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A B S T R A C T

Background: Diffusion Tensor Imaging (DTI) studies of traumatic brain injury (TBI) have focused on alterations
in microstructural features of deep white matter fibers (DWM), though post-mortem studies have demonstrated
that injured axons are often observed at the gray-white matter interface where superficial white matter fibers
(SWM) mediate local connectivity.
Objectives: To examine microstructural alterations in SWM and DWM in youths with a history of mild TBI and
examine the relationship between white matter alterations and attention.
Methods: Using DTIDWM fractional anisotropy (FA) and SWM FA in youths with mild TBI (TBI, n=63) were
compared to typically developing and psychopathology matched control groups (n=63 each). Following tract-
based spatial statistics, SWM FA was assessed by applying a probabilistic tractography derived SWM mask, and
DWM FA was captured with a white matter fiber tract mask. Voxel-wise z-score calculations were used to derive
a count of voxels with abnormally high and low FA for each participant. Analyses examined DWM and SWM FA
differences between TBI and control groups, the relationship between attention and DWM and SWM FA and the
relative susceptibility of SWM compared to DWM FA to alterations associated with mild TBI.
Results: Case-based comparisons revealed more voxels with low FA and fewer voxels with high FA in SWM in
youths with mild TBI compared to both control groups. Equivalent comparisons in DWM revealed a similar
pattern of results, however, no group differences for low FA in DWM were found between mild TBI and the
control group with matched psychopathology. Slower processing speed on the attention task was correlated with
the number of voxels with low FA in SWM in youths with mild TBI.
Conclusions: Within a sample of youths with a history of mild TBI, this study identified abnormalities in SWM
microstructure associated with processing speed. The majority of DTI studies of TBI have focused on long-range
DWM fiber tracts, often overlooking the SWM fiber type.

1. Introduction

The rapid acceleration and deceleration of the head that occurs
during mild traumatic brain injury (TBI) produce torsion, tension, and
compression forces within the brain, which can lead to traumatic ax-
onal injury and progressive white matter pathology (Armstrong et al.,

2016). Diffusion tensor imaging (DTI) studies have identified that
fractional anisotropy (FA) is often decreased in white matter in parti-
cipants with history of TBI (Hulkower et al., 2013; Roberts et al., 2014),
and animal studies have demonstrated a direct correspondence between
traumatic axonal injury and decreases in white matter FA (Mac Donald
et al., 2007).More than half of all TBIs occur in youths younger than 24
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years of age (Rutland-Brown et al., 2006) when white matter devel-
opment is in progress. Injury to the still-developing brain, can impact
ongoing neurodevelopmental processes (Beauchamp and
Anderson, 2013) and lead to cognitive impairment (Emery et al., 2016).
Though the majority of youths fully recover after a mild TBI, impaired
cognitive functioning, including problems with attention, has been re-
ported up to two years post-mild TBI in 29% of a youth sample
(Lambregts et al., 2018). Despite a sizable proportion of youths who
experience persistent cognitive compromise following mild TBI, there
are no existing tools that can predict persistent impairment. Thus, it is
imperative to develop methods to better characterize white matter in-
jury and identify those who are at risk of incomplete recovery.

The majority of DTI studies in people with TBI have focused on
alterations in microstructural features of deep white matter fibers
(DWM) (Hulkower et al., 2013), the long-range fiber bundles that
connect the different lobes and hemispheres of the brain, as well as
carry signal from the peripheral nervous system into the brain. How-
ever, post-mortem studies have demonstrated that injured axons are
often observed in areas of changing tissue density, such as the sub-
cortical gray-white matter interface, where shorter superficial white
matter fibers (SWM) mediate local connectivity (Catani et al., 2012;
Grady et al., 1993; Peerless and Rewcastle, 1967; Povlishock, 1993).
SWM fibers makeup 57% of cortical white matter volume (Schuz and
Braintenberg, 2002) and mediate local connectivity in the form of U
fibers or longer intralobar fibers (Catani et al., 2012; Yeterian et al.,
2012). These axons may be particularly vulnerable to injury in youths
due to the relatively late myelination of SWM, which continues into the
third decade of life (Oyefiade et al., 2018; Reeves et al., 2005). We are
aware of no other study that has specifically examined SWM micro-
structure in vivo in youths exposed to TBI.

The pattern of brain damage that results from mild TBI is highly
variable and influenced by several factors: the mechanism of injury,
injury biomechanics (Ji et al., 2015), and characteristics of the in-
dividual, including previous injury, age, genetic factors, and neck
strength (Bigler et al., 2013). However, common analytical approaches,
i.e., anatomical and voxel-based analyses (such as tract-based spatial
statistics (TBSS)) make assumptions about common spatial locations of
FA changes in the brain. Case-based methods that have been applied in
TBI studies in in adults (Ling et al., 2012; Lipton et al., 2012), veterans
(Jorge et al., 2012; Lepage et al., 2018; Miller et al., 2016), and one
study in youths (Mayer et al., 2012) capture diffuse and spatially
nonoverlapping white matter abnormalities. The composition of the
comparison group is another important consideration in the design of
neuroimaging studies of TBI. A recent systematic review reported that
de novo inattentiveness and hyperactivity, elevated mood symptoms,
and disruptive behaviors, are common persistent forms of psycho-
pathology experienced following mild TBI in youths (Emery et al.,
2016). Additionally, rates of pre-injury psychopathology in youths with
mild TBI are more prevalent than in uninjured controls and this psy-
chopathology may predispose youths to persistent post-injury impair-
ment (Max et al., 1997). Various psychopathologies have been asso-
ciated with widespread abnormalities in FA (Thomason and
Thompson, 2011), including SWM-FA abnormalities (Nazeri et al.,
2015).

In this study, we hypothesized that SWM fibers are vulnerable to
traumatic injury in youths due to their late myelination and path
through changes in tissue density (Grady et al., 1993; Peerless and
Rewcastle, 1967; Povlishock, 1993). We compare DTI indices in youths
with mild TBI to both a typically developing control group (without TBI
or other psychopathology), as well as a second control group matched
for symptoms of psychopathology, to account for the potential con-
tribution of psychopathology to white matter alterations. We applied
case-based voxel-wise methods designed to detect and quantify diffuse
heterogeneous patterns of white matter abnormalities. Our objectives
were to 1) test for differences in SWM and DWM microstructure across
groups; 2) assess for associations between the extent of SWM and DWM

microstructural alterations with accuracy and response time in an at-
tention task in youths with mild TBI; and 3) examine the relative sus-
ceptibility of SWM and DWM to microstructural alterations found fol-
lowing mild TBI.

2. Methods

2.1. Sample

The three study groups were composed of participants from the
Philadelphia Neurodevelopmental Cohort, a publically available po-
pulation-based sample of youths aged 8 to 22 years (Calkins et al.,
2015). The institutional review boards of both the University of Penn-
sylvania and the Children's Hospital of Philadelphia approved all study
procedures. Signed informed consent was provided by all participants
18 and over and for participants under age 18 assent and parental
consent were obtained. Within this cohort, 1445 cohort participants
underwent multimodal neuroimaging (Satterthwaite et al., 2014) and
completed a computerized neurocognitive battery (Gur et al., 2014)
that included the Penn continuous performance attention task
(Gur et al., 2012), as well as a structured interview, the GOASSESS,
which screened for psychopathology and included a comprehensive
medical history (Calkins et al., 2015).

Participants were selected as candidates for analyses if they had
complete data to determine the history of TBI. Mild TBI was defined as
a reported history of TBI with no skull fracture or neurosurgical inter-
vention that was associated with one or more of the following: loss of
consciousness for 30 minutes or less, amnesia for 24 hours or less, or
new-onset, post-TBI headaches. Of 89 youths where history was con-
sistent with the definition for mild TBI, 1 was excluded due to excessive
motion (defined by visual inspection and identification of artifacts
consistent with motion), and 2 were excluded due to poor image
quality. Of 1,222 youths without TBI 22 were excluded due to excessive
motion and 25 were excluded due to poor image quality. Participants
were then excluded if they had any serious medical conditions from
which 63 youths with mild TBI and 1079 youths without a history of
TBI remained. A typically developing control pool (N=381) was ex-
tracted from the total pool of youths with no history of TBI and no
evidence of significant psychopathology (symptoms, treatment, or
hospitalization). Group matching was done in an unbiased, blinded
fashion with the R package MatchIt through the application of nearest
neighbor matching (at a one-to-one ratio) based on covariate distribu-
tions (Ho et al., 2007). Using individual matching to the mild TBI group
on mean age, sex proportion, and mean level of parental education, a
final typically developing control group of 63 youths was selected. A
psychopathology matched control group was derived from the re-
mainder of the pool of youths. This group comprised TBI-free youth not
extracted to form the matched typically developing control group and
had sufficient psychopathology data (N=1010). This group was ad-
ditionally matched to the TBI on the number of internalizing and ex-
ternalizing symptoms (reported on the GOASSESS), as well as the
number of participants meeting criteria for psychosis spectrum Gur
et al., 2014 to create the final psychopathology matched control group
of 63 youths.

2.2. Diffusion tensor imaging

All participants were scanned on the same 3T Siemens TIM Trio
scanner. The diffusion-weighted MRI acquisitions were obtained using a
twice-refocused spin-echo single-shot EPI sequence with 64 diffusion-
weighted directions with b=1000 s/mm2, and 7 scans with b=0s/mm2

in 2mm slices. Acquisition parameters are described in detail by
Satterthwaite et al. (Satterthwaite et al., 2014). Processing and analysis
steps were performed to compute voxelwise FA in a DWM and SWM
skeleton and assess the number of voxels with abnormally low or high
FA in each participant. These steps are illustrated in Fig. 1 and
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described below.

2.2.1. Preprocessing
Diffusion-weighted scans were concatenated and corrected for mo-

tion, and eddy current distortions with FSLs eddy correct (version
6.0.0). Following this correction, FSL brain extraction was performed
(Smith, 2002), and FA for all voxels was calculated by fitting the dif-
fusion tensor model in each voxel using FSL's dtifit function (FMRIB's
Diffusion Toolbox, implemented in FSL).

2.2.2. Augmented TBSS
The TBSS pipeline, described in detail by Smith et. al was aug-

mented to extract SWM-FA and DWM-FA (Smith et al., 2006). SWM-FA
extraction is described in detail by Nazeri et al. (2015), as well as
briefly below. Following the generation of the population mean FA
image, FA was thresholded to remove non-white matter at 0.2 for
DWM, and 0.15 for SWM to include finer superficial structures that

would otherwise disappear at greater threshold values (Bach et al.,
2014). Though a lower threshold may lead to some false-positives in the
TBSS skeleton (Bach et al., 2014) constraining the analysis using a
probabilistic tractography-derived SWM-mask (described below), miti-
gates this risk. To account for residual misalignments and facilitate
group-wise comparison, each individual's FA image was skeletonized as
has been previously described (Smith et al., 2006), resulting in a SWM-
FA or DWM-FA skeleton for each participant.

2.2.3. White matter subtype segmentation
DWM was defined as white matter included in the JHU atlas and

was extracted by binarizing the JHU atlas in MNI152 space then
masking the DWM skeleton. SWM is both adjacent to the cortex and is
not included in any of the deep white matter regions of the John
Hopkins University (JHU) labels (Wakana et al., 2007) and was cap-
tured by the application of a SWM mask described in detail and gen-
erated by Nazeri et al. (2015). Briefly, a probabilistic tractography

Fig. 1. Summary of methods for detecting abnormal FA in deep and superficial
white matter.
(A) COREGISTRATION: Native space FA images were nonlinearly registered to
each other to identify the most representative participant of the population
(target ID). The target FA image was brought to MNI152 space, and the popu-
lation, DWM and SWM masks, and MNI structural atlas (lobe atlas, frontal lobe
used as an example) [43] were co-registered to this target. The co-registered
population was then used to create a population mean-FA image.
(B) CREATION OF SWM AND DWM SKELETONS: The mean-FA image was ske-
letonized to generate a white matter representation of the centers of all tracts
common to all subjects (skeletonized FA) and thresholded at FA > 0.15 for SWM
or FA > 0.2 for DWM. Skeletons were masked with DWM and SWM masks to
create the SWM and DWM FA skeletons which were then corrected for age.
(C) Z TRANSFORM FA SKELETONS: Typically developing controls FA skeletons
for DWM and SWM were Z transformed with a leave one-out-approach, while all
other participants skeletons were transformed using the typically developing
control population mean and standard deviation for each voxel. Lobes within the
SWM were defined masking the Z transformed age-corrected SWM skeleton with
the registered and binarized lobar atlas (frontal lobe used as an example).
(D) THRESHOLD AND COUNT VOXELS: Voxels with Z > 2 or Z <-2, part of a
cluster of at least 2 contiguous voxels were counted within the SWM, DWM, and
each of 5 SWM lobes to derive the number of abnormally high and low voxels in
each substrate.
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derived SWM mask was generated in a separate population of 141 ty-
pically developing participants without a history of head trauma,
neurological or mental disorders, or evidence of substance use. Cortical
reconstruction was performed on the structural T1-weighted
(Fischl, 2012) scans of the participants of this separate population to
extract the grey matter - white matter boundary of both hemispheres,
which was nonlinearly registered to the diffusion space of each in-
dividual in this population. Probabilistic tractography was conducted
via seeding along the grey matter white matter boundary, and tracto-
graphy results were normalized for each individual in this population,
based on the total number of successfully traced streamlines, trans-
formed to standard space, and averaged across subjects. The resulting
SWM mask was brought into MNI152 space. The 4D SWM-FA skeleton
from the population explored in this study was masked to isolate SWM.

2.2.4. Subject-specific FA analysis
Prior to generating the z score maps, the FA skeleton was corrected

for age, and FA values were adjusted at the voxel-level using a fitted
general linear model when the model including the effect of age was
significant (Lepage et al., 2018; Lipton et al., 2012). For each partici-
pant, a profile of white matter abnormality was generated by com-
puting a voxel-wise z-score map over the DWM and SWM FA age-cor-
rected skeleton. Skeletons were normalized in typically developing
controls using a leave-one-out approach to reduce the risk of false po-
sitives introduced by reference groups with non-independence
(Lepage et al., 2018; Watts et al., 2014). Normalized skeletons were
generated for all groups based on the mean and standard deviation of
the typically developing control group. Skeletons were then thre-
sholded at Z >2 or Z < 2 to generate individualized maps of high or
low FA respectively (Ling et al., 2012; Mayer et al., 2012). Next, voxels
that belonged to clusters with a minimum of 2 contiguous voxels were
summed to generate the number of voxels in DWM or SWM with low
and high FA (Jenkinson et al., 2012).

2.2.5. SWM lobe definition
Lobes within the SWM were defined by affine registration of the

MNI structural atlas (Mazziotta et al., 2001) to the target participant's
FA image (selected for TBSS) (Smith et al., 2006), followed by masking
the z-score transformed age-corrected SWM skeleton (2.2.4) with the
registered and binarized lobar atlas.

2.3. Attention response time and accuracy

The continuous performance task of the Penn computerized neu-
rocognitive battery assessment (Gur et al., 2012) was used to assess
attention. Response time was calculated as the median response time in
the assessment of continuous performance for all correct responses,
such that higher values indicated poorer performance, and accuracy
was calculated as the number of correct trials (Weinberger et al., 2016).

2.4. Statistics

All statistical analyses were conducted using R software (R version,
3.3.2).

2.4.1. FA abnormalities in SWM and DWM in mild TBI
Negative binomial regression modelling was used to examine the

effect of group on the number of voxels with high and low FA in DWM
and SWM. The assumptions for this model were assessed and were met
(Hilbe, 2014). Evaluation of goodness of fit of each model through the
generation of QQ plots confirmed model selection. This analysis in-
cluded sex, standardized score from the wide range assessment test
(WRAT) (Wilkinson and Robertson, 2006), and the highest level of
parental education as covariates. The magnitude of the difference be-
tween the mean values of voxels with abnormal FA for each substrate is
reported in youths with a history of TBI compared to each control group

(Δ). Analyses were repeated at a range of Z score thresholds, in-
cremented by 0.1 five times above and below the threshold used for this
study to ensure the stability of the results. Analyses were also repeated
within 5 bilateral lobes of the SWM (frontal, insular, temporal, occi-
pital, and parietal), to explore regional group differences. Regional
analyses were Bonferroni corrected to account for the 5 lobe compar-
isons such that p<0.01 was considered significant.

2.4.2. Association between FA abnormalities in SWM and DWM and
attention

Associations between the number of voxels in DWM or SWM with
high or low FA and response time and accuracy on the attention task
were examined with general linear regression. This analysis was per-
formed in youths with mild TBI and included sex, WRAT, and the
highest level of parental education as covariates. Regional analyses
were performed within the 5 bilateral lobes of SWM, and results were
Bonferroni corrected to account for comparisons within each lobe, such
that p<0.01 was considered significant. Due to the Gaussian assump-
tions of this parametric model, box cox transformations were applied to
the dependent variable in all models to improve Gaussianity and model
fit (Box and Cox, 1982)

2.4.3. Relative susceptibility of SWM and DWM to FA abnormalities in mild
TBI

The number of voxels with high or low FA in DWM and SWM were
normalized to the size of the skeleton and compared with the Wilcoxon
signed ranked test with continuity correction.

3. Results

3.1. Sample characterization

Injury characteristics of the mild TBI participants are summarized in
Table 1. Age, sex, WRAT, highest level of parental education and
temporal signal to noise ratio were compared between the mild TBI and
both control groups, and none of these variables were significantly
different. As expected, the mild TBI group and psychopathology-mat-
ched controls reported more symptoms of internalizing and ex-
ternalizing disorders and had a higher proportion of youths on the
psychosis spectrum compared to the group of typically developing
controls (Table 2).

3.2. Case-based comparison of FA abnormalities in SWM and DWM
between mild TBI and controls

3.2.1. Abnormalities found for SWM FA in mild TBI vs. controls
Group comparisons revealed more voxels with abnormally low FA

and fewer voxels with abnormally high FA in SWM in youths with mild
TBI compared to both typically developing and psychopathology-mat-
ched control groups.

Table 1
TBI characteristics in the study population sample.

TBI Characteristics

Number of TBI, Mean (SD) 1.68 (1.25)
LOC YES NO UNKNOWN

28 34 0
LOC minutes, Mean (SD) 1.4 (1.2)
Amnesia YES NO UNKNOWN

48 14 1
Amnesia minutes, Mean (SD) 37.1 (188.2)
Headaches post TBI YES NO UNKNOWN

28 35 0

Mean values of continuous variables are reported with standard deviations (SD)
in brackets. LOC: loss of consciousness.
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There were more voxels with low FA in the SWM of youths with a
history of mild TBI compared to both typically developing controls (z=
-2.36, p= 0.019, Δ=17%) and psychopathology matched controls (z=
-2.23, p=0.026, Δ=14%) (Fig. 2A). This result was stable across all Z
thresholds below 2.3 (Fig. 3A). Regional analyses of group differences
of voxels with abnormally low SWM-FA revealed a greater number of
voxels with low FA in the frontal lobe in youths with history of mild TBI
compared to typically developing controls (z=-3.63, p=2.89e-4,
Δ=28%), but this association did not reach our threshold for sig-
nificance in psychopathology matched controls (z=-2.28 p=0.02,
Δ=17%). There were no significant group differences in the insular,
occipital, parietal, or temporal lobes when examining the number of
voxels with abnormally low FA (Table 3).

There were fewer voxels with abnormally high FA in the SWM of
youths with mild TBI compared to typically developing controls
(z=2.94, p= 3.31e-3, Δ=28%) and psychopathology-matched controls
(z=2.95, p=3.22e-3, Δ=28%) (Fig. 2C). These results were stable
across all examined Z thresholds (Fig. 3C). As with low SWM FA,
findings were significant in the frontal lobe. There were fewer voxels
with high FA in the frontal lobe in participants with mild TBI compared
to typically developing controls (z= 2.62, p= 8.79e-3, Δ=26%) but
not psychopathology matched controls (Table 3). Additionally, there

were fewer voxels with high FA in the occipital lobe in youths with mild
TBI compared to typically developing controls (z=2.72, p= 6.60e-3,
Δ=31%) and psychopathology matched controls (z= 3.08, p=2.09e-3,
Δ=34%).

3.2.2. Abnormalities found for DWM FA in mild TBI vs. controls
Equivalent group comparisons in DWM revealed a similar pattern of

results, except the number of voxels with abnormally low FA in youths
with mild TBI was not significantly different from psychopathology
matched controls (z= -1.02, p=0.311, Δ=11%). There were more
voxels with low FA in the DWM in youths with a history of mild TBI
compared to typically developing controls (z= -3.10, p=0.002,
Δ=43%; Fig. 2B). These results were stable across all examined Z
thresholds (Fig. 3B).

Comparing the number of DWM voxels with abnormally high FA
revealed there were fewer voxels with high FA in youths with mild TBI
compared to typically developing controls (z= 4.35, p= 1.34e-05,
Δ=54%) and psychopathology matched controls (z= 3.15, p=1.65e-3,
Δ=40%) (Fig. 2D). These results were also stable across all examined Z
thresholds (Fig. 3D).

Table 2
Participant characteristics.

TBI PMC TD P value ANOVA

Age in years, mean (SD) 16.1 (2.9) 16.3 (2.7) 16.1 (2.9) 0.87
Sex, n 29 F, 34 M 31 F, 32 M 34 F, 29 M 0.67
WRAT score, mean (SD) 103.8 (15.8) 102.5 (14.7) 105.7 (13.1) 0.48
Parental education in years, mean (SD) 15.8 (2.8) 15.5 (2.6) 15.8 (2.9) 0.81
TSNR, mean (SD) 7.2 (0.6) 7.1 (0.6) 7.2 (0.6) 0.74
Internalizing disorder symptoms, mean (SD) 13.2 (11.2) 13.9 (10.8) 5.2 (5.1) 2.3e-7
Externalizing disorder symptoms, mean (SD) 9.1 (7.7) 8.4 (7.3) 4.4 (5.2) 2.3e-4
Psychosis spectrum inclusion, n 51 No, 12 Yes 52 No, 11 Yes 63 No 1.4e-3

Mean values of continuous variables are reported with standard deviations (SD) in brackets. P values reflect differences between specified mild TBI group, psy-
chopathology matched controls, and typically developing controls calculated with an ANOVA for continuous variables and Pearson's Chi-Squared test for categorical
variables. M: male, F: female. WRAT: IQ was measured using the standardized Wide Range Achievement Test 4 (WRAT-4) scores. Education: highest level of parental
education. TSNR: Temporal Signal to Noise Ratio of the diffusion-weighted imaging. Internalizing disorder symptoms: number of endorsed symptoms of agoraphobia,
generalized anxiety disorder, major depressive disorder, obsessive-compulsive disorder, panic disorder, phobias, post-traumatic stress disorder, separation anxiety
and social anxiety. Externalizing disorder symptoms: number of endorsed symptoms of ADHD, conduct disorder, oppositional defiance disorder and mania. Psychosis
Spectrum Inclusion: participants who endorsed sufficient symptoms of positive sub-psychosis, positive psychosis, or negative/ disorganized symptoms. Details on the
psychosis spectrum classification can be found in Calkins (Calkins et al., 2014).

Fig. 2. FA abnormalities in youths with mild TBI compared to typically developing (TD) and psychopathology matched controls (PMC). (A) There were more voxels
with low FA in SWM in youths with mild TBI compared to TD and PMC. (B) There were fewer voxels with high FA in SWM in youths with mild TBI compared to TD
and PMC. (C) There were more voxels with low FA in DWM in youths with mild TBI compared to TD but there were no differences with PMC. (D) There were fewer
voxels with high FA in DWM in youths with mild TBI compared to TD and PMC. Asterisks indicate significant group differences (P<0.05).
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3.3. Association between FA abnormalities in SWM and DWM and
attention

3.3.1. Response time in the attention task
Association between FA abnormalities in SWM and response time in the

attention task in youths with mild TBI: The average response time for
correct response trials in the attention task was positively correlated
with the number of SWM voxels with abnormally low FA in the mild
TBI group (t= 2.890, p=5.41e-3; Fig. 4) (Table 4). Regional analyses
revealed that within participants with a history of mild TBI, response
time was positively correlated with the number of voxels with low FA in
the parietal lobes (t=3.172, p=2.42e-3) (Table 5).

Response time on the attention task was not correlated with the
number of SWM voxels with abnormally high SWM-FA at a level that
reached our threshold for significance. Regional analyses of relation-
ships of high SWM-FA with response time revealed no relationships that
survived Bonferroni correction (Table 5).

Association between FA abnormalities in DWM and response time in the
attention task in youths with mild TBI: The average response time for
correct response trials in the attention task was positively correlated
with the number of DWM voxels with abnormally low FA in the mild
TBI group (t= 2.351, p=0.022). Response time in the attention task
was not correlated with the number of DWM voxels with abnormally
high FA at a level that reached our threshold for significance. (Table 4).

3.3.2. Accuracy in the attention task
Accuracy in the attention task was not correlated with the number

of voxels with abnormally low or high FA in SWM or DWM in youths
with mild TBI (Table 4), and this was also the case in post-hoc regional
analyses (Table 5).

3.4. Relative susceptibility of SWM and DWM to FA abnormalities in mild
TBI

Youths with mild TBI had a higher proportion of voxels with high
SWM FA compared to DWM (v= 504, p=5.66e-4). The proportion of
voxels with low FA was not significantly different between SWM and
DWM in youths with mild TBI (v=1250, p=0.098) (Fig. 5).

4. Discussion

In youths aged 8 to 22 years, we examined (1) the effect of mild TBI
on superficial and deep white matter and (2) the association between
attention and microstructure in these fiber types in youths with mild
TBI. Although several studies have examined the effects of mild TBI on
DWM, we know of no other study that has examined the effect of mild
TBI on both DWM and SWM, even though mild TBI is thought to have
pronounced effects at the white matter cortical interface where SWM
fibers are located. Spatially heterogeneous alterations in white matter
microstructure were detected in both DWM and SWM in youths with
mild TBI. The mild TBI group had more SWM voxels with abnormally
low FA and fewer voxels with abnormally high FA, relative to typically
developing and psychopathology matched controls. Further, the mild
TBI group had more DWM voxels with abnormally low FA than

Fig. 3. Stability of FA abnormalities in youths with mild TBI compared to typically developing (TD) and psychopathology matched controls (PMC), across Z-score
thresholds. Thresholds were incremented by 0.1 five times above and below the threshold used for this study (2.0). (A) There were more voxels with low FA in SWM
in youths with mild TBI compared to TD and PMC. This result was stable across all Z thresholds below 2.3. (B) There were fewer voxels with high FA in SWM in
youths with mild TBI compared to TD and PMC across all examined thresholds. (C) There were more voxels with low FA in DWM in youths with mild TBI compared to
TD, but not PMC. These results were stable across all examined thresholds. (D) There were fewer voxels with high FA in DWM in youths with mild TBI compared to
TD and PMC. These results were stable across all examined thresholds.

Table 3
Group comparisons in SWM lobes (low FA and high FA).

Low FA High FA
mild TBI-TD mild TBI-PMC mild TBI-TD mild TBI-PMC
Z P Z P Z P Z P

Frontal Lobe -3.6 2.9e-4 -2.3 0.02 2.6 8.8e-3 2.0 0.04
Insular Lobe -2.3 0.02 -0.3 0.76 2.4 0.02 2.1 0.03
Occipital Lobe -0.3 0.77 -1.9 0.05 2.7 6.6e-3 3.1 2.1e-3
Parietal Lobe -1.3 0.19 -1.6 0.10 2.2 0.03 2.3 0.02
Temporal Lobe -0.6 0.55 -0.3 0.76 2.6 0.01 2.4 0.01

Group difference Z and P values reflects differences in the number of voxels with low or high FA between the specified groups. Differences were assessed with a
negative binomial model that included sex, highest level of parental education, and IQ (WRAT) as covariates. Typically developing controls (TD), psychopathology
matched controls (PMC).
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typically developing controls but not psychopathology matched con-
trols, and fewer DWM voxels with abnormally high FA than typically
developing and psychopathology matched controls. Processing speed
was correlated with SWM and DWM integrity among participants with
mild TBI, such that slower response times were correlated with more
SWM and DWM voxels of abnormally low FA. The mild TBI group also
had more voxels with high SWM FA compared to high DWM FA, which
may reflect a compensatory role for SWM following mild TBI in youths.

The separation of DWM from SWM allowed us to investigate dif-
fusion abnormalities within classes of white matter with different
function and developmental trajectories (Catani et al., 2012;
Oyefiade et al., 2018). Low FA after mild TBI may represent damaged
axons, reduced myelination, inflammation, edema, or a combination of
these factors (Assaf and Pasternak, 2008). We predicted that SWM fi-
bers would be vulnerable to these types of damage from mild TBI, due
to their location at the grey-white matter interface and relatively late
myelination in development (Catani et al., 2012; Grady et al., 1993;
Oyefiade et al., 2018; Peerless and Rewcastle, 1967; Povlishock, 1993;
Reeves et al., 2005). Previous post-mortem studies have identified ax-
onal damage to SWM following mild TBI in youth athletes
(McKee et al., 2014) and in individuals with repetitive mild TBI that
preceded chronic traumatic encephalopathy (McKee et al., 2015). Ac-
cordingly, our in vivo findings of increased SWM low FA voxel count in
the mild TBI group and its association with processing speed suggests
these fibers may play a significant role in mild TBI-related damage and
outcome in youths. Short-range SWM fibers mediate local connectivity
within lobes that have differing functionality, susceptibility to initial
coup-contrecoup injury (Armstrong et al., 2016; Hulkower et al., 2013),
and developmental trajectories (Catani et al., 2012; Oyefiade et al.,
2018), which motivated the examination of SWM-FA abnormalities
within each lobe. Low SWM-FA was most pronounced in the frontal
lobes, consistent with previously reported patterns of decreased FA in
mild TBI (Hulkower et al., 2013). SWM integrity has previously shown
promise as a potential biomarker of cognition, as SWM-FA in the insula
and frontal operculum have been associated with processing speed in
typically developing adults (Nazeri et al., 2013). The association be-
tween SWM-FA in the parietal lobes, which are associated with atten-
tion and higher-level motor planning (Bisley and Goldberg, 2010;
Critchleey, 1953), and processing speed in youths with mild TBI, sug-
gests that attention and processing speed deficits may be related to
SWM damage in the parietal lobe.

Consistent with previous research (Hulkower et al., 2013), relative
to typically developing controls, the mild TBI group had more voxels
with low FA in DWM. This suggests a detrimental effect of injury on
DWM, even when spatially heterogeneous differences are evaluated.
This is consistent with a recent modeling study that described the
susceptibility of long tracts found in DWM due to high fiber strain that
can occur anywhere along the tract (Ji et al., 2015). However, there
were no differences in the number of DWM voxels with low FA detected

Fig. 4. The relationship between the number of SWM voxels with abnormally
low FA in youths with mild TBI and response time on an attention task.
Residuals after considering model covariates are plotted as relative measures. A
significant positive relationship was detected between response time, and the
number of SWM voxels with low FA in youths with mild TBI. The regression line
is plotted with the shaded area representing 95% confidence intervals for the
linear regression.

Table 4
Associations between the number of DWM or SWM voxels with FA abnormal-
ities and processing speed or accuracy.

SWM DWM
Low FA High FA Low FA High FA
T P T P T P T p

Processing Speed
mild TBI 2.9 5.4e-3 -1.11 0.27 2.4 0.02 -1.8 0.07

Accuracy
mild TBI -1.72 0.09 1.18 0.24 -1.50 0.14 1.05 0.30

T and P values from the model that assessed the association between the
number of voxels with low or high FA, and processing speed or accuracy on the
attention task. Associations were assessed with a linear model that included sex,
the highest level of parental education, and IQ (WRAT) as covariates.

Table 5
Associations between the number of voxels with FA abnormalities and processing speed or accuracy in SWM Lobes.

Frontal Lobe Insular Lobe Occipital Lobe Parietal Lobe Temporal Lobe
T P T P T P T P T P

Processing Speed
Low FA

mild TBI 1.5 0.15 1.7 0.10 2.5 0.01 3.2 2.4e-3 2.5 0.02
High FA

mild TBI -1.1 0.28 -1.1 0.29 -0.37 0.71 -0.69 0.50 -1.1 0.26
Accuracy
Low FA

mild TBI -2.2 0.03 -1.6 0.11 -1.4 0.17 -1.2 0.23 -0.49 0.63
High FA

mild TBI 1.3 0.21 -0.03 0.97 0.76 0.45 0.50 0.62 1.31 0.19

T and P values from the model that assessed the association between the number of voxels with low or high FA, and processing speed or accuracy on the attention
task. Associations were assessed with a linear model that included sex, the highest level of parental education, and IQ (WRAT) as covariates.
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when the mild TBI group was compared to the psychopathology mat-
ched control group. Given that mild TBI is associated with pre- and
post-injury psychopathology, such as mood disorders, externalizing
disorders, and behavioral problems (Emery et al., 2016; Max et al.,
1997), and that psychopathology is associated with widespread ab-
normalities in FA (Thomason and Thompson, 2011), including de-
creases in SWM-FA (Nazeri et al., 2015), previous studies that focused
on DWM may be confounded by tract abnormalities associated with
pre-existing psychopathology. Attempts to disentangle the complex
relationships between mild TBI, psychopathology, and cognitive im-
pairment require further consideration. Though previous research
supports DWM involvement in attention (Stojanovski et al., 2018) and
processing speed (Wilde et al., 2006; Wilde et al., 2010), no relationship
with DWM fibers was identified in this study. This may be due to a
difference in methodology since we compared spatially heterogeneous
group differences rather than individual long-range fibers. Ultimately,
we did not detect differences in the proportion of voxels with low FA in
DWM and SWM suggesting that white matter, whether located deeply
within long-range tracts or superficially at the grey matter cortical in-
terface, is equivalently susceptible to injury. It is of interest to note that
the range of the number of voxels with low FA was notably larger in
DWM than that of the SWM. We speculate that this may be because
DWM fiber tracts are more uniformly organized in orientation than
SWM. A recent modelling study demonstrated the importance of white
matter fiber orientation in the amount of strain experienced by the fi-
bers during a traumatic injury (Ji et al. 2015). This may lead to het-
erogeneous mechanisms and locations of injury producing more varied
amounts of damage to DWM then in SWM, which contains fibers with
diverse orientations.

Potential underlying structural contributions to high FA include
increased myelination, axon packing density, and branching
(Beaulieu, 2002). Consistent with there being more voxels with low FA
in the mild TBI group there were fewer voxels with high FA across SWM
and DWM when compared to both control groups. In contrast to the low
SWM-FA which was specific to the frontal lobe in mild TBI, high SWM-
FA was detected across all of the examined lobes (though not all
comparisons survived Bonferroni correction). Negative relationships
between high DWM FA voxel count with response time across our
sample suggest that an increased number of voxels with high FA may be
indicative of a recovery process in mild TBI. We found increased high
SWM-FA relative to high DWM-FA in the mild TBI group which may
point to a post-injury process that is distinct among the two white
matter locations. The nature of this process – whether pathological or
compensatory – remains to be clarified and further investigation is re-
quired to elucidate the differential vulnerability and recovery

trajectories of SWM and DWM.
Several factors should be considered when interpreting the results of

this study. Our analytical approach differed from the convention
(Ling et al., 2012; Lipton et al., 2012; Mayer et al., 2012) by accounting
for the spatial inhomogeneity of mild TBI FA changes. Previously, one
study took a similar approach and reported more voxels with high
DWM-FA in youths with mild TBI; however this was a small sample of
youths in the acute stages of recovery and they were compared to ty-
pically developing controls (Mayer et al., 2012). An important caveat to
the approach of matching groups based on symptoms of psycho-
pathology is that the impact of psychopathology on FA may be different
in youths with and without a history of mild TBI, as we have previously
shown (Stojanovski et al., 2018). Additionally, the application of tract-
based spatial statistics may not be optimal for two reasons. First, the
generated mean FA skeleton has been shown to be less ‘alignment-in-
variant’ than anticipated (Bach et al., 2014), which is not ideal for the
investigation of SWM in particular as it is susceptible to the issue of
cortical folding variability, Dickie et al. (2018) due to connecting ad-
jacent gyri. Second, SWM heavily features crossing fibers
(Reveley et al., 2015), particularly among sulcal depths (Reveley et al.,
2015). This may exacerbate a weakness of TBSS in distinguishing be-
tween gyri and sulci, as well as between adjacent, differentially or-
iented fiber bundles with similar FA values in the creation of a mean FA
skeleton (Bach et al., 2014). As these methodological considerations
may impact the specificity of voxelwise comparisons we mitigated this
potential issue by applying a methodology that does not require spatial
homogeneity in group differences. Future studies may consider meth-
odology, such as constrained spherical deconvolution based tracto-
graphy, which is robust to crossing fibers (Alexander, 2005;
Descoteaux et al., 2009; Tournier et al., 2007, 2004).

These results support the investigation of SWM as an indicator of
structural abnormality due to mild TBI, particularly when concurrent
symptoms of psychopathology are present. The functional relevance of
abnormalities in SWM is supported by the association between the
extent of low SWM-FA and processing speed on an attention task and
increased levels of high SWM FA compared to DWM in youths with mild
TBI. An increased focus on alterations to this often-overlooked fiber
type after mild TBI may provide better detection of injuries, as well as
inform the progression of impairment and recovery after injury.
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