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an already-initiated response. Shorter SSRTs are associated with
better reactive inhibitory control (Aron et al. 2004a; Aron and
Poldrack 2006; Duann et al. 2009).

The neural systems underlying reactive stopping have
been comprehensively reviewed elsewhere (Eagle et al. 2008b;
Chambers et al. 2009; Chikazoe 2010; Ridderinkhof et al. 2011;
Bari and Robbins 2013a; Aron et al. 2014). Briefly, based primarily
on studies using the SST, the overarching consensus is that sensory
information about a stop-signal is processed by frontal cortical
regions that generate and issue a stopping command that is sent
to the basal ganglia to interrupt the incipient response. The fron-
tal regions of particular importance for reactive inhibitory con-
trol are the right inferior frontal cortex (rIFC; Aron et al. 2003,
2004a,b, 2007a, 2014; Chambers et al. 2006; Chikazoe et al.
2009a; Swann et al. 2009; Neubert et al. 2010; van Belle et al.
2014; Cai et al. 2016) and presupplementary motor area (pre-
SMA; Floden and Stuss 2006; Nachev et al. 2007, 2008; Picton
et al. 2007; Chen et al. 2009; Mars et al. 2009; Swann et al.
2009; Hikosaka and Isoda 2010; Neubert et al. 2010; Sharp et al.
2010; Cai et al. 2014a). In addition, numerous lines of evidence
now support the basal ganglia, particularly the subthalamic nu-
cleus (STN), as the target of rIFC and pre-SMA for the implemen-
tation of reactive inhibitory control (Aron and Poldrack 2006;
Eagle et al. 2008b; Isoda and Hikosaka 2008; Li et al. 2008; Ray
et al. 2012; Alegre et al. 2013; Schmidt et al. 2013). Finally, the
premotor (Mattia et al. 2012) and primary motor cortex (Stinear
et al. 2009; Swann et al. 2009) are the last cortical sites involved
in this circuit before movement commands descend the cortico-
spinal tract.

The standard stop-signal paradigm has great utility for
explicitly cueing the need for reactive inhibitory processes.
However, real-world stopping goals incorporate a template of fea-
tures that reflect the complexities of the surrounding environ-
ment. Interestingly, the “stopping network” outlined above has
recently been extended to account for response patterns in a par-
adigm that may better reflect inhibition as it manifests in daily
life. In the Complex-Stopping Task, participants are required to
respond as quickly as possible to a go-signal, consisting of a se-
quence of arrows that vary on five dimensions. Conversely, if all
five dimensions of the current stimulus match the prototype de-
termined prior to the testing block (i.e., the “stopping template”),
participants are required to inhibit responding (Wessel and Aron
2014). Similar patterns of brain activity were found during this
task compared to the standard SST. This indicates that the network
supporting reactive inhibition generalizes across tasks with vary-

ing complexity, and further validates the utility of the standard
SST for approximating real-world stopping behavior.

Proactive inhibition
Fewer studies have focused on the brain substrates of proactive in-
hibitory control, and those studies that have done so have primar-
ily used modified SSTs that include additional signals that indicate
a stop-signal is pending, or otherwise provide information about
the probability of a stop-signal occurring during a set of trials.
Perhaps not surprisingly then, there appears to be significant over-
lap in the brain systems that are reported to underlie proactive and
reactive inhibition. Indeed, proactive inhibition has been shown
to engage brain networks that include the rIFC, pre-SMA, STN,
and striatum (Hester et al. 2004; Vink et al. 2005a; Chikazoe
et al. 2009a; Chen et al. 2010; Jahfari et al. 2010; Zandbelt and
Vink 2010; Swann et al. 2012; Aron et al. 2014; Cunillera et al.
2014; Verbruggen et al. 2014b; Cai et al. 2016; but see Zandbelt
et al. 2013a,b) with downstream effects on primary motor cortex
excitability (Duque and Ivry 2009; Sinclair and Hammond 2009;
Stinear et al. 2009; Claffey et al. 2010).

At the same time, differences are apparent in the laterality
to which these brain systems are engaged. For example, the reac-
tive network involves a right-lateralized frontoparietal circuit
involved in stimulus-driven attentional control (Corbetta and
Shulman 2002; Corbetta et al. 2008), action control (Goodale
and Milner 1992; Rizzolatti and Matelli 2003), and action inten-
tion (Andersen and Buneo 2002). Conversely, circuits common
to both reactive and proactive inhibition appear to be bilaterally
organized (Li et al. 2006; Congdon et al. 2010; van Belle et al.
2014), which may be better suited to incorporate information ob-
tained from a variety of sensory, cognitive, and limbic sources.
Furthermore, the overlap between these networks may be best
characterized by contributing to conflict resolution, maintenance
of task sets, and action control more generally. van Belle et al.
(2014) found that networks important for proactive and reactive
inhibition overlapped primarily in the dorsolateral prefrontal cor-
tex (dlPFC). However, the dlPFC has previously been implicated
for inhibitory control that is conditional on a certain set of cir-
cumstances (such as a specific context) as opposed to more gener-
alized stopping processes (Chikazoe et al. 2009a; Jahfari et al.
2010; Swann et al. 2012), suggesting that dlPFC may implement
task rules rather than behavioral inhibition per se.

Basal ganglia circuits in proactive and reactive inhibition
A potentially fruitful avenue for research may be to focus on dis-
tinguishing the neural substrates underlying proactive and reac-
tive inhibitory processes at the level of basal ganglia circuits. For
example, the differential implementation of reactive and proac-
tive inhibitory control processes may be mediated by switching
between the indirect and hyperdirect basal ganglia pathways of
movement, respectively (Aron et al. 2007b; Isoda and Hikosaka
2008; Jahfari et al. 2011). Functionally similar to the indirect path-
way, the hyperdirect pathway is a cortico-subthalamo-pallidal cir-
cuit that has the net effect of inhibiting thalamic neurons, which
in turn are unable to activate the motor cortex (Utter and Basso
2008). However, the hyperdirect pathway bypasses the striatum
to quickly convey direct excitatory effects from motor-related cor-
tical areas to the globus pallidus (Nambu et al. 2002). As a result,
the hyperdirect pathway is particularly well suited to mediate re-
active inhibition. Successful inhibition of a response depends on
the competition between these pathways and the direct pathway,
which induces downstream excitatory effects on the motor cortex
(Aron and Poldrack 2006; Dunovan et al. 2015). The ultimate out-
put of the basal ganglia depends on the integration of several sig-
nals that promote or inhibit behavior (Alexander et al. 1986; Albin

Table 1. Definitions of key terms

Stopping goal: A representation in working memory of the desired
outcome of inhibition that includes information about how and when
inhibition should be implemented.

Inhibitory cue: A salient cue indicating that a response should be
inhibited.

Proactive inhibition: Inhibitory control mechanisms engaged prior to
the initiation of a response.

Reactive inhibition: The cessation of a motor response that is already
in progress (e.g., in response to a stop-signal).

Stop-signal: An inhibitory cue indicating that the response to a
previously presented cue (specifically a cue indicating that a response
should be initiated) should be aborted.

Negative occasion setter: An inhibitory cue indicating that the
response to an upcoming cue should be withheld.

Reactive epoch: The time period in an experimental paradigm during
which the outcome is either to emit or omit a response.

Delay: Temporarily withholding a response tendency, with the
intention of completing the response after a designated period of
time.

Proactive inhibitory control
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et al. 1989; Burle et al. 2004; Narayanan and Laubach 2006;
Narayanan et al. 2006; Bryden et al. 2012).

Nevertheless, the similar findings to date regarding the sys-
tems associated with reactive and proactive inhibition could sim-
ply reflect that the two processes are closely intertwined. Indeed,
converging lines of evidence suggest that even standard SST or
Go/No-Go procedures can actually involve both proactive and re-
active components (Verbruggen and Logan 2009a,b; Aron 2011;
Criaud et al. 2012). For instance, several studies have demonstrat-
ed that response speed is altered following errors or stop-trials
(Emeric et al. 2007; Verbruggen and Logan 2009b; Bissett and
Logan 2012a,b). Specifically, the latency to respond during a
go-trial has been shown to decrease after successive go-trials and
increase after successive trials with a stop-signal (Emeric et al.
2007), suggesting that processing the outcome of one trial may
subsequently influence responding on another. Although there
are many possible explanations for these findings, one implica-
tion is that proactive inhibitory processes interact closely with re-
active stopping behavior, as described further in the following
section.

Interaction between proactive and reactive processes

The potential interaction between reactive and proactive pro-
cesses is apparent in the Horse-Race Model (Logan and Cowan
1984), a long-standing theoretical perspective regarding inhibi-
tory control. In a standard inhibition paradigm, subjects are
instructed to perform go-trials as quickly as possible, yet attempt-
ing to stop whenever they hear the stop-signal. The Horse-Race
Model theorizes that when the stop-process finishes before
the go-process, the response is inhibited, whereas when the go-
process finishes before the stop-process, the response is made
(Logan and Cowan 1984). Based on this perspective, proactive in-
hibitory control that results in response slowing may increase
the chance that a response can be inhibited (Logan and Cowan
1984). In line with this, behavioral and brain imaging data indi-
cate that a stronger preparatory process helps to withhold a re-
sponse (Chikazoe et al. 2009b; Verbruggen and Logan 2009b;
Benis et al. 2014; Castro-Meneses et al. 2015). One intriguing the-
ory is that the stopping network utilized for reactive stopping
could be potentiated in advance—that is, proactively controlled
(we refer the reader to Aron 2011 for a more detailed model).
Support for this view comes from evidence that key components
of the stopping network are not only activated exogenously (in re-
sponse to a stop-signal) but also endogenously (in anticipation of
a possible stop-signal).

Proactive recruitment of the stopping network can increase
the chance of successful stopping (Vink et al. 2005a; van Gaal
et al. 2008; Chikazoe et al. 2009a; Jahfari et al. 2010; Swann et
al. 2013; Wessel et al. 2013; Zandbelt et al. 2013b). Furthermore,
preparing to stop in advance of a stop-signal has been associated
with reduced activity in behavioral inhibition-related regions dur-
ing the implementation of inhibition, suggesting a priming of
these regions that supports later stopping efficiency (Chikazoe
et al. 2009b; Verbruggen and Logan 2009b). Indeed, the stopping
network may act to “brake” motor output, without stopping it
completely. Subsequently, if stopping is required, it will occur
more quickly (Aron 2011). Using the Conditional Stop-Signal
Task (De Jong et al. 1995), Jahfari et al. (2010) examined the neu-
rocognitive mechanisms that underlie the “response delay effect”
(slower reaction times to a go-signal in a context where partici-
pants anticipate they might need to stop). They found that this ef-
fect is at least partly explained by an active braking mechanism
that proactively suppresses the initiated response without cancel-
ing it completely, possibly involving a mechanism that is similar
to that used to stop responses completely. In line with this, where-

as reactive stopping signals are supported by early (phasic) STN
responses, proactive stopping signals are mediated by a more sus-
tained (tonic) STN activity that also predicts subjects’ inhibitory
performance during the SST (Benis et al. 2014). One possibility
is that weak activation of the stopping network can brake motor
output, whereas strong activation will block motor output com-
pletely (Aron 2011, Aron et al. 2014). However, the extent to
which braking occurs probably depends on areas outside of the
stopping network as well. For example, activation of rIFC may
potentiate a dormant inhibitory connection between sensory cor-
tices relevant to the modality of the stop-signal and the motor
system that will facilitate stopping if the stop-signal is subse-
quently presented (Wiecki and Frank 2013; Chiu and Aron
2014; Verbruggen et al. 2014b; Kenemans 2015).

Cognitive and motivational influences on inhibition

Further complicating the dissection of proactive from reactive
inhibition processes is that the generation of stopping goals and
the implementation of inhibitory control require a range of other
cognitive and motivational processes (Jaffard et al. 2007, 2008;
Rushworth and Taylor 2007; Boulinguez et al. 2008, 2009; Eichele
et al. 2008; Chatham et al. 2012). In addition, stopping goals
themselves may differ in accordance with the differential cogni-
tive demands of tasks used to study inhibition. Yet, most studies
primarily focus on the absence of a response under conditions
where a response would otherwise be emitted, whereas other cog-
nitive and motivational processes that likely contribute to inhibi-
tion are often excluded from consideration. Indeed, mounting
evidence challenges the idea of response inhibition as an isolated
function (Munakata et al. 2011; Aron et al. 2014) and posits that
inhibitory control is modulated significantly by other processes
(Munakata et al. 2011; Chatham et al. 2012; Criaud and Boulin-
guez 2013) as illustrated in the three examples that follow.

Attention
Attentional processes contribute extensively to the implementa-
tion and success of behavioral inhibition (Chatham et al. 2012;
Aron et al. 2014; Verbruggen et al. 2014b). Indeed, the efficient
detection of meaningful cues in an environment, such as a stop-
signal, is essential for effective inhibitory control (Chatham
et al. 2012). Furthermore, inhibitory control is influenced by sali-
ency of signals indicative of either Go or Stop behavior (Wardak
et al. 2012). At the same time, irrelevant stimuli must be filtered
out. This requires learning which parts of the environment are
most relevant, as well as down-regulating attentional processes
directed toward irrelevant stimuli. Importantly, when distracters
are expected, stimulus-driven attention can be down regulated
(Corbetta et al. 2008), reducing the likelihood that a distractor
will disrupt the process of inhibiting a behavioral response.

Preparatory changes in the function of acetylcholine (ACH)
or norepinephrine (NE) systems may be critical to both enhancing
and attenuating the level of attention directed to a cue in the en-
vironment. An increase in ACH release enhances performance
in a variety of paradigms measuring behavioral control by en-
hancing the ability to detect and attend to relevant visual stimuli
(Luntz-Leybman et al. 1992; Acri et al. 1996; Blondel et al. 2000;
Semenova et al. 2003; Young et al. 2013). ACH is also involved
in latent inhibition, indicating that it can also modulate decreases
in attention when a stimulus is irrelevant (Rochford et al. 1996).
In addition, several studies have documented involvement of pre-
frontal NE activity in inhibitory control (e.g., Eagle et al. 2008a;
Robbins and Arnsten 2009; Bari et al. 2011). The NE system can
optimize cognitive function relative to the state of the environ-
ment and the individual at the time of testing (Usher et al.
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1999; Aston-Jones and Cohen 2005). Indeed, NE is involved in set-
ting basal levels of cortical activity and enhancing stimulus-
evoked neural responsiveness in both sensory and motor areas
(Foote and Morrison 1987; Berridge and Waterhouse 2003). As a
result, changes in NE levels alter responsivity to behaviorally rel-
evant cues that can trigger a sudden change in, or an interruption
of, ongoing behavior (Aston-Jones and Cohen 2005; Bouret and
Sara 2005; Dayan and Yu 2006).

Interestingly, there is evidence that attentional processes me-
diated by rIFC may contribute to the maintenance of task-relevant
information such as the detection of novel or infrequent stimuli
(i.e., a stop-signal; Chikazoe et al. 2009b; Duann et al. 2009;
Hampshire et al. 2010; Sharp et al. 2010; Erika-Florence et al.
2014) or the detection of changes in response contingency
(Mullette-Gillman and Huettel 2009). Evidence along these lines
has prompted controversy in recent years about whether the
stopping network truly reflects inhibitory control, rather than
mere attention (Chatham et al. 2012; Erika-Florence et al. 2014).
However, emerging evidence continues to support a functional
and anatomical differentiation within rIFC and areas that im-
plement attentional monitoring and inhibitory control functions
(Chikazoe et al. 2009b; Verbruggen et al. 2010; Levy and Wagner
2011). Specifically, the ventral posterior part of rIFC contributes
primarily to global and reactive inhibition process whereas the
dorsal part of rIFC is involved more in attentional processes, in-
cluding cue detection (Chikazoe et al. 2009b; Verbruggen et al.
2010; Cai and Leung 2011). In addition, a recent meta-analysis
differentiated the functional role of rIFC in the implementation
of inhibitory control from the adjacent right anterior insula
(rAI), which is part of a salience network critical for detecting
behaviorally significant events (Cai et al. 2014b). At the systems
level, the distinct but intrinsically linked functions of inhibi-
tion and attention are likely facilitated by parallel cortico-cortical
and corticostriatal circuits that include both functional sub-
divisions of rIFC along with the rAI (Cai and Leung 2011). In sum-
mary, the anatomical proximity of the stopping network to
regions involved in the maintenance and updating of task-rele-
vant information may be used to bias brain systems that represent
task-relevant response patterns (Derrfuss et al. 2004).

Expectancy
The extent to which proactive inhibitory control is implemented
can vary dynamically with expectations about environment.
For example, knowledge about the probability of occurrence of a
stop-signal can modulate an individual’s ability to inhibit move-
ment (De Jong et al. 1995; Vink et al. 2005a; Jaffard et al. 2007;
Verbruggen and Logan 2009b; Boy et al. 2010; Cai et al. 2011;
Zandbelt et al. 2013b). This has been studied by modifying the
standard SST to include cues that indicate the probability of a
stop-signal occurring (Verbruggen and Logan 2009b; Bisset and
Logan 2012b; Federico and Mirabella 2014). These experiments
have demonstrated correlations between reaction time (on go-
trials) and the probability of a stop-signal being presented (Vink
et al. 2005a; Chikazoe et al. 2009b; Verbruggen et al. 2010). In par-
ticular, slower reaction times are found when the proportion of
stop-signals increases (Logan and Burkell 1986; Verbruggen and
Logan 2009b).

In addition, a recent study showed that proactive inhibitory
control depends not only on the processing of contextual cues in-
dicating stop-signal probability, but also on the subjective inter-
pretation of these cues (i.e., stop-signal expectation; Vink et al.
2015). These processes differently engage parts of the frontostria-
tal network. Specifically, the expectation of having to stop is asso-
ciated with activity in dorsal premotor cortex, SMA and striatum.
These data suggest that the striatum is involved in forming predic-

tions when an inhibitory signal is present, consistent with studies
reporting striatal activity when the occurrence of a stop-signal is
highly predictable (Vink et al. 2005a; Aron and Poldrack 2006;
Zandbelt and Vink 2010) and with studies showing increased ven-
tral striatum and SMA activity during the expectation of reward
(Figee et al. 2013; Hoogendam et al. 2013). In contrast, rIFC and
right inferior parietal cortex (rIPC) activity are modulated by prob-
ability cues, but not stop-signal expectation (Vink et al. 2015).
Thus, rIFC and rIPFC may be related to the processing of contex-
tual cues that indicate the probability of a stop-signal occurring
whereas the striatum incorporates this information into a predic-
tion of what will happen.

The continuous maintenance of stopping goals that is re-
quired for proactive inhibition is resource consuming, and often
slows response times (Logan and Burkell 1986; Verbruggen and
Logan 2009b; Jahfari et al. 2010). Interestingly, there is evidence
that individuals are able to switch between controlled inhibition
of a response (i.e., anticipated suppression of the neuronal pro-
cesses underlying movement initiation) and automatic process-
ing (i.e., reactive inhibition) depending on their expectations of
upcoming events (Jaffard et al. 2008; Hikosaka and Isoda 2010;
Criaud et al. 2012; Verbruggen et al. 2014b). This dynamic adjust-
ment of response patterns is often associated with a phenomenon
referred to as the “speed-accuracy trade-off” (Wickelgren 1977;
Gold and Shadlen 2002; Wang 2008; Bogacz et al. 2010a,b;
Heitz 2014), because engagement of proactive inhibitory control
mechanisms has been associated with reductions in erroneous re-
sponses (Boulinguez et al. 2008; Wardak et al. 2012). However,
there is little research into the factors that mediate how an indi-
vidual learns to distinguish the circumstances that dictate the
use of reactive versus proactive inhibitory control processes.

Motivation
Internally generated factors, such as motivation, also critically
influence the development of behavioral goals, including those
goals that relate to inhibiting a response (Leotti and Wager
2010). A key element in establishing motivational level is the an-
ticipated reinforcement associated with a given response pattern.
According to the dual mechanisms of control framework (Braver
et al. 2007; Braver 2012), proactive control will only be utilized
if the cost/benefit tradeoff is favorable. This computation depends
on both the ease of actively maintaining goal representations in
advance of their utilization, as well as on internal estimates of
how beneficial or valuable the consequences of such a control
strategy are for task performance (Braver et al. 2007; Locke and
Braver 2008; Jimura et al. 2010; Savine et al. 2010). Thus, changes
in the reward expectations are one example of how motivational
factors may adjust the threshold for generating a top-down inhib-
itory signal.

Motivation may mediate the extent to which cues in the
environment are used to guide behavior. For example, changes
in cue salience as a result of motivational factors can directly in-
fluence the attentional mechanisms deployed to detect inhibitory
cues (Raymond and O’Brien 2009; Pessoa 2014). Furthermore,
dopaminergic inputs to the nucleus accumbens (NAC) mediate
the attribution of incentive-salience to reward cues, which in
turn invigorates approach toward these cues (Berridge and
Robinson 1998). Dopamine also acts in NAC to integrate and filter
incoming information (Floresco 2007), which is important for
regulating behavioral responses, including the inhibition of re-
sponses that may interfere with the goals of an individual. In
this way, NAC likely plays an integral role in suppressing inap-
propriate actions and facilitating proactive inhibitory control
(Floresco 2015). The orbitofrontal cortex (OFC) is also of particu-
lar relevance in mediating the contributions of motivation to
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inhibitory control. The OFC is implicated in representing con-
tingencies and expectations between predictive cues and reward
outcomes (Hikosaka and Watanabe 2000; Schultz et al. 2000;
McClure et al. 2004; Cox et al. 2005; Galvan et al. 2005; Hosokawa
et al. 2005; Delamater 2007; Ostlund and Balleine 2007; Wallis
2007; Padoa-Schioppa and Cai 2011; Schoenbaum et al. 2011;
Rudebeck et al. 2013; Moorman and Aston-Jones 2014). In addi-
tion, OFC activity has been associated with the regulation of
reward-related impulses (Elliott et al. 2000; Chudasama and Rob-
bins 2003; O’Doherty et al. 2003).

Moving forward: isolating proactive from reactive

inhibitory processes

The body of literature described thus far illustrates the complexity
and inherent challenges in studying and dissecting the neural
substrates that contribute to proactive versus reactive inhibitory
processes, perhaps even calling into question the utility of distin-
guishing between them. One conclusion is simply that proactive
and reactive inhibitions are supported by the same neural systems
and mechanisms. Recruitment of a common neural network both
for stop-processing prior to the presentation of a stop-signal and
for implementation of the stopping process could indicate that
the same structures are engaged in a variety of distinctive ways
to inhibit behavioral responding. Another possibility is that dis-
tinguishing between the systems underlying proactive and reac-
tive inhibition has proven difficult because the behavioral tasks
to date are not ideally suited for isolating one from the other, or
from the multitude of other cognitive process that likely modulate
proactive inhibition. The remainder of the article considers how
fundamental differences between proactive and reactive inhibi-
tion could be exploited to design procedures that allow for the
study of proactive processes in particular.

The temporal dynamics of proactive

inhibitory control

The relative timing of informative events, such as the occurrence
of salient environmental cues, varies between different inhibitory
control tasks and these temporal dynamics may be exploited as an
avenue for disambiguating the neural correlates of proactive and
reactive inhibitory control. Figure 1 illustrates the generation of
a proactive inhibitory control signal as it manifests in a number
of commonly used paradigms to study inhibition. All inhibition
tasks include a “reactive epoch” (RE), that is usually stimulus-
associated. During the RE, the outcome is either to emit or omit
a response. In many cases, the outcome depends on the degree
to which proactive inhibitory control processes have been en-
gaged (Chikazoe et al. 2009b; Verbruggen and Logan 2009b;
Benis et al. 2014; Castro-Meneses et al. 2015). We propose two
main orthogonal axes on which these processes can vary. The first
axis is the level of awareness that an individual has for the need
to engage inhibitory control processes. This awareness depends
on the flexible updating of stopping goals to incorporate informa-
tion from discrete as well as diffuse features of the environment.
Diffuse features may include the environmental setting as a whole
(the “context”), for example, when an individual has been in-
structed to inhibit responding under certain circumstances, or
to ignore distracting stimuli. Alternatively, the diffuse context
may refer to trial-by-trial learning, during which negative feed-
back signals influence behavior on subsequent trials. Cues that
initiate proactive inhibitory control may also be discrete stimuli,
such as those indicating the probability that stopping will need
to occur, as well as negative occasion setters (cue indicates that
the response to another stimulus should be withheld; see below).

The second axis is differentiated by the temporal proximity
of the inhibitory control signal to the implementation of motoric
inhibition (see also Braver 2012). Proactive inhibitory control can
be sustained over a much longer period than the RE, as is the case
when diffuse or discrete cues may not directly predict an impend-
ing RE. Alternatively, proactive inhibitory control may be initiat-
ed by a transient event, such as the preceding trial or a negative
occasion setter, directly associated with an impending RE. A
somewhat different form of inhibition can also occur in this man-
ner during “delay” tasks, in which the RE occurs between an in-
hibitory cue and a response-triggering cue. In these tasks,
the delay, but not complete omission of responding, is required.
Variation on these axes may influence the success of reactive in-
hibitory control. As a general note, there is some overlap between
these categories. For example, the stop-signal in the SST is a dis-
crete cue; however, it occurs too late to induce proactive control.
Nonetheless, this framework may prove useful for appropriately
selecting tasks that tap proactive versus reactive inhibition as de-
scribed below.

Learning processes associated with proactive

inhibition

Successful inhibitory control depends in large part on detecting
and using the environmental cues that indicate that a response
should be inhibited (Chatham et al. 2012; Wardak et al. 2012;
Aron et al. 2014; Verbruggen et al. 2014b). Critical to this process
is identifying and learning the meaning of such cues, while also
learning to ignore irrelevant stimuli. Furthermore, the acquired
information must also be represented mnemonically such that

Figure 1. The generation of a proactive inhibitory control signal is in-
fluenced by temporal dynamics. All inhibition tasks include a “reactive
epoch” (RE), that is usually stimulus-associated, and during which the
outcome is either to emit or omit a response. Proactive control processes
can be initiated in response to diffuse (shaded boxes) or discrete (solid
boxes) cues in the environment. In addition, informative cues may be
present in a sustained or transient manner. Sustained cues may not
directly predict an impending RE (dashed lines), whereas transient cues
are in direct temporal proximity to an impending RE (solid lines). These
axes have been used to categorize a number of commonly used inhi-
bition tasks with regard to the manner in which inhibitory control is
implemented.
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it can be utilized to shape responding when inhibitory cues are
encountered again (Munakata et al. 2011; Majid et al. 2013;
Verbruggen et al. 2014a). Learning and memory processes may
be especially important for proactive inhibition, which often re-
quires maintaining the representation of an environmental cue
that signals that a future response should be withheld. Similarly,
proactive inhibition requires the maintenance of task goals as
well as a top-down bias to facilitate the processing of upcoming
cognitively demanding events (Chikazoe et al. 2009b).

One means to isolate proactive from reactive inhibitory pro-
cesses may thus be to use behavioral procedures that focus on
learning the meaning of inhibitory signals, while also exploiting
the temporal dynamics that are unique to proactive inhibition.
This would be most apparent when responding is suppressed un-
der conditions that would normally elicit a response. This is mod-
eled in the serial feature negative discrimination (SFND) paradigm
that produces negative occasion setting (Fig. 2; Holland et al.
1999). An “occasion setter” is a cue that provides information
that resolves the ambiguity of another stimulus and modulates
behavior that is directed to it (Pavlov 1927; Skinner 1938;
Holland 1992; Bouton 2006). In the case of a negative occasion
setter, the cue indicates that the response to an upcoming stimu-
lus should be withheld. This paradigm models inhibition in situ-
ations in which the meaning of a stimulus (response or do not
respond) is ambiguous, and can change on a moment-to-moment
(i.e., trial by trial) basis. In this way, learning about negative occa-
sion setters has direct bearing on adaptive behavior because they
indicate the conditions under which a response will not be associ-
ated with an anticipated outcome and should be inhibited.

Although this form of inhibitory control has received scant
attention in the literature, it may be a particularly useful avenue
for studying proactive inhibitory control processes. In a typical
SFND procedure (Fig. 2), trials in which a “target” stimulus is pre-
sented by itself are followed immediately by reinforcement. On
other trials, a “feature” stimulus is presented just before the target,
and no reinforcement occurs on those trials. Thus, the feature
stimulus acts to “set the occasion,” or the context, for the mean-
ing of the target stimulus and indicates that a response should
be withheld during the subsequent presentation of the target
(Holland and Morell 1996; Bouton and Nelson 1998; Bueno and
Holland 2008). Importantly, the feature stimulus is an explicit
cue, indicating that inhibition is necessary, but is separated in
time from the target stimulus, which is the point during the trial
where inhibitory control must be implemented for the trial to be
considered successful. This allows for a greater extent of temporal
isolation between proactive and reactive control processes than
standard inhibitory paradigms like SST.

Currently, the experimental procedure for testing inhibitory
control in this way has been used primarily in rodent models.

Similar temporal separation between the activation of proactive
processes and the response epoch are present in modified stop
tasks that include a cue indicating the probability that a stop-
signal will occur (Zandbelt et al. 2013b; Vink et al. 2015).
However, in these tasks the stop-signal still occurs after a go-signal
and thus, at least to some extent, inhibitory control will manifest
to abort an ongoing response. Conversely, a negative occasion set-
ter indicates that a cue interpreted as a go-signal on some trial
types should now be interpreted as an inhibitory cue, and a re-
sponse should not be initiated in the first place. Further develop-
ment of inhibition paradigms that incorporate this type of trial
structure in both human and animal studies will likely be of valu-
able use for future research.

The SFND procedure also facilitates studying learning pro-
cesses. Early in training, rats gradually learn to respond when the
target is presented. However, successful discrimination between
the trial types is indicated by responding more when the target is
presented by itself and withhold responding to the target when
it is preceded by the feature (Holland et al. 1999; MacLeod and
Bucci 2010; Meyer and Bucci 2014). Comparing the neurobiologi-
cal processes that are active during the presentation of the target
across training may be very useful for informing the learning pro-
cesses that contribute to inhibitory control. Flexibly updating the
meaning of cues is crucial for regulating behavior that is contin-
gent upon those cues. In addition, both reversal and extinction
processes involve updating the representations of cues in the envi-
ronment, and responses directed toward these cues (for reviews of
these topics see Delamater and Westbrook 2014; Hamilton and
Brigman 2015). These procedures may also be useful for studying
the underlying behavioral and systems level learning processes
that contribute to the implementation of inhibitory control.

Finally, the SFND procedure provides a means of elucidating
the neurobiological factors that contribute to omitting a response
and how these factors differ from those required for preparing to
suppress a response. The dlPFC, which has been implicated in
both reactive and proactive inhibition of a prepotent response
(van Belle et al. 2014), may also be involved in the proactive pro-
cess of response omission due to its role in monitoring environ-
mental cues in order to generate appropriate response strategies
(Ragozzino 2007; Hikosaka and Isoda 2010). Moreover, the rodent
homolog of dlPFC (prelimbic cortex) is required for successful
inhibitory control in the SFND paradigm (MacLeod and Bucci
2010). Also of interest is OFC, based on evidence that this region
is particularly important for mediating cue representations under
circumstances of ambiguity (Schoenbaum et al. 2009; Gremel and
Costa 2013). This is of particular relevance for negative occasion
setting,where behavior directed toward the same stimulus must ei-
ther be emitted or withheld, depending on the presence of envi-
ronment signals. Moreover, subcortical regions such as NAC that
contribute to the motivational aspects of a stopping goal (outlined
above) may also prove to be of importance in preparing to omit a
response. Indeed, contemporary research has conceptualized a
framework wherein prefrontal and subcortical regions work in
concert toward mediating goal-directed behavior, including situa-
tions where inhibition is the most appropriate course of action
(Casey et al. 2008; Somerville and Casey 2010; Heatherton and
Wagner 2011). Consistent with this concept, we have recently
shown that a dynamic interplay between neural activity in OFC
and NAC is essential for proactive inhibition as measured in a neg-
ative occasion setting procedure (Meyer and Bucci, in press).

Implications for psychopathology

Inhibitory control difficulties are apparent in a number of neuro-
psychological disorders such as ADHD (Schachar et al. 1995, 2007;

Figure 2. Configuration of cues and schematic diagram of a typical
serial feature negative discrimination paradigm. Red and green lines indi-
cate inhibitory and excitatory relationships, respectively. The feature cue
acts as a signal that prepares the subject to disambiguate the meaning
of the target cue. When the feature is present, responding during the
target should be omitted. When the feature is absent, responding
during the target cue is appropriate.
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Oosterlaan and Sergeant 1998; Rubia et al. 1998, 2005, 2007,
2009a; Aron and Poldrack 2005; Bekker et al. 2005; Lijffijt et al.
2005; de zeeuw et al. 2008; Durston et al. 2009; Bari and
Robbins 2013b), OCD (Lipszyc and Schachar 2010), schizophrenia
(Kiehl et al. 2000; Raemaekers et al. 2002; Vink et al. 2005b;
Enticott et al. 2008; Hughes et al. 2012), conduct disorder
(Oosterlaan et al. 1998; Rubia et al. 2009b), Tourette syndrome
(Goudriaan et al. 2005; Ray Li et al. 2006), substance use disorders
(Fillmore and Rush 2002; Fillmore et al. 2006; Garavan et al. 2008;
Chambers et al. 2009; Liao et al. 2014), and pathological gambling
(Grant et al. 2011). Such difficulties are also present in neurode-
generative disorders such as Huntington’s disease (Majid et al.
2013) and Parkinson’s disease (Gauggel et al. 2004; Mirabella
et al. 2012), as well as in normal cognitive aging (Kramer et al.
1994; Coxon et al. 2012; Smittenaar et al. 2015). Disruptions to in-
hibitory control may reflect problems in learning to use environ-
mental cues to activate and maintain information about which
actions are most appropriate in a given context rather than prob-
lems in downstream implementation of inhibition (Munakata
et al. 2011). If stopping goals cannot be maintained, proactive in-
hibitory control processes will be difficult to initiate (Aron et al.
2014). Thus, these populations may show differential reliance
on reactive versus proactive control (Zandbelt et al. 2011; Braver
2012). A more nuanced and fine-grained analysis of cognitive con-
trol function in these different groups may provide more effective
therapeutic interventions. Furthermore, the appropriate targets
for cognitive intervention may have somewhat similar character-
istics and should be geared toward supporting prefrontal mainte-
nance of the appropriate contextual information (Munakata et al.
2011; Chatham et al. 2012).

Conclusions

Behavioral paradigms that model how a subject prepares to stop
an upcoming response tendency have significant relevance for
real-world demands because inhibition manifests according to
the goals of the subject rather than purely in reaction to an exter-
nal signal (Aron 2011). However, there is currently a troubling lack
of insight into how goals are established and translated into reg-
ulation of the inhibitory signal. Learning to inhibit behavior
involves a number of neurocognitive processes, which are imple-
mented in the brain by complementary circuits. The research re-
viewed in this article highlights the need for precise operational
definitions of the underlying cognitive processes that contribute
to inhibitory control. Inhibitory control can be viewed as one out-
put component from the much larger process of actively main-
taining abstract goal-related information (Miller and Cohen
2001; Munakata et al. 2011). Thus, future research may benefit
from considering the interactions between the systems underly-
ing this process, when attempting to isolate the neural correlates
of inhibitory control.

Although the exact details of the circuitry underlying inhib-
itory control are still in debate, an emerging theme is that reactive
and proactive inhibition function in a complementary manner to
permit efficient and flexible control of behavior in response to de-
tails of the surrounding environment. Furthermore, even if differ-
ent inhibitory phenomena do not share one common neural
substrate, they likely have mechanistic similarities. As such, the
mechanistic details of response inhibition may also underlie con-
trol across functional domains, including non-motor processes
such as emotional and motivational impulses, as well as attention
directed to distracting and irrelevant stimuli. Thus, mapping the
neural architecture of cognitive control through studies of reac-
tive and proactive inhibition may be very useful in determining
the parallel neurobiology of a range of control scenarios.
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