Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-Diazonaphthalen-2(1H)-one

Mitsuru Kitamura, ${ }^{\text {a* }}$ Rie Sakata ${ }^{\text {a }}$ and Taisuke Matsumoto ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan, and ${ }^{\text {b }}$ Institute for Materials Chemistry and Engineering, Kyushu University, 6-1, Kasugako-en, Kasuga 816-8580, Japan Correspondence e-mail: kita@che.kyutech.ac.jp

Received 20 June 2011; accepted 3 July 2011
Key indicators: single-crystal X-ray study; $T=123 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.044 ; w R$ factor $=0.119$; data-to-parameter ratio $=12.2$.

The molecule of the title compound, $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$, is nearly planar [maximum deviation $=0.030(1) \AA$]. The CN_{2} moiety is almost linear, with a $\mathrm{C}-\mathrm{N}-\mathrm{N}$ angle of $175.50(14)^{\circ}$. A single intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is observed in the crystal structure. A $\pi-\pi$ interaction is also observed with the shortest distance being 3.6832 (12) \AA between the the centroids of the six-membered rings.

Related literature

For the synthesis, see: Kitamura et al. (2010). For the crystal structure of related diazonaphthoquinones, see: Seidel et al. (1989); Ferreira et al. (2006). For an example of the utility of the diazonaphthoquinones, see Reiser et al. (1996).

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=170.17$
Orthorhombic, Pbca
$a=11.900$ (2) \AA
$b=9.1978$ (15) \AA
$c=14.521(3) \AA$
$V=1589.4(5) \AA^{3}$
$Z=8$
$\mathrm{Cu} K \alpha$ radiation
$\mu=0.78 \mathrm{~mm}^{-1}$
$T=123 \mathrm{~K}$
$0.50 \times 0.40 \times 0.40 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

18038 measured reflections 1456 independent reflections 1359 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$ $R_{\text {int }}=0.018$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044 \quad 119$ parameters
$w R\left(F^{2}\right)=0.119 \quad$ All H-atom parameters refined
$S=1.08$
1456 reflections
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.13 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 3 \cdots 1^{\mathrm{i}}$	0.95	2.55	$3.466(2)$	162
Symmetry code: (i) $-x+\frac{1}{2},-y+2, z+\frac{1}{2}$.				

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku Americas and Rigaku, 2007); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure and publCIF (Westrip, 2010).

This work was supported by the Nagase Science Technology Foundation and a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2420).

References

Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ferreira, V. F., Jorqueira, A., Leal, K. Z., Pimentel, H. R. X., Seidl, P. R., da Silva, M. N., da Souza, M. C. B. V., Pinto, A. V., Wardell, J. L. \& Wardell, S. M. S. V. (2006). Magn. Reson. Chem. 44, 481-490.

Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
Kitamura, M., Tashiro, N., Sakata, R. \& Okauchi, T. (2010). Synlett, pp. 25032505.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Reiser, A., Shih, H.-Y., Yeh, T.-F. \& Huang, J.-P. (1996). Angew. Chem. Int. Ed. Engl. 35, 2428-2440.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku Americas and Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
Seidel, I., Kuban, R.-J., Brandtstädter, H. \& Gey, E. (1989). Z. Chem. 29, 177178.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, o1951 [doi:10.1107/S1600536811026377]

1-Diazonaphthalen-2(1H)-one

M. Kitamura, R. Sakata and T. Matsumoto

Comment

1,2-Diazonaphthoquinone derivatives are unique cyclic α-diazocarobonyl compounds that can be drawn as diazonium naphtholate resonance forms, and are exclusively used photoresists such as novolak-diazonaphthoquinone resist (Reiser, et al., 1996). The reports on the X-ray structural data of diazonaphthoquinones are limitted (Seidel et al., 1989; Ferreira et al., 2006). We have synthesized the simplest diazonaphthoquinone, 1-diazo- $1 H$-naphthalen-2-one, by the diazo-transfer reaction (Kitamura et al., 2010) and determined its crystal structure which is being reported in this article.

In the structure of the title compound (Fig. 1) the CN_{2} moiety is almost linear, with $\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2=175.50(14)^{\circ}$. The bond length $\mathrm{N} 1-\mathrm{N} 2$ and $\mathrm{C} 1-\mathrm{N} 2$ are 1.1210 (19) and 1.3355 (19) \AA. The keto $\mathrm{C}=\mathrm{O}$ bond length is 1.2474 (19) \AA, which is close to a double bond. These data suggest that the structure of the title compound is not diazonium naphtholate form in the solid state.

A single intermolecular hydrogen bond is observed C6-H3 $\cdots \mathrm{O} 1^{\mathrm{i}}$ is observed in the crystal structure (Fig. 2). In addition, a $\pi-\pi$ interaction is obserbed with the shotest distance 3.6832 (12) \AA between the the centroids of the six memberd rings.

Experimental

To a solution of 2-chloro-1,3-dimethylimidazolinium chloride ($228 \mathrm{mg}, 1.35 \mathrm{mmol}$) in acetonitrile (2 ml), sodium azide $(99.4 \mathrm{mg}, 1.5 \mathrm{mmol})$ and 15 -crown- 5 ether $(0.06 \mathrm{ml}, 0.3 \mathrm{mmol})$ were added at 253 K and the mixture was stirred for 30 min . 2-Naphthol ($130 \mathrm{mg}, 0.90 \mathrm{mmol}$) and triethylamine ($0.25 \mathrm{ml}, 1.8 \mathrm{mmol}$) in THF $(4 \mathrm{ml})$ were added to the mixture, which was stirred for 20 min . The reaction was quenched with water, and organic materials were extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with water and brine, and then, dried over anhydrous sodium sulfate. The solvent was removed in vacuo to afford crude compound. The crude material was purified by flash column chromatography (silica gel: hexane/ethyl acetate $=4 / 1$) to give the title compound in 86% yield. Single-crystals suitable for X-ray crystallographic analysis were obtained by recrystallization from a mixture of hexane and ethyl acetate (5:1).

Refinement

H atoms were positioned geometrically and were refined in as riding mode on the parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.95 \AA and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

supplementary materials

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. A unit cell packing diagram showing hydrogen bonds and $\pi-\pi$ interaction; H -atoms not involved in H -bonds have been excluded for clarity.

1-Diazonaphthalen-2(1H)-one

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$

$M_{r}=170.17$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=11.900$ (2) \AA
$b=9.1978(15) \AA$
$c=14.521(3) \AA$
$V=1589.4(5) \AA^{3}$
$Z=8$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Detector resolution: 5.00 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.566, T_{\text {max }}=0.731$
18038 measured reflections
1456 independent reflections
$F(000)=704.00$
$D_{\mathrm{x}}=1.422 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54187 \AA$
Cell parameters from 17442 reflections
$\theta=3.0-68.2^{\circ}$
$\mu=0.78 \mathrm{~mm}^{-1}$
$T=123 \mathrm{~K}$
Prism, brown
$0.50 \times 0.40 \times 0.40 \mathrm{~mm}$

1359 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\mathrm{int}}=0.018$
$\theta_{\text {max }}=68.2^{\circ}$
$h=-14 \rightarrow 14$
$k=-10 \rightarrow 10$
$l=-17 \rightarrow 17$

Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$

0 restraints
All H-atom parameters refined

$$
\begin{aligned}
& w R\left(F^{2}\right)=0.119 \\
& S=1.08 \\
& 1456 \text { reflections } \\
& 119 \text { parameters }
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0661 P)^{2}+0.5878 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.13 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor $(w R)$ and goodness of fit (S) are based on $F^{2} . R$ factor (gt) are based on F. The threshold expression of $F^{2}>2.0 \sigma\left(F^{2}\right)$ is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
$\mathrm{O}(1)$	$0.41204(11)$	$1.07612(13)$	$0.22608(7)$	$0.0476(3)$
$\mathrm{N}(1)$	$0.55271(11)$	$0.89513(13)$	$0.31064(8)$	$0.0327(3)$
$\mathrm{N}(2)$	$0.63438(13)$	$0.87983(16)$	$0.27341(9)$	$0.0441(3)$
$\mathrm{C}(1)$	$0.45523(13)$	$0.92398(16)$	$0.35238(10)$	$0.0336(3)$
$\mathrm{C}(2)$	$0.38659(14)$	$1.02931(17)$	$0.30396(11)$	$0.0390(4)$
$\mathrm{C}(3)$	$0.28687(14)$	$1.07339(17)$	$0.35513(11)$	$0.0406(4)$
$\mathrm{C}(4)$	$0.26340(13)$	$1.01769(18)$	$0.43965(12)$	$0.0419(4)$
$\mathrm{C}(5)$	$0.33263(12)$	$0.91102(16)$	$0.48560(10)$	$0.0344(3)$
$\mathrm{C}(6)$	$0.30613(13)$	$0.85591(18)$	$0.57389(11)$	$0.0389(4)$
$\mathrm{C}(7)$	$0.37387(14)$	$0.75293(19)$	$0.61482(11)$	$0.0395(4)$
$\mathrm{C}(8)$	$0.46903(13)$	$0.70173(19)$	$0.56895(11)$	$0.0388(4)$
$\mathrm{C}(9)$	$0.49762(13)$	$0.75479(17)$	$0.48334(10)$	$0.0343(3)$
$\mathrm{C}(10)$	$0.43117(12)$	$0.85986(16)$	$0.44128(10)$	$0.0310(3)$
$\mathrm{H}(1)$	0.2371	1.1427	0.3288	0.049^{*}
$\mathrm{H}(2)$	0.1977	1.0508	0.4703	0.050^{*}
$\mathrm{H}(3)$	0.2412	0.8901	0.6052	0.047^{*}
$\mathrm{H}(4)$	0.3558	0.7168	0.6743	0.047^{*}
$\mathrm{H}(5)$	0.5146	0.6295	0.5971	0.047^{*}
$\mathrm{H}(6)$	0.5629	0.7195	0.4530	0.041^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$\mathrm{O}(1)$	$0.0703(8)$	$0.0379(6)$	$0.0347(6)$	$0.0036(5)$	$-0.0079(5)$	$0.0033(4)$
$\mathrm{N}(1)$	$0.0406(7)$	$0.0295(6)$	$0.0279(6)$	$-0.0016(5)$	$0.0014(5)$	$0.0001(4)$
$\mathrm{N}(2)$	$0.0509(8)$	$0.0411(8)$	$0.0403(7)$	$-0.0027(6)$	$0.0117(6)$	$0.0025(6)$
$\mathrm{C}(1)$	$0.0362(8)$	$0.0325(7)$	$0.0320(7)$	$-0.0001(6)$	$-0.0012(6)$	$-0.0042(5)$
$\mathrm{C}(2)$	$0.0501(9)$	$0.0313(8)$	$0.0355(8)$	$-0.0008(6)$	$-0.0102(7)$	$-0.0042(6)$
$\mathrm{C}(3)$	$0.0414(8)$	$0.0361(8)$	$0.0442(9)$	$0.0067(6)$	$-0.0124(7)$	$-0.0073(6)$

$\mathrm{C}(4)$	$0.0327(7)$	$0.0423(8)$	$0.0506(9)$	$0.0021(6)$	$-0.0036(6)$	$-0.0167(7)$
$\mathrm{C}(5)$	$0.0317(7)$	$0.0345(8)$	$0.0371(8)$	$-0.0045(6)$	$-0.0059(6)$	$-0.0105(6)$
$\mathrm{C}(6)$	$0.0305(7)$	$0.0483(9)$	$0.0379(8)$	$-0.0096(6)$	$0.0041(6)$	$-0.0150(7)$
$\mathrm{C}(7)$	$0.0428(8)$	$0.0484(9)$	$0.0274(7)$	$-0.0132(7)$	$0.0011(6)$	$-0.0029(6)$
$\mathrm{C}(8)$	$0.0388(8)$	$0.0428(9)$	$0.0349(8)$	$-0.0056(6)$	$-0.0043(6)$	$0.0004(6)$
$\mathrm{C}(9)$	$0.0300(6)$	$0.0384(8)$	$0.0344(8)$	$-0.0019(6)$	$-0.0001(6)$	$-0.0027(6)$
$\mathrm{C}(10)$	$0.0308(7)$	$0.0336(7)$	$0.0288(7)$	$-0.0074(5)$	$-0.0015(5)$	$-0.0071(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O}(1)-\mathrm{C}(2)$	1.2474 (19)
$\mathrm{N}(1)-\mathrm{N}(2)$	1.1210 (19)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.3355 (19)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.449 (2)
$\mathrm{C}(1)-\mathrm{C}(10)$	1.448 (2)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.458 (2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.359 (2)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.444 (2)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.414 (2)
$\mathrm{C}(5)-\mathrm{C}(10)$	1.418 (2)
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	175.50 (14)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	113.72 (13)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(10)$	119.70 (13)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	126.40 (13)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	122.26 (14)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	124.32 (14)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	113.42 (13)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121.52 (14)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	123.78 (14)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	122.35 (13)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	119.17 (13)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	118.48 (13)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.45 (14)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	120.04 (14)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	120.75 (15)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.14 (14)
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	29.7 (19)
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(10)$	-145.8 (18)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	7.0 (2)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-173.04 (13)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	172.20 (13)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	-7.8 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	-2.6 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	177.38 (15)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	-177.92 (14)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	2.1 (2)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	179.61 (15)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-0.4 (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-0.6 (2)

$\mathrm{C}(6)-\mathrm{C}(7)$	1.378 (2)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.396 (2)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.378 (2)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.390 (2)
$\mathrm{C}(3)-\mathrm{H}(1)$	0.950
$\mathrm{C}(4)-\mathrm{H}(2)$	0.950
$\mathrm{C}(6)-\mathrm{H}(3)$	0.950
$\mathrm{C}(7)-\mathrm{H}(4)$	0.950
$\mathrm{C}(8)-\mathrm{H}(5)$	0.950
$\mathrm{C}(9)-\mathrm{H}(6)$	0.950
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	115.66 (12)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	124.23 (13)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	120.11 (13)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(1)$	119.2
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(1)$	119.2
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(2)$	118.1
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(2)$	118.1
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(3)$	119.8
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(3)$	119.8
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(4)$	120.0
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(4)$	120.0
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(5)$	119.6
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(5)$	119.6
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(6)$	119.9
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(6)$	119.9
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	179.60 (15)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	-0.0 (2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	179.26 (15)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(1)$	1.5 (2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	-178.53 (14)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(1)$	-178.15 (13)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	1.8 (2)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-1.1 (2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-0.3 (2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	1.1 (2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-0.4 (2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$	178.89 (14)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	-1.1 (2)

supplementary materials

Hydrogen-bond geometry $\left(^{\circ}\right)$
$D — \mathrm{H} \cdots A$

supplementary materials

Fig. 1

Fig. 2

