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Abstract
Objective Widespread metabolic changes are seen in neurodegenerative disease and could be used as biomarkers for diag-
nosis and disease monitoring. They may also reveal disease mechanisms that could be a target for therapy. In this study we 
looked for blood-based biomarkers in syndromes associated with frontotemporal lobar degeneration.
Methods Plasma metabolomic profiles were measured from 134 patients with a syndrome associated with frontotemporal 
lobar degeneration (behavioural variant frontotemporal dementia n = 30, non fluent variant primary progressive aphasia 
n = 26, progressive supranuclear palsy n = 45, corticobasal syndrome n = 33) and 32 healthy controls.
Results Forty-nine of 842 metabolites were significantly altered in frontotemporal lobar degeneration syndromes (after 
false-discovery rate correction for multiple comparisons). These were distributed across a wide range of metabolic pathways 
including amino acids, energy and carbohydrate, cofactor and vitamin, lipid and nucleotide pathways. The metabolomic 
profile supported classification between frontotemporal lobar degeneration syndromes and controls with high accuracy (88.1–
96.6%) while classification accuracy was lower between the frontotemporal lobar degeneration syndromes (72.1–83.3%). One 
metabolic profile, comprising a range of different pathways, was consistently identified as a feature of each disease versus 
controls: the degree to which a patient expressed this metabolomic profile was associated with their subsequent survival 
(hazard ratio 0.74 [0.59–0.93], p = 0.0018).
Conclusions The metabolic changes in FTLD are promising diagnostic and prognostic biomarkers. Further work is required 
to replicate these findings, examine longitudinal change, and test their utility in differentiating between FTLD syndromes 
that are pathologically distinct but phenotypically similar.

Keywords Frontotemporal lobar degeneration · Frontotemporal dementia · Primary progressive aphasia · Progressive 
supranuclear palsy · Corticobasal syndrome · Metabolomics

Introduction

Frontotemporal lobar degeneration (FTLD) causes a wide 
spectrum of syndromes including the behavioural and lan-
guage variants of frontotemporal dementia (bvFTD, PPA, 
respectively), progressive supranuclear palsy (PSP) and cor-
ticobasal syndrome (CBS) [1, 2]. Accurate early diagnosis 
is challenging, due in part to the specialist clinical skills and 
imaging resources required. There is therefore a pressing 
need for FTLD biomarkers. Such biomarkers may also facili-
tate diagnosis, clinical trials monitoring and reveal disease 
mechanisms as a target for therapy. Metabolomics is one 
approach, that has identified abnormal metabolic pathways 
in other neurodegenerative diseases including Alzheimer’s, 
Huntington’s and Parkinson’s diseases [3–6]. We therefore 
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examined blood-based metabolic biomarkers in four clini-
cal syndromes associated with FTLD. We studied the four 
syndromes together, in view of their potential commonalities 
in clinical and neuropathological features [1, 7, 8].

Metabolic pathways are likely to be altered in FTLD. For 
example, genomic studies of FTLD syndromes have identi-
fied genetic polymorphisms implicated in protein synthesis, 
packaging and breakdown, as well as immune functions and 
myelin structure [9–13]. However, there is limited evidence 
on metabolomic abnormalities in FTLD: the cerebrospinal 
fluid in FTD shows a panel of metabolites could differenti-
ate FTD from controls and Alzheimer’s disease [14], while 
hypertriglyceridemia and hypoalphalipoproteinemia have 
been reported in bvFTD [15]. Several metabolites were of 
particular interest. For example, phosphatidylserine has been 
proposed as a pro-apoptotic marker in pre-clinical neuronal 
models of tauopathies [16, 17], and might therefore be 
abnormal in the clinical tauopathies within FTLD. Amino 
acids such as the neurotransmitter serotonin are also deregu-
lated in FTLD [18, 19], while secondary changes in dietary 
preferences, weight and exercise associated with FTLD may 
influence carbohydrate metabolism [20–23].

This study had three aims. First, to identify which bio-
chemicals and their associated metabolite pathways are 
abnormal in each of four FTLD syndromes. Second, to test 
the accuracy of metabolite profiles in classifying patients 
versus healthy controls. Third, to test whether metabolomics 
changes are indicative of prognosis. We predicted that a wide 
range of metabolic pathways would be abnormal in FTLD, 
supporting accurate classification between FTLD syndromes 
and controls; but phenotypic and pathological similarities 
would reduce the accuracy of differential diagnosis between 
the FTLD syndromes.

Materials and methods

Study participants

Patients were recruited from the Cambridge Centre for 
Frontotemporal Dementia and Related Disorders and met 
the clinical diagnostic criteria for either behavioural variant 
frontotemporal dementia [24], non-fluent variant primary 
progressive aphasia [25], progressive supranuclear palsy 
Richardson’s syndrome [26] or corticobasal syndrome [27]. 
Healthy controls had no neurological or psychiatric disease, 
but were not screened by genetics or biomarkers to exclude 
asymptomatic neuropathologies. The study was approved 
by the local ethics committee and all participants gave 
informed consent or, if lacking mental capacity, through 
a consultee process according to UK law. 134 patients 
(30 bvFTD, 26 nfvPPA, 45 PSP, 33 CBS) and 32 healthy 

controls participated. Plasma was obtained by centrifugation 
of whole blood and stored at -80ºC until analysis.

Metabolite detection and quantification

Biochemical identification and quantification were per-
formed by Metabolon Inc (www.metab olon.com) for all 
samples at a single timepoint. Samples were analysed with 
ultra-high performance liquid chromatography and tandem 
mass spectrometry, optimised for basic and acidic species. 
Biochemicals were then identified by comparison of the ion 
features of each sample to a reference library of compounds 
and grouped into sub and super pathways, corresponding 
to metabolite pathways [28]. For a full list of the metabolic 
pathways and their constituent biochemicals measured in 
this study see Appendix 1.

Statistical analysis

Our statistical analysis pipeline is summarised in Fig. 1. 
First, we used independent two-sample t tests to compare 
the age distributions of the FTLD and control groups. A 
Chi-squared test with Yates correction was used to com-
pare sex between groups. In the metabolite dataset missing 
values implied a result below the limit of detection in that 
individual. We excluded metabolites if they were missing in 
more than half of the participants. Remaining missing values 
were replaced by half of the minimum positive value of that 
variable. We also removed metabolites from exogenous met-
abolic pathways, including known drugs and drug pathways, 
before further analysis. All metabolite concentrations were 
scaled to unit variance (i.e., normalised to z scores) [29].

Univariate statistical tests were then used to compare 
individual metabolite differences between groups. We used 
a generalised linear model on each metabolite, with age and 
sex as covariates, to compare the FTLD and control groups. 
An FDR corrected p value threshold of 0.01 used to deter-
mine statistical significance (using the ‘mafdr’ function in 
MATLAB). Bonferroni correction is also presented, while 
noting that non-independence of metabolites is likely to 
make this method overly conservative. The fold change for 
each metabolite was calculated by dividing the mean disease 
and control values of unscaled data.

A two-level principal component analysis (PCA) was 
used to explore the diseases’ effect on each metabolite path-
way. We used this two-level approach to reduce dimension-
ality whilst preserving the metabolite pathways structure 
of the dataset, with the parsimonious representation of all 
metabolic pathways in the comparisons between groups. At 
the first level, we performed a ‘local PCA’ on the metabo-
lites in each subpathway, to identify components that best 
explained the variance in that pathway. Ninety-one local 
principal component analyses were run in total, one for each 

http://www.metabolon.com
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metabolite subpathway. Within each subpathway, we used 
the Kaiser criteria to select components with an eigenvalue 
greater than one. To assess which metabolite pathways are 
affected in FTLD we used independent two-sample t tests 
to compare scores for each local PCA component. An FDR 
corrected p value threshold of 0.01 was used to determine 
statistical significance. At the second level, we performed 
a ‘global PCA’. This was global in the sense of examining 
metabolite variance across all subpathways, including all 
the components with an eigenvalue greater than one from 
all local PCAs.

Next we tested the ability of the global PCA components 
to classify FTLD syndromes. We trained pairwise linear 
support vector machines using the subject specific weight-
ings for components output from the global PCA. A total of 
eleven SVMs were trained, to discriminate between each of 
the five groups, and to compare all FTLD syndromes jointly 
versus healthy controls. Prior to training, component load-
ing values were rescaled from − 1 to 1. Groups were size-
matched by randomly sampling cases from the larger of the 
groups to match the size of the smaller group.

We used backwards sequential feature selection using 
the ‘sequentialfs’ function in MATLAB to identify the 

components that best predicted disease, as follows. Starting 
with the full dataset, components were sequentially removed 
until classifier accuracy decreased. SVM accuracy and fac-
tor selection were validated with tenfold cross validation. In 
each iteration, the training and test data subsets were kept 
separate. Random case sampling, SVM training and sequen-
tial feature selection were repeated 10 times and the mean 
accuracy overall partitions were calculated. Only the com-
ponents selected in all repetitions are reported. With small 
sample sizes, k-fold cross-validation minimises the bias of 
within-sample cross-validation [30]. The reported accuracy 
from each SVM is the mean accuracy from all SVMs trained 
for each pairwise comparison. Out of sample cross-valida-
tion is provided indirectly by comparison of the components 
that were consistent contributors to accurate classification 
for each of the four syndromes versus controls.

Next, we investigated the relationship between FTLD-
associated metabolome and survival. Survival analysis 
was performed with Cox proportional hazards regression. 
Only components selected by sequential feature selection 
in all disease versus control SVMs were used as predictor 
variables. Age, gender and FTLD-group were entered as 
covariates. SVM analyses were performed using LIBSVM 

Fig. 1  Summary of the analysis pipeline. From a total of 842 metabo-
lites, a principal component analysis (PCA) was run on the metabo-
lites in each of 91 subpathways. All components with an eigenvalue 
greater than 1 were entered into a global PCA. The subject-specific 
weights of the principal components from this PCA were used as fea-

tures for support vector machines, using k-fold cross-validation and 
recursive feature elimination. Components selected by recursive fea-
ture elimination were then used as predictors for the survival analysis 
(cox proportional hazards regression with age, gender and FTLD sub-
group as covariates)
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in MATLAB R2018b (MathWorks) [31]. Other statistical 
tests used MATLAB R2018b (Mathworks, USA).

Results

Table 1 summarises the clinical groups. There were sig-
nificant differences between FTLD (all diseases combined) 
and control samples in forty-nine out of 842 metabolites 
detected (two sample t test, FDR p < 0.01). The statistical 
significance of each metabolite is plotted against fold-change 
in Fig. 2a. These metabolites did not cluster in one path-
way but were distributed across a wide range of metabolic 
pathways. These included sixteen amino acid, seven energy 
and carbohydrate, three cofactor and vitamin, sixteen lipid, 
three nucleotide and four xenobiotic pathways (Table 2). 

Twenty-six of these metabolites remained significant with 
family wise error correction (Bonferroni corrected p < 0.01), 
distributed across a wide range of pathways.

To assess differences in metabolic pathways, as opposed 
to individual metabolites, we compared the component load-
ings of principal component analyses on the metabolites in 
each pathway. Principal component analysis on each of 91 
sub-pathways yielded 230 individual components. The com-
ponent scores on twelve sub-pathways were significantly dif-
ferent between FTLD and controls (two sample t test, FDR 
p < 0.01). These included widespread changes in the metab-
olome including amino acid (creatine, glutamate, glycine, 
serine, threonine, methionine, cysteine, taurine, polyamine 
and tryptophan), carbohydrate (amino sugar and glycogen) 
and lipid (fatty acid, lysoplasmalogen, mevalonate, mono-
acylglycerol and phospholipid) pathways.

Table 1  Demographic and clinical summary metrics of study participants

p values are the result of ANOVA across rows for all FTLD subgroups and controls (where applicable), except %Male where a Chi squared test 
was used: ns = p > 0.05
ACER Addenbrookes Cognitive Examination—Revised, CBI Cambridge Behavioural Inventory—Revised, PSP-RS Progressive Supranuclear 
Palsy Rating Scale

FTLD (all subgroups) bvFTD nfvPPA PSP CBS Control p value 
(FTLD vs 
control)

Number 134 30 26 45 33 32
Mean age at blood test (SD) 70.36 (8.21) 64.51 (7.17) 72.00 (7.66) 72.9 (8.06) 70.91 (7.04) 68.73 (9.03) ns
% Male 50 50 38 62 55 56 ns
Symptom onset to study (in years) 

(SD)
4.86 (2.86) 5.56 (2.91) 4.59 (2.1) 4.71 (3.12) 4.68 (2.84) – ns

Diagnosis to study (in years) (SD) 1.52 (1.73) 2.0 (2.11) 1.64 (1.46) 1.04 (1.39) 1.68 (1.82) – ns
Mean ACE-R (< 100) (SD) 62 (27) 52 (30) 61 (29) 72 (22) 61 (29) – 0.009
Mean CBI (< 180) (SD) 61 (28) 83 (26) 39 (32) 56 (31) 66 (34) – < 0.001
Mean PSP-RS (< 100) (SD) – – – 43 (15) – – NA

Fig. 2  Metabolomic alterations 
in FTLD syndromes. Volcano 
plot of log-fold change in each 
metabolite for the contrast of 
FTLD vs control, and their 
significance (log-FDR corrected 
p value). Metabolites are colour 
coded by superpathway. The 
horizontal line marks p = 0.01 
significance. The significant 
metabolites above this line, both 
increased and decreased, come 
from each the major metabolic 
pathways
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Table 2  Table of metabolites that were significantly different in combined FTLD syndromes, compared to healthy controls

p value columns show the p value for a generalised linear model between FTLD and controls with age and sex as covariates. p values in the 
uncorrected column in bold indicate survival after Bonferroni correction (equivalent to uncorrected threshold p < 1.33e−5)

Metabolite name Subpathway Superpathway Fold change p value (FDR) p value (uncorr)

Guanidinoacetate Creatine Amino acid 0.73 5.73E−06 1.14E−07
Beta-citrylglutamate Glutamate Amino acid 1.47 6.33 E−05 1.93E−06
1-Pyrroline-5-carboxylate Glutamate Amino acid 1.60 3.14 E−03 1.58 E−04
2-Aminobutyrate Glutathione Amino acid 0.77 2.19 E−03 9.57 E−05
Sarcosine Glycine/serine/threonine Amino acid 0.76 9.13 E−08 8.48E−10
2-Methylserine Glycine/serine/threonine Amino acid 0.51 7.02 E−11 9.31E−14
N-Acetylmethionine Methionine/cysteine/sam/taurine Amino acid 1.22 9.61 E−03 6.25 E−04
Alpha-ketobutyrate Methionine/cysteine/sam/taurine Amino acid 0.38 2.53 E−10 1.01 E−12
Hypotaurine Methionine/cysteine/sam/taurine Amino acid 1.98 1.03 E−06 1.51 E−08
Taurine Methionine/cysteine/sam/taurine Amino acid 1.63 7.68 E−08 5.14 E−10
Spermidine Polyamine Amino acid 3.42 1.12 E−04 3.69 E−06
5-Methylthioadenosine (MTA) Polyamine Amino acid 1.24 5.34 E−03 2.91 E−04
Tryptophan betaine Tryptophan Amino acid 0.45 5.90 E−03 3.50 E−04
Serotonin Tryptophan Amino acid 10.71 1.22 E−05 3.23 E−07
Homoarginine Urea cycle; arginine/proline Amino acid 0.79 5.78 E−03 3.30 E−04
pro-Hydroxy-pro Urea cycle; arginine/proline Amino acid 1.40 4.77 E−03 2.53 E−04
N-Acetylneuraminate Aminosugar Carbohydrate 1.47 1.14 E−05 2.83 E−07
N-Acetylglucosaminylasparagine Aminosugar Carbohydrate 1.74 2.10 E−03 8.93 E−05
Maltotetraose Glycogen Carbohydrate 16.02 1.14 E−05 2.58E−07
Maltotriose Glycogen Carbohydrate 10.87 7.68E−08 6.11E−10
Maltose Glycogen Carbohydrate 3.08 1.50 E−06 2.58 E−08
Pyruvate Glycolysis/gluconeogenesis/pyruvate Carbohydrate 0.64 3.13E−03 1.45 E−04
Nicotinamide Nicotinate/nicotinamide Cofactors/vitamins 2.18 1.50 E−06 2.48 E−08
Adenosine 5′-diphosphoribose (ADP-

ribose)
Nicotinate/nicotinamide Cofactors/vitamins 5.19 2.70 E−05 7.52 E−07

Flavin adenine dinucleotide (FAD) Riboflavin Cofactors/vitamins 1.30 2.10 E−03 8.87 E−05
Succinate TCA cycle Energy 0.79 8.55 E−03 5.33 E−04
Stearamide Fatty acid/amide Lipid 0.72 3.41 E−03 1.76 E−04
Pristanate Fatty acid/branched Lipid 0.63 8.63 E−04 3.09 E−05
Maleate Fatty acid/dicarboxylate Lipid 0.55 1.14 E−05 2.88 E−07
Glycerol 3-phosphate Glycerolipid Lipid 0.66 7.69 E−07 1.02 E−08
1-(1-Enyl-palmitoyl)-GPE (P-16:0)* Lysoplasmalogen Lipid 1.25 5.77 E−03 3.21 E−04
Heptanoate (7:0) Medium chain fatty acid Lipid 1.86 1.85 E−06 3.43 E−08
10-Undecenoate (11:1n1) Medium chain fatty acid Lipid 0.63 6.67 E−06 1.42 E−07
1-Palmitoleoylglycerol (16:1) Monoacylglycerol Lipid 0.46 1.65 E−03 6.35 E−05
1-Linoleoylglycerol (18:2) Monoacylglycerol Lipid 0.59 4.87 E−04 1.68 E−05
1-Stearoyl-2-oleoyl-GPS (18:0/18:1) Phosphatidylserine (PS) Lipid 8.94 1.95 E−09 1.03 E−11
1-Stearoyl-2-arachidonoyl-GPS 

(18:0/20:4)
Phosphatidylserine (PS) Lipid 7.47 3.82 E−07 4.56 E−09

Choline phosphate Phospholipid Lipid 1.59 1.42 E−07 1.50 E−09
Phosphoethanolamine Phospholipid Lipid 2.61 9.92 E−11 2.63 E−13
Sphinganine Sphingolipid Lipid 1.53 3.14 E−03 1.55 E−04
Sphingosine Sphingolipid Lipid 1.38 2.57 E−03 1.16 E−04
Lactosyl-N-behenoyl-sphingosine 

(18:1/22:0)
Sphingolipid Lipid 1.48 3.14 E−03 1.50 E−04

N1-Methylinosine Purine/(hypo)xanthine/inosine containing Nucleotide 1.46 5.90 E−03 3.52 E−04
Dihydroorotate Pyrimidine/orotate containing Nucleotide 0.55 1.80 E−03 7.18 E−05
2′-Deoxyuridine Pyrimidine/uracil containing Nucleotide 0.65 1.62 E−03 6.02 E−05
Benzoate Benzoate Xenobiotics 0.73 1.12 E−04 3.72 E−06
Iminodiacetate (IDA) Chemical Xenobiotics 1.19 3.13 E−05 9.15 E−07
Thioproline Chemical Xenobiotics 1.16 8.69 E−03 5.53 E−04
1-Methylxanthine Xanthine Xenobiotics 0.58 6.34 E−03 3.87 E−04
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We then tested the efficacy of metabolomics as a diag-
nostic biomarker for FTLD (Table 3). Linear support vector 
machines with sequential feature selection using all 50 prin-
cipal components from the global PCA as predictor variables 
accurately distinguished FTLD from controls (92.5%) and 
individual FTLD syndromes from controls (bvFTD 96.67% 
nfvPPA 88.08% PSP 95.78% CBS 95.16%). Accuracy 
was less among FTLD syndromes. BvFTD classification 
accuracy from nfvPPA (82.00%), PSP (81.33%) and CBS 
(83.33%) was better than PSP, CBS and nfvPPA. This was 
even lower in separating nfvPPA from PSP (79.52%) or CBS 
(0.72%) and PSP from CBS (78.6%).

Sequential feature selection, by removing components 
that did not contribute to SVM accuracy, identifies the com-
ponents that best separated the two groups. Only two or three 
components were selected for each disease vs control clas-
sifier. One principal component was selected in every com-
parison between disease group and controls (component 3). 
From the between syndrome classifications, multiple addi-
tional components were consistently selected (up to 6 in the 
bvFTD vs CBS comparison). For the nfvPPA vs CBS clas-
sifier accuracy no components were consistently selected.

Component 3, from the global PCA of all metabolite 
pathways, was selected by sequential feature selection in 
every disease vs control classifier. This means the metab-
olites contributing to this component were consistently 
important in separating disease groups from controls. All 
but two healthy controls positively loaded onto this com-
ponent while the loadings in the FTLD syndromes varied 
(Fig. 3a). Component 3 represented metabolites from a 
wide range of pathways (Fig. 3b, full list of subpathway 
loadings in Appendix 2). Sub-pathways with high positive 
loading onto component 3 included phospholipid and other 
lipid pathways, haemoglobin and the carbohydrate glyco-
gen metabolism pathway. Subpathways with high negative 

loading onto component 3 included certain fatty-acid path-
ways and amino acid pathways including leucine, valine, 
tryptophan, glycine, serine, threonine, methionine, cysteine 
and taurine metabolism.

We next tested component 3 as a prognostic biomarker 
(in patients only) using Cox proportional hazards regres-
sion using age, gender, disease groups and component 3 and 
days from blood test to death. The standardised individual 
participant loadings on component 3 were significantly asso-
ciated with time to death [hazard ratio 0.74 (0.59–0.93), 
p = 0.0018]. To illustrate this effect, we plotted separately 
the patients with high (z score > 1), medium (z score between 
1 and − 1) and low (z score < 1) values on this component 
(Fig. 4).

Discussion

Our results show that multiple metabolic pathways are 
changed in patients with clinical syndromes associated with 
frontotemporal lobar degeneration. One particular profile 
of metabolic change (here identified as component 3) was 
consistently identified as a feature of each disease versus 
controls, and the degree to which a patient expressed this 
metabolomic profile was correlated with subsequent sur-
vival. The metabolic changes in FTLD were not confined 
to a single pathway but were found across carbohydrates, 
lipids, amino acids, and peptide pathways. The identifica-
tion of a blood-based metabolic index of FTLD and sur-
vival may in future assist prognostication and clinical trial 
design. However replication is required and we acknowledge 
that our results do not determine whether these abnormali-
ties result from aetiopathogenic processes or environmental 
sequelae of neurodegenerative disease. Replication in inde-
pendent cohorts and the analysis of longitudinal change will 
be important extensions of this work. In the following, we 
discuss the metabolic changes, in turn, their potential util-
ity for diagnosis and prognosis, and the study’s limitations.

Our first aim was to identify metabolic markers of FTLD. 
Several of the metabolite differences in FTLD implicate 
carbohydrate metabolism and energy pathways. Maltose 
and maltose metabolites, elevated in our FTLD groups, are 
primary disaccharides in the human diet. This result may 
be due to the altered dietary preferences, appetite, weight 
change and exercise associated with FTLD [20–23]. How-
ever, it may also be due to endogenous changes in energy 
metabolism and storage. Pyruvate and succinate, both key 
components of the TCA cycle, were low in FTLD despite 
the raised polysaccharides levels. Glycerol-3-phosphate, 
which has an important role in reoxidisation of NADH, was 
also low. These abnormalities reflect altered glucose uptake 
and metabolic dysfunction, which is of particular interest 
in view of in vivo PET imaging of FTLD where abnormal 

Table 3  Matrix of average classification accuracy of the support vec-
tor machines’ classification between groups (percentage total correct 
classification)

Groups were sized matched for each classifier (see “Materials and 
methods”). The diagonal values represent the classification accuracy 
for that disease group against all other groups combined. Classifica-
tion accuracy is high in each FTLD syndrome compared with healthy 
controls, but lower when classifying between FTLD syndromes
bvFTD behavioural variant frontotemporal dementia, nfvPPA non-
fluent variant primary progressive aphasia, PSP progressive supranu-
clear palsy Richardson’s syndrome, CBS corticobasal syndrome

bvFTD nfvPPA PSP CBS Control

bvFTD 86 82 81 83 97
nfvPPA 82 80 76 72 88
PSP 81 76 83 79 96
CBS 83 72 79 82 95
Control 97 88 96 95 93
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glucose metabolism often precedes neuronal loss and atro-
phy [32–34].

The amino acid differences could also be attributed to 
defective energy metabolism. For example, glucogenic 
amino acid metabolites, including alpha-ketobutyrate, 
2-methylserine and sarcosine were low in FTLD and in other 
neurodegenerative diseases it has been suggested that abnor-
malities in these pathways represent an attempt to preserve 
or restore glycolysis [35]. Spermidine, elevated in FTLD, is 
a polyamine amino acid that promotes autophagy and has 
neuroprotective effects in rodent models [36]. The raised 
levels in FTLD might reflect a response to increased cell 
death that occurs in patients with the neurodegenerative dis-
ease [37]. We found increased serotonin levels in FLTD (FC 
10.71, p < 0.001). Central nervous serotonergic pathways are 

abnormal in FTLD [18] and serotonin reuptake inhibitors 
have been used as a symptomatic treatment in FTLD [19]. 
However, there is usually a limited exchange of serotonin 
across the blood brain barrier, and the significance of this 
peripheral serotonin result is unclear for the central nervous 
system. Peripheral serotonin effects include glucose regula-
tion via its action on pancreatic beta cells, hepatocytes and 
adipose tissue [38]. Abnormal peripheral serotonin levels 
in FTLD may therefore again relate to abnormal glucose 
regulation.

Lipid pathways were also abnormal in FTLD with 
alterations in several phospholipid, glycerolipid and sphin-
golipid metabolites. These are important components 
of cell membranes. Phospholipid pathway metabolites, 
including phosphatidylserines (FC7-8, p < 0.001) and 

Fig. 3  a Individual loading 
onto component 3, by group. 
b Subpathways loading on 
component 3
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phosphoethanolamine (FC 2.61, p < 0.001), showed the 
greatest differences in FTLD compared to controls. Our 
results contrast with a lipidomics study of bvFTD which 
found the same phospholipids were reduced in bvFTD. 
However, the apparent discrepancy could be explained by 
the differences in disease stages. Phospholipids are a major 
component of cell membranes and phosphatidylserine has 
been proposed as a pro-apoptotic marker in pre-clinical neu-
ronal models of tauopathies [16, 17]. Sphingosine and its 
derivative sphingoamine, important components of sphin-
golipid metabolism, were also elevated in FTLD syndromes. 
Sphingosine derived lipids comprise up to one third of cell 
membranes and are highly prevalent in the central nervous 
system white matter. Dysregulated sphingomyelin metabo-
lism has been implicated in neurodegeneration due to Alz-
heimer’s disease [39] and has been suggested as a potential 
blood biomarker [40].

Our second aim was to determine whether the metabo-
lome could be used to classify patients by syndrome and 
provide proof-of-concept for a blood-based biomarker. Clas-
sification accuracy, using only the metabolite principal com-
ponents, was high (88–97%) between each FTLD syndrome 
and controls. Sequential feature selection found that only a 
small subset of components was required, without loss of 
accuracy. Interestingly classification accuracy did not reflect 
the strength of the published clinicopathological correla-
tions in each syndrome. Frontotemporal lobar degeneration 
syndromes are associated with different underlying patholo-
gies, including FTLD-tau and FTLD-TDP43 [1]. Each FTLD 
syndrome has a different clinicopathological accuracy; the 
clinical syndrome of PSP-Richardson’s syndrome is almost 
always caused by 4-repeat tau pathology [26] and had a clas-
sification accuracy of 95%. BvFTD, which can be caused by 

Tau-, TDP43- or FUS-pathology [24], still had a metabo-
lomics accuracy of 96.5%. CBS has poor clinic-pathological 
correlation and may be associated with corticobasal degen-
eration, Alzheimer’s disease pathology, PSP or other pathol-
ogy [41], but the syndrome still manifested a metabolomic 
classification accuracy of 95.6%. This would suggest some 
of the classifying features results are not neuropathologically 
specific but rather reflect generalised aspects of progressive 
neurodegeneration or the widespread physiological stresses 
that follow.

Classification accuracy was lower between the different 
FTLD syndromes. This is expected in view of the closely 
overlapping clinical features and underlying neuropatholo-
gies across FTLD syndromes. We suggest that the FTLD 
syndromes with the closest overlap in phenotype and pathol-
ogy have the lowest classification accuracy. For example, 
nfvPPA can be the initial presenting syndrome of PSP-
pathology or corticobasal degeneration, and nfvPPA can 
evolve towards a CBS-like phenotype, or CBS-NAV [27, 
42–44]. PSP and CBS were weakly differentiated, and share 
many similar features in pathology and syndrome, as indi-
cated by the nosological status of PSP-CBS and CBS-PSP 
[26, 27].

Our third aim was to find a prognostic biomarker in 
FTLD. Component 3 was associated with survival (days 
to death), independent of disease group, age or gender. A 
range of metabolic pathways contributed to this compo-
nent, including phospholipid, amino acid, carbohydrate and 
cofactor pathways. This suggests the metabolomics marker 
of mortality risk reflects a signature of underlying progres-
sive neurodegeneration, as opposed to an isolated metabolic 
pathway alteration. We suggest that the component reflects 
both environmental and endogenous changes, but further 

Fig. 4  Kaplan–Meir Survival 
Curve of loadings on compo-
nent 3. Patients were separated 
into three groups based on their 
loading onto component 3. High 
loading patients had a z score 
greater than 1, medium between 
1 and − 1 and low had a z score 
less than − 1. There was a 
significant difference in survival 
curves between the three groups 
(log rank p = 0.04). Graph gen-
erated using MatSurv (https ://
githu b.com/aeber gl/MatSu rv)

https://github.com/aebergl/MatSurv
https://github.com/aebergl/MatSurv
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studies are required to target the biochemicals comprising 
component 3. Despite the uncertainty over the causes of the 
metabolomic differences, our findings suggest that blood-
based biomarkers have potential as diagnostic biomarkers. 
To confirm the role of metabolomics as a prognostic bio-
marker longitudinal measures are essential, and comparisons 
against other differential diagnostic groups such as Parkin-
son’s disease and non-degenerative causes of late-life behav-
ioural change.

Our study has several limitations. Metabolomics can 
be highly sensitive to differences in sampling, storage and 
analysis. For practical reasons, and with a view to utility in 
healthcare settings, our samples were taken at variable times 
of day, and participants were not fasted. For ethical reasons, 
no medications were withheld or altered in participants for 
the purposes of the study. Some participants were taking lev-
odopa or selective serotonin reuptake inhibitors for example. 
This might account for some of the differences between dis-
ease groups and controls. However, to mitigate this risk, we 
removed metabolites and sub-pathways that have been asso-
ciated with these medications in reference datasets. We also 
acknowledge that the Metabolon analysis pipeline cannot 
differentiate between optical isomers of a metabolite, which 
may have different physiological properties. Our sample size 
is modest, we restricted our classification sample sizes to 
prevent inequalities in the group sizes (which may otherwise 
bias classifiers). Our sample was therefore limited by the 
prevalence of the least common disorder. Nonetheless, for 
small sizes, the k-fold cross-validation approach provides a 
minimally biased estimate of the potential accuracy of clas-
sification. For each disease group, we used within-sample 
cross validation, separating training and tests data on each 
iteration, but we have not replicated our findings in an inde-
pendent cohort. Out-of-sample cross-validation was found 
across the four separate disease groups for component 3, 
which was most closely associated with survival. However, 
further work is required to replicate the findings in other 
disease-specific cohorts to confirm the utility of metabo-
lomics as a diagnostic biomarker. In anticipation of clinical 
utility, we focussed on comparison and classification by the 
syndrome. However, genetic FTD cohorts and retrospective 
analysis samples from people with post mortem diagnos-
tic confirmation would enable the additional metabolomics 
analysis by pathology rather than syndrome.

In summary, our findings highlight the widespread meta-
bolic changes in each of four major clinical disorders associ-
ated with frontotemporal lobar degeneration. We found that 
the metabolite profile can be used to classify between FTLD 
and healthy controls with high accuracy and relate to prog-
nosis. Several metabolites show promise as diagnostic and 
prognostic biomarkers which if developed could enrich case 
identification in healthcare settings and in future clinical tri-
als. Further work is required to replicate these findings and 

test their utility in differentiating between FTLD and patho-
logically distinct, but phenotypically similar syndromes.
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