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Abstract
Background and Objective While one in five children in the USA are now obese, and more than three-quarters receive at 
least one drug during childhood, there is limited dosing guidance for this vulnerable patient population. Physiologically based 
pharmacokinetic modeling can bridge the gap in the understanding of how pharmacokinetics, including drug distribution 
and clearance, changes with obesity by incorporating known obesity-related physiological changes in children. The objective 
of this study was to develop a virtual population of children with obesity to enable physiologically based pharmacokinetic 
modeling, then use the novel virtual population in conjunction with previously developed models of clindamycin and tri-
methoprim/sulfamethoxazole to better understand dosing of these drugs in children with obesity.
Methods To enable physiologically based pharmacokinetic modeling, a virtual population of children with obesity was devel-
oped using national survey, electronic health record, and clinical trial data, as well as data extracted from the literature. The 
virtual population accounts for key obesity-related changes in physiology relevant to pharmacokinetics, including increased 
body size, body composition, organ size and blood flow, plasma protein concentrations, and glomerular filtration rate. The 
virtual population was then used to predict the pharmacokinetics of clindamycin and trimethoprim/sulfamethoxazole in 
children with obesity using previously developed physiologically based pharmacokinetic models.
Results Model simulations predicted observed concentrations well, with an overall average fold error of 1.09, 1.24, and 
1.53 for clindamycin, trimethoprim, and sulfamethoxazole, respectively. Relative to children without obesity, children with 
obesity experienced decreased clindamycin and trimethoprim/sulfamethoxazole weight-normalized clearance and volume 
of distribution, and higher absolute doses under recommended pediatric weight-based dosing regimens.
Conclusions Model simulations support current recommended weight-based dosing in children with obesity for clinda-
mycin and trimethoprim/sulfamethoxazole, as they met target exposure despite these changes in clearance and volume of 
distribution.
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1 Introduction

Childhood obesity is an alarming public health threat, with 
obesity rates nearly quadrupling in children aged 2–19 years 
in the past quarter-century. Almost one in five children in 
the USA, and 8.7% worldwide, are obese [1–3]. Compared 

to their normal-weight counterparts, children with obesity 
experience higher rates and severity of multiple disease 
states and require significantly more prescriptions [4, 5]. 
Obesity is known to influence the pharmacokinetics (PK) 
of many drugs because of the effect of altered body size 
(including body composition) on drug distribution and elim-
ination. Thus, dosing for children with obesity must account 
for the effect of obesity on PK [6–9]. One systematic review 
of clinical studies conducted in children with obesity found 
clinically significant pharmacokinetic alterations in 65% of 
drugs studied, with changes in the weight-normalized vol-
ume of distribution and clearance varying between drugs 
[10]. Despite the high prevalence of childhood obesity and 
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Key Points 

Childhood obesity is an alarming public health threat, 
with obesity rates nearly quadrupling in children aged 
2–19 years in the past quarter-century and almost one in 
five children classified as obese in the USA today.

To enable physiologically based pharmacokinetic 
modeling to better characterize the exposure of drugs 
in a growing number of children with obesity, a virtual 
population of children with obesity was developed for 
multiple racial groups that accounts for key obesity-
related physiological changes affecting pharmacokinet-
ics, including increased body size, organ size and blood 
flow, plasma protein concentrations, and glomerular 
filtration rate.

This novel virtual population of children with obesity 
was used with previously developed pediatric physiolog-
ically based pharmacokinetic models of clindamycin and 
trimethoprim/sulfamethoxazole to characterize exposure 
of these drugs. Physiologically based pharmacokinetic 
model dosing simulations suggest that, despite higher 
exposure from decreased weight-normalized clearance 
and volume of distribution, recommended weight-based 
dosing of clindamycin and trimethoprim/sulfamethoxa-
zole is adequate for children with obesity.

obesity in the absence of any yet available clinical data, and 
(3) incorporating mechanistic information required to under-
stand differences in PK [14]. This approach has been suc-
cessfully used previously when a virtual population of adults 
with obesity was developed and used to predict the clearance 
of eight drugs in adults [15]. However, there currently is no 
virtual population developed for children with obesity and 
thus no PBPK models for these children.

This study aimed to extend an existing virtual pediat-
ric population to reflect the obesity-related physiological 
changes in children to enable PBPK modeling for this vul-
nerable population [16]. Existing data were leveraged from 
multiple sources, including previously reported literature, 
national surveys, electronic health records, and clinical 
studies of children with and without obesity to incorporate 
all known relevant obesity-related physiological changes to 
predict PK. This new virtual population was evaluated by 
expanding previously developed pediatric PBPK models of 
clindamycin and trimethoprim/sulfamethoxazole to include 
observed data from children with obesity [17, 18]. Clin-
damycin and trimethoprim/sulfamethoxazole were chosen 
because of the availability of extensive on-hand individual 
concentration data, and they are extensively prescribed to 
children with obesity. PBPK model simulations were used 
to determine potential dosing adjustments necessary for chil-
dren with obesity to attain known target exposure.

2  Methods

2.1  Data Sources for Virtual Population 
Development

Demographic data, including body weight, body mass 
index (BMI), race, and ethnicity, as well albumin data, 
were obtained from the US Centers for Disease Control and 
Prevention (CDC) National Health and Nutrition Examina-
tion Survey (NHANES) from 1999 to 2016 (Table 1) [19]. 
Further demographic and albumin concentration data were 
obtained from the Pediatric Trial Network (PTN) Data 
Repository, a data warehouse containing electronic health 
records for ~ 265,000 pediatric patients across nine US 
hospitals [20]. Albumin and α1-acid glycoprotein (AAG) 
concentrations were available from clinical trials enrolling 
children with and without obesity, including the ‘Safety 
and Pharmacokinetics of Clindamycin in Pediatric Sub-
jects with BMI ≥ 85th Percentile’ (CLIN01, ClinicalTri-
als.gov #NCT01744730), ‘Pharmacokinetics of Multiple 
Dose Methadone in Children Treated for Opiate With-
drawal’ (MTH01, ClinicalTrials.gov #NCT01945736), and 
‘Pharmacokinetics of Understudied Drugs Administered to 
Children Per Standard of Care’ (POP01, ClinicalTrials.gov 
#NCT01431326) studies [21, 22]. To incorporate existing 

its impact on drug exposure, children with obesity remain 
understudied. This patient subgroup is particularly challeng-
ing to study clinically, as stigma can further lower pediatric 
enrollment rates, making it challenging to include the full 
age and body size range of children required to character-
ize drug disposition. As a result, few US Food and Drug 
Administration (FDA) labels provide dosing guidance in this 
population [11].

Physiologically based pharmacokinetic (PBPK) mod-
eling can account for obesity-related changes in physiology 
to characterize altered drug disposition in children with 
obesity. Physiologically based pharmacokinetic modeling 
integrates physiological variables (e.g., organ size and 
blood flow) into a virtual population, then adds drug-related 
properties (e.g., physicochemical and metabolism charac-
teristics) and study design elements (e.g., dosing and sam-
pling times) to predict drug disposition and inform dosing 
mechanistically [12, 13]. A virtual population of children 
used in PBPK modeling offers advantages over traditional 
population pharmacokinetic methods by (1) characterizing 
developmental and obesity-related physiological changes in 
children to capture the effect of both age and body size on 
drug disposition, (2) predicting initial PK in children with 
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physiological data from children with obesity into our virtual 
population, a comprehensive literature search was conducted 
in PubMed for physiological terms relevant to PK. Detailed 
search methods are included in Sect. 1.1 of the Electronic 
Supplementary Material (ESM).

2.2  Inclusion Criteria

Children aged 2–20 years were included in this analysis, 
in-line with the CDC’s definition of pediatric obesity. Chil-
dren with a BMI ≥ 95th percentile were considered obese, 
as defined by the 2000 CDC growth charts [23]. Available 

data from all reported races and ethnicities of children with 
obesity were used to inform the virtual population.

2.3  PBPK Modeling

Pediatric PBPK models of clindamycin and trimethoprim/
sulfamethoxazole previously developed in PK-Sim® (version 
9.0; Open Systems Pharmacology Suite, open-systems—
pharmacology.org) for children without obesity were used 
with the virtual population to simulate observed plasma 
concentrations in real-world children with obesity [17, 18].

Table 1  Population demographics for pediatric subjects with and without obesity from the National Health and Nutritional Examination Survey 
(NHANES) [pooled data from 1999 to 2016], the Pediatric Trials Network (PTN) data repository, and combined drug trial datasets

Values are medians (range) for continuous variables and counts (%) for categorical variables
BMI body mass index, CDC Centers for Disease Control and Prevention, NR not reported in the dataset
a Demographics recorded at the time of the first study dose were used to calculate descriptive statistics
b Note that one observed child with obesity in the PTN data repository dataset had an extremely high weight recorded (655.0 kg) that may be due 
to a recording error
c Note that while the maximum BMI for children without obesity exceeds the adult cut-off for obesity (BMI ≥ 30 kg/m2), these children had a 
BMI percentile ≤ 95, just missing the CDC’s pediatric cut-off for obesity
d BMI percentile was calculated using the 2000 CDC growth charts. Children with a BMI ≥ 95th percentile were considered obese

Demographicsa NHANES PTN data repository Combined drug trials

Obese Nonobese Obese Nonobese Obese Nonobese

n, subjects 6725 27,410 13,747 62,511 412 292
Age, years 12.3 (2.0, 21.1) 11.0 (2.0, 21.1) 11.5 (2.0, 17.0) 10.2 (2.0, 17.0) 13.1 (2.1, 20.2) 12.7 (2.0, 20.6)
Weight, kg 69.3 (13.9, 239.4) 37.5 (8.9, 110.4) 64.6 (10.9, 655.0b) 31.3 (10.0, 114.0) 70.3 (11.3, 164.4) 36.6 (8.1, 101.6)
Height, cm 146.6 (83.2, 197.2) 144.8 (79.0, 204.0) 150.0 (75, 206.0) 138.0 (75.0, 211) 152.2 (48.4, 193.0) 143.0 (75.5, 195.0)
BMI, kg/m2 28.2 (17.9, 73.4) 17.9 (8.0, 31.7)c 28.0 (17.8, 258.5b) 17.1 (4.8, 29.6) 29.4 (18.1, 62.1) 17.6 (11.0, 31.3)c

BMI percentile, %d 98.2 (95.0, 100.0) 60.9 (0, <95.0) 98.3 (95.0, 100.0) 52.8 (0, <95.0) 98.6 (95.0, 100.0) 50.2 (0, 95.0)
Male 3472 (51.6%) 13,798 (50.3%) 7102 (51.7%) 31,180 (49.9%) 231 (56.1%) 150 (51.4%)
Race
 American Indian/

Alaskan Native
NR NR 103 (0.7%) 254 (0.4%) 2 (0.5%) 1 (0.3%)

 Asian 105 (1.6%) 911 (3.3%) 215 (1.6%) 1932 (3.1%) 4 (1.0%) 7 (2.4%)
 Black or African 

American
2026 (30.1%) 7521 (27.4%) 2987 (21.7%) 11,512 (18.4%) 61 (14.8%) 57 (19.5%)

 Mexican Ameri-
can

2209 (32.8%) 7431 (27.1%) NR NR NR NR

 Multiple races NR NR 358 (2.6%) 1230 (2.0%) 14 (3.4%) 11 (3.8%)
 Native Hawaiian/

Pacific Islander
NR NR 54 (0.4%) 210 (0.3%) 4 (1.0%) 0

 Other NR NR 1520 (11.1%) 5107 (8.2%) 1 (0.2%) 0
 Other Hispanic 596 (8.9%) 2097 (7.7%) NR NR NR NR
 White 1473 (21.9%) 7904 (28.8%) 7658 (55.7%) 38,461 (61.5%) 306 (74.3%) 208 (71.2%)
 Unknown/NR 316 (4.7%) 1546 (5.6%) 852 (6.2%) 3805 (6.1%) 20 (4.9%) 8 (2.7%)

Ethnicity
 Hispanic/Latino NR NR 4109 (29.9%) 13,419 (21.5%) 86 (20.9%) 49 (16.8%)
 Not Hispanic/

Latino
NR NR 9169 (66.7%) 46,503 (74.4%) 318 (77.2%) 238 (81.5%)

 Unknown/NR NR NR 469 (3.4%) 2589 (4.1%) 8 (1.9%) 5 (1.7%)
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2.3.1  Clinical Data

For both the clindamycin and trimethoprim/sulfamethoxa-
zole PBPK models, clinical data from children with obesity 
from the POP01 and the External Data Study were used 
[24–26]. The External Data Study was a multicenter, open-
label, interventional pharmacokinetic and safety study as 
previously described for trimethoprim/sulfamethoxazole 
[26]. Clindamycin data from the External Data Study have 
not previously been published and are described in more 
detail in Sect. 1.5 of the ESM. Additional data were used 
from the CLIN01 study to evaluate the clindamycin PBPK 
model [21]. A summary of clinical studies used in this work 
is shown in Table 1 of the ESM, and demographics of all 
subjects are shown in Tables 2, 3, 4 and 5 of the ESM.

2.3.2  PBPK Model Development

As previously described, a PBPK model of clindamycin was 
developed in adults (without obesity) incorporating conver-
sion of the clindamycin phosphate dose to active clindamy-
cin via alkaline phosphatase, clindamycin metabolism via 
cytochrome P450 (CYP) 3A4 and 3A5, and excretion via 
tubular secretion and glomerular filtration [17]. The clinda-
mycin model was scaled and evaluated in children (without 
obesity) using known ontogeny functions for AAG, alka-
line phosphatase, CYP3A4, CYP3A5, and renal function 
[17]. A PBPK model of trimethoprim/sulfamethoxazole 
was developed in adults as previously described [18]. The 
trimethoprim model incorporated CYP2C9-mediated and 
CYP3A4-mediated metabolism and renal elimination via 
tubular secretion and glomerular filtration [18]. The sul-
famethoxazole model incorporated CYP2C9-mediated and 
N-acetyl transferase 2 (NAT2)-mediated metabolism and 
renal elimination via glomerular filtration [18]. The models 
were scaled and evaluated in children without obesity using 
known ontogeny functions for AAG, albumin, CYP2C9, 
CYP3A4, CYP3A5, NAT2, and renal function [18]. Final 
scaled clindamycin and trimethoprim/sulfamethoxazole 
model parameters are shown in Tables 6 and 7 of the ESM.

2.3.3  PBPK Model Evaluation

Because subjects experienced wide inter-individual varia-
tions in dosing (both amount and frequency), it was not pos-
sible to simulate the concentrations of all subjects together 
in a population-based simulation. Therefore, simulations 
were performed for each subject using “individualized” vir-
tual populations (n = 200) matched to that particular sub-
ject’s demographics and dosing. Simulations were evaluated 
by calculating the number of observed concentrations fall-
ing within the 90% model prediction interval. PBPK predic-
tions were also evaluated by average fold error (AFE) of 

the observed to the median simulated concentration for all 
samples using the equation:

where n is the total number of samples. An AFE within 
a 0.5-fold to two-fold error was considered an acceptable 
model fit.

2.3.4  PBPK Model Dosing Simulations

Population simulations were performed using the newly 
developed virtual population to understand how well cur-
rent recommended pediatric dosing of the aforementioned 
drugs results in target exposure achievement in children with 
obesity. Virtual populations of 1000 children with obesity 
were created for each age group (Table 8 of the ESM).

For clindamycin, recommended dosing of a 12 mg/
kg intravenous infusion (30 minutes) for children aged > 
2–6 years and 10 mg/kg intravenously for children aged > 
6–18 years was simulated [17, 25]. Target achievement was 
defined as median steady-state area under the concentra-
tion–time curve from 0 to 8 h (AUC 0–8,ss) within 25% of 
the median AUC 0–8,ss of adults receiving the recommended 
reference dose of 600 mg intravenously [27]. Dose capping 
was implemented using the maximum FDA-recommended 
intravenous dose of 900 mg [11].

For trimethoprim/sulfamethoxazole, recommended coad-
ministration of trimethoprim 6 mg/kg and sulfamethoxazole 
30 mg/kg orally (PO) for children aged > 2–12 years and 
trimethoprim 4 mg/kg and sulfamethoxazole 20 mg/kg for 
children aged > 12–18 years was simulated [18, 28]. Tri-
methoprim target attainment was defined as > 80% of vir-
tual children exceeding an adult reference steady-state area 
under the concentration–time curve (AUC ss) of 20.6 mg * 
h/L, and > 95% of children falling below safety margins for 
trimethoprim (13.6 mg/L maximum concentration, 141.8 mg 
* h/L AUC ss) and sulfamethoxazole (372 mg/L maximum 
concentration, 4119.4 mg * h/L AUC ss) [29]. Dose capping 
was implemented using the maximum FDA-recommended 
dosing of 320 mg for trimethoprim and 1600 mg for sul-
famethoxazole [30]. A fixed adult dose of 600, 160, and 
800 mg was also simulated for clindamycin, trimethoprim, 
and sulfamethoxazole, as again many observed children with 
obesity received fixed adult doses.

3  Results

3.1  Body Size

While the CDC’s obesity definition is a BMI ≥ 95th per-
centile, the prevalence of obesity has increased significantly 

(1)AFE = 10
1

n

∑

log
�

predicted

observed

�
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since the 1980s, when data for the 2000 CDC growth charts 
were collected. There is an upward shift in BMI for current 
children such that a greater number of children are above the 
CDC-defined obesity cut-off. To create a virtual population 
of children with obesity that reflects today’s higher BMI 
ranges, the growth curves were updated using more recent 
data reported in NHANES (Fig. 1). These growth curves 
were generated using the same lambda-mu-sigma parameter 
method used for the 2000 CDC growth charts [31]. Separate 
male and female growth curves were generated for Asian-
American, Black-American, Mexican-American, and White-
American children (Fig. 1 of the ESM). BMI-for-age data for 
all three racial groups included in the PTN Data Repository 
were used to validate the growth curves (Fig. 2 of the ESM). 
Additional details and final lambda-mu-sigma parameter 
files can be found in Sect. 1.3 of the ESM.

3.2  Hematocrit

Simulated hematocrit values for virtual children with obe-
sity reflected reported values (0.38–0.43 L/L) in real-world 
children with obesity (Fig. 3 and Table 9 of the ESM). Fur-
ther comparison of 136 subjects from trial data showed no 
significant change in hematocrit across a wide BMI range. 
Thus, no additional changes in hematocrit with obesity were 
included in the virtual population.

3.3  Protein Binding

Comparison of albumin concentrations between children 
with and without obesity from NHANES (n = 14,293), 

PTN Data Repository (n = 3,193), trial data (n = 393), 
and reported values (3.3–4.9 g/dL) showed no observable 
difference across a wide BMI range (Fig. 4 and Table 10 
of the ESM). Comparison of 148 subjects from trial data 
and reported values in children with obesity (0.8–1.05 
g/L) showed no significant change in AAG concentrations 
across a wide BMI range (Fig. 5 and Table 11 of the ESM). 
Accordingly, no additional changes in albumin or AAG con-
centrations with obesity were incorporated into the virtual 
population.

3.4  Organ Volumes

Organ size increases in children with obesity were imple-
mented in the virtual population by multiplying the organ 
volumes of virtual children without obesity by an organ-
specific scaling factor. Identifying these scaling factors was 
difficult, as organ volume data in children with obesity in 
the literature are sparse. Therefore, scaling factors were first 
derived from an adult study comparing organ volumes of 
subjects with vs without obesity (Table 12 of the ESM) [32]. 
Organ size increases from ultrasound measurements of the 
kidney (median [range] 119% [110–139%]) and liver (118% 
[105–149%]) in children with vs without obesity were in-
line with adult increases of 115% for both the kidney and 
liver (Fig. 6 and Table 13 of the ESM). After accounting 
for increases in non-fat organs based on these scaling fac-
tors, remaining excess body weight (as determined from the 
updated growth curves) was attributed to the adipose organ. 
Because of a lack of composition data in children with obe-
sity (e.g., percent lipids, protein, and water within an organ), 

Fig. 1  Updated growth curves based on National Health and Nutri-
tion Examination Survey (NHANES) pooled data for male and 
female groups. Key body mass index (BMI) percentiles are high-
lighted in blue (5th percentile), black (50th percentile), dark red (85th 
percentile), and red (95th percentile). The BMI cut-off for obesity as 
defined by the Centers for Disease Control and Prevention (CDC) 

is represented by the bold red dashed line, such that children with a 
BMI above that line for a given age are considered obese. Files with 
lambda-mu-sigma (LMS) parameters for plotting the updated growth 
curves and calculating updated BMI percentiles are provided in the 
ESM
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organ composition was modeled the same way as in existing 
virtual children without obesity in PK-Sim® [16].

3.5  Body Fat and Fat‑Free Mass

To further evaluate the distribution of excess body weight 
between adipose and lean organs in virtual children with 
obesity after incorporating organ volume scaling factors, 
simulated adipose volume was compared to calculated fat 
mass for virtual children using previously developed fat 
mass equations [33, 34]. Simulated adipose volume was 
similar to calculated fat mass, with some overestimation at 
higher weights that was also observed in the baseline popu-
lation of virtual children without obesity (Fig. 2).

3.6  Cardiac Output and Organ Blood Flow

Organ blood flows in children with obesity were not avail-
able in the literature, thus organ blood flows (in mL/min/kg 
organ) in virtual children without obesity were retained for 
children with obesity. However, increasing organ volumes in 
virtual children with obesity increased absolute blood flow 

(in mL/min) depending on the organ size (Fig. 7a of the 
ESM). Simulated cardiac output (an aggregate measure of 
blood flow to all perfused organs) was compared to reported 
values for children with obesity (Fig 7b and Table 14 of the 
ESM). While the cardiac output widely varied in the litera-
ture (4.4–7.3 L/min), the reported cardiac output was similar 
to simulated values for age.

3.7  Renal Function

As glomerular filtration rate (GFR) is a function of kidney 
size, increasing kidney volume for children with obesity 
resulted in elevated absolute GFR. Absolute and size-nor-
malized GFR (mL/min/kg) for virtual children with obesity 
was in-line with a previously reported study that estimated 
GFR by measuring creatinine clearance in children with obe-
sity, albeit with more variability (Table 2) [35].

3.8  Drug‑Metabolizing Enzymes and Transporters

Although there is some evidence of obesity-related alter-
ations in in vitro activity of key metabolic and transport 

Fig. 2  Simulated vs calculated 
fat mass for 1500 virtual chil-
dren without (a and c) and 1500 
virtual children with (b and d) 
obesity. Simulated fat mass was 
determined from the volume of 
the adipose organ generated for 
each virtual child in PK-Sim®. 
Calculated fat mass was deter-
mined using each virtual child’s 
demographic information and 
the fat mass equations derived 
from Al-Sallami et al. (a and b) 
and Green et al. (c and d) [33, 
34]. Each point represents a sin-
gle virtual child. Dashed lines 
represent the lines of unity for 
reference, and blue lines repre-
sent a linear regression passing 
through the origin for better 
visualization of misspecifica-
tion. The slope of this regres-
sion line is 1.26, 1.22, 1.20, and 
1.18 for (a–d), respectively
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enzymes in adults, such evidence is lacking in children 
with obesity [36, 37]. Few clinical studies are reported in 
children with obesity determining changes in metabolism 
using in vivo data, and those that exist conflict with known 
changes in adults with obesity [38], possibly owing to lower 
rates of comorbidities in children. Thus, no changes with 
obesity were incorporated in virtual children with obesity 
a priori.

3.9  PBPK Model Development and Evaluation

Validating the original, nonobese clindamycin PBPK model 
with a secondary dataset including 16 children without obe-
sity with 88 samples collected in the External Data Study 
resulted in an AFE of 0.74. After adjusting the fraction 
unbound based on the observed AAG concentration (see 
Sect. 2.3 of the ESM), expanding the model to include 101 
children with obesity (n = 188 samples) resulted in 77% 

of observed concentrations falling within the 90% model 
prediction interval (7% above, 16% below), and an AFE of 
1.09 (Fig. 8 of the ESM).

The trimethoprim model also captured observed concen-
trations (n = 50) from eight children without obesity well 
in the secondary validation dataset, with 82% of observed 
concentrations falling within the 90% model prediction 
interval (18% above), and an AFE of 1.29 (Fig. 9 of the 
ESM). Ninety percent of sulfamethoxazole concentrations 
from children without obesity fell within the 90% model pre-
diction interval (10% above), with an AFE of 1.44 (Fig. 10 
of the ESM). Of 50 children with obesity (n = 87 trimetho-
prim and 89 sulfamethoxazole samples), 75% of observed 
trimethoprim concentrations fell within the 90% model 
prediction interval (3% above, 22% below), with an AFE 
of 1.24 (Figs. 11 and 12 of the ESM). Sulfamethoxazole 
observed concentrations in children with obesity were mod-
erately well captured, with 54% falling with the 90% model 

Table 2  Simulated vs reported glomerular filtration rate (GFR) values for children aged 8–9 years with and without obesity

Values reported as mean (standard deviation). The ratio of obese/nonobese was calculated using mean data
BMI body mass index, BSA body surface area, CrCl creatinine clearance, FFM fat-free mass, LBW lean body weight
a The three reported GFR estimation methods include (1) estimating CrCl through a 24-h urine collection as a surrogate measure of GFR, (2) 
estimation of GFR using the Zappitelli equation, and (3) estimation of GFR using the Schwartz equation [48, 49]. Simulated GFR is estimated 
based on each virtual subject’s kidney size. Further description and equations for each method are provided in Sect. 1.4 of the ESM

Estimation  methodsa Nonobese Obese Obese/nonobese (%)

Reported [35] Simulated Reported [35] Simulated Reported [35] Simulated

Absolute (mL/min) 65.0 (21.7) 73.3 (24.7) 112.8
 CrCl 93.2 (21.0) 120.8 (21.5) 129.1
 GFR, Zappitelli 79.8 (10.5) 100.1 (14.4) 125.4
 GFR, Schwartz 65.1 (8.3) 83.2 (12.5) 127.8

Weight-adjusted (mL/min/kg) 1.92 (0.68) 1.64 (0.59) 85.4
 CrCl 3.4 (0.7) 2.8 (0.5) 82.4
 GFR, Zappitelli 2.9 (0.4) 2.3 (0.2) 79.3
 GFR, Schwartz 2.4 (0.3) 1.9 (0.2) 79.2

BMI-adjusted (mL/min/kg/m2) 3.54 (1.32) 3.03 (1.07) 85.6
 CrCl 5.8 (1.4) 5.2 (1.0) 89.7
 GFR, Zappitelli 5.0 (0.7) 4.3 (0.5) 86.0
 GFR, Schwartz 4.1 (0.5) 3.6 (0.4) 87.8

LBM-adjusted (mL/min/kg) 2.33 (0.78) 2.20 (0.77) 94.4
 CrCl 3.9 (0.8) 3.7 (0.6) 94.9
 GFR, Zappitelli 3.4 (0.4) 3.0 (0.3) 88.2
 GFR, Schwartz 2.7 (0.3) 2.5 (0.2) 92.6

FFM-adjusted (mL/min/kg) 2.56 (0.85) 2.44 (0.85) 95.3
 CrCl 4.6 (1.0) 5.0 (0.9) 108.7
 GFR, Zappitelli 3.9 (0.6) 4.1 (0.6) 105.1
 GFR, Schwartz 3.2 (0.5) 3.4 (0.5) 106.3

BSA-adjusted (mL/min/1.73  m2) 99.2 (32.8) 96.5 (33.0) 97.3
 CrCl 162.0 (34.4) 160.7 (26.3) 99.2
 GFR, Zappitelli 138.5 (15.7) 132.1 (13.0) 95.4
 GFR, Schwartz 112.7 (11.2) 109.6 (10.4) 97.2
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prediction interval (6% above, 40% below) and an AFE of 
1.53 (Figs. 12 and 13 of the ESM). No trends were identified 
that explained model overestimation of observed concentra-
tions (Fig. 12 of the ESM).

3.9.1  Dosing Simulations

Clindamycin, trimethoprim, and sulfamethoxazole weight-
normalized clearance decreased with obesity, as increases in 
absolute clearance attributable to increased kidney volume 
(thus GFR) in the virtual population of children with obesity 
did not increase to the same degree as body weight with 
obesity (Fig. 3, Figs. 14–18 of the ESM). This decreasing 
trend in weight-normalized clearance was more profound 
with increasing percent renal elimination. Decreased clear-
ance coupled with higher absolute doses under weight-based 
dosing resulted in higher AUC ss in virtual children with vs 
without obesity for all drugs (Figs. 19 and 20 of the ESM). 
Weight-normalized volume of distribution decreased with 
obesity as well and was more pronounced with higher lipo-
philicity and fraction of drug unbound.

All clindamycin dosing simulations resulted in median 
AUC 0–8,ss values within 30% of the adult median, except 
children aged 2–6 years receiving a fixed adult dose who 
had higher exposure (58.5% higher than the adult median) 
(Fig. 4). Simulated exposure when implementing the dose 
cap of 900 mg was similar to unrestricted recommended dos-
ing, as a minority of children reached the dose cap despite 
higher body weights (0%, 0.6%, and 26% of virtual chil-
dren aged > 2–6 years, > 6–12 years, and > 12–18 years, 
respectively).

Simulations of adult trimethoprim/sulfamethoxazole 
dosing resulted in nearly all virtual children with obesity 
aged 2–12 years meeting the target AUC ss and maximum 
concentration measures for safety and efficacy (Fig. 5). All 
virtual children with obesity aged 12–18 years met the safety 
targets for trimethoprim and sulfamethoxazole, but 25.3% of 
virtual children’s trimethoprim AUC ss fell below the target 
for efficacy. Simulations of recommended pediatric dosing 
without capping resulted in nearly all virtual children meet-
ing safety and efficacy targets. However, 16.8% and 50.9% 
of virtual children aged 2–12 years and 12–18 years, respec-
tively, received dosing that exceeded the maximum FDA-
recommended adult dose. Further simulations implementing 
this maximum as a cap resulted in nearly all virtual children 
in both age groups still meeting safety and efficacy targets.

4  Discussion

We developed a virtual population of children with obe-
sity that accounts for obesity-related physiological changes 
affecting drug disposition that should be considered for 

PBPK modeling. Previous adult PBPK modeling by Gho-
badi et al. also incorporated obesity-related physiological 
changes to characterize the disposition of eight drugs [15]. 
However, physiological changes with obesity in adults can-
not simply be extrapolated to children, as for example, stud-
ies of CYP3A4-mediated clearance of midazolam in adults 
vs adolescents show different trends with obesity [38]. Thus, 
a new virtual population of children with obesity was needed 
to use PBPK modeling to investigate drug exposure in these 
children.

To develop a virtual population that better reflects today’s 
obesity prevalence, it was necessary to update the CDC 
growth curves with the latest demographic data. These 
updated growth curves are not meant to supplant current 
measures of obesity, but rather serve as a better description 
of the body size distribution of today’s children of different 
gender and race in informing the virtual population’s body 
size range. The previous CDC growth curves were devel-
oped using observed body sizes of children in the 1980s, 
when the prevalence of obesity was far lower. In addition 
to age and sex, the new growth curves also capture racial 
differences in obesity rates. Note that although the absolute 
BMI cut-off for obesity has not changed (95th BMI percen-
tile from the original CDC growth curves), the percent of 
children falling above that cut-off better reflects the current 
obesity prevalence.

Renal function is challenging to estimate in children with 
obesity, as there are no studies measuring GFR directly in 
these children, and there are no GFR equations validated in 
children with obesity. Extrapolating from studies of GFR 
in adults with obesity is not reliable, as adults often have 
comorbidities that cause decreased renal function. While an 
indirect comparison, reported GFR values from creatinine 
clearance and GFR estimated by the Zappitelli and Schwartz 
equations were similar to increased simulated GFR from 
increased kidney volume in virtual children. Simulated GFR 
best matched GFR estimated by the Schwartz equation, the 
most commonly used clinical estimation method for chil-
dren. This method uses height in addition to creatinine to 
(indirectly) account for differences in body size in estimat-
ing GFR. While reported and simulated absolute GFR is 
higher in children with vs without obesity, more commonly 
used standard, or body surface area adjusted, GFR is slightly 
lower as kidney volume does not increase proportionally to 
overall increases in body size with obesity.

Literature data describing in vitro changes in metabolic or 
transporter enzyme activity in children with obesity are lack-
ing, as it is challenging to obtain biopsy samples from these 
children. Some clinical studies in children with obesity infer 
changes in metabolic enzyme activity from drug clearance 
or metabolite formation rate, but these are indirect measures 
that can be complicated by comorbidities, duration of obe-
sity, or concomitant drug administration. Some important 
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clinical and in vitro studies of adult patients with nonal-
coholic steatohepatitis, a common comorbidity of obesity, 
found substantially altered organic anion transporting poly-
peptide and multidrug resistance-associated protein trans-
porter activity [39–41]. These changes should be considered 
when modeling drugs with high transport activity, especially 
as these transporter changes are explored in children.

Preliminary clindamycin PBPK modeling results in chil-
dren with obesity showed a clear trend of concentration 

underestimation with increasing AAG concentrations. Cor-
recting fraction unbound using observed AAG concentra-
tions resulted in strong overall model performance. While 
limited pediatric AAG literature data did not indicate a trend 
in increasing AAG concentration with obesity, studies in 
adults indicate this protein increases with obesity due to 
inflammation [42, 43]. Thus, exploring a potential increase 
in AAG concentrations is recommended when evaluating 
drugs where AAG concentrations strongly impact clearance 

Fig. 3  Changes in simulated 
weight-normalized clearance 
(a, c, e) and weight-normalized 
volume of distribution (b, d, f) 
for clindamycin (a, b), trimetho-
prim (c, d), and sulfameth-
oxazole (e, f) with increasing 
body size, i.e., extended body 
mass index (BMI) percentile. 
Extended BMI percentile is 
calculated as BMI divided by 
the 95th BMI percentile for a 
subject’s age and sex, where 
children with an extended 
BMI percentile ≥ 100% are 
considered obese. Clearance 
and volume of distribution were 
calculated from virtual children 
aged 12–18 years with and 
without obesity (similar plots 
for virtual children aged 2–6 
years and 6–12 years are pre-
sented in Figs. 14 and 15 of the 
ESM). Virtual children received 
single doses of 600 mg intra-
venous (IV) infusion (30 min) 
clindamycin (CLIN), 160 mg 
oral (PO) trimethoprim (TMP), 
and 800 mg PO sulfamethoxa-
zole (SMX). The shaded regions 
denote the 90% (95th and 5th 
percentiles), 80% (90th and 10th 
percentiles), and 50% (75th and 
25th percentiles) prediction 
intervals from lightest to darkest 
color intensity, respectively. The 
black line denotes the median 
prediction. Note that variability 
in pharmacokinetic parameters 
appears decreased at the upper 
extremity of extended BMI per-
centile owing to a lower number 
of virtual subjects in this range
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(such as clindamycin) in subjects with obesity. Clindamy-
cin dosing simulations suggest that for children with obe-
sity aged <12 years, recommended pediatric weight-based 

dosing results in comparable exposure to known efficacious 
adult exposure (within 25% of the median), even when cap-
ping the dose using the FDA maximum. A greater number 

Fig. 4  Boxplots of simulated clindamycin steady-state area under the 
concentration–time curve from 0 to 8 h (AUC 0–8,ss) in virtual healthy 
adults (reference) and virtual children with obesity following popula-
tion simulations (n = 1000 per age group). Adults received the ref-
erence clindamycin dose of 600 mg intravenously (IV). Children 
received either the total weight-based recommended dose (12 mg/kg 

IV for children aged > 2–6 years and 10 mg/kg IV for children aged 
> 6–18 years) or the recommended dosing capped at 900 mg IV, or a 
fixed adult dose of 600 mg IV. Boxes represent the median and inter-
quartile range (IQR), and whiskers extend to 1.5*IQR. Dashed lines 
represent the AUC 0–8,ss range that is within 30% of the adult median 
AUC 0–8,ss value

Fig. 5  Boxplots of simulated 
trimethoprim (TMP) and sul-
famethoxazole (SMX) steady-
state area under the concentra-
tion–time curve (AUC ss) and 
maximum concentration  (Cmax) 
in virtual children with obesity 
following population simula-
tions (n = 1000 per age group). 
Virtual children received either 
the total weight-based recom-
mended dose (6 and 30 mg/kg 
orally [PO] for children aged > 
2–12 years and 4 and 20 mg/kg 
PO for children aged > 12–18 
years) or the recommended dos-
ing with a cap of 320 and 1600 
mg PO, as per the US Food and 
Drug Administration (FDA) 
maximum recommended dose, 
or a fixed adult dose of 160 and 
800 mg PO for TMP and SMX, 
respectively. Boxes represent 
the median and interquartile 
range (IQR), and whiskers 
extend to 1.5*IQR. The solid 
line represents the target AUC ss 
efficacy threshold for TMP, and 
the dashed lines represent the 
toxicity AUC ss and Cmax thresh-
olds for both TMP and SMX
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of children with obesity aged > 12 years had weight-based 
dosing that exceeded the FDA maximum, and resulted in 
significantly higher exposure than the adult median. Thus, 
PBPK model simulations support current recommended 
pediatric dosing for children with obesity, with dose cap-
ping particularly appropriate for those in older age groups.

Trimethoprim/sulfamethoxazole PBPK modeling in chil-
dren with obesity resulted in overestimation of sulfameth-
oxazole concentrations, particularly in the terminal phase. 
Sulfamethoxazole is ~ 16% cleared by NAT2. While data 
informing changes in metabolic enzyme activity are limited, 
one study of caffeine clearance mediated by NAT2 metabo-
lism in children with obesity found that NAT2 activity was 
five-fold higher in these children compared with normal 
weight controls [44]. Incorporating this increase in NAT2 
clearance into the PBPK model resulted in substantially 
better model performance (AFE of 0.93 for sulfamethoxa-
zole, Fig. 21 of the ESM), further supporting the theory that 
NAT2 activity is increased in children with obesity. Further 
studies of drugs metabolized by NAT2 in patients with obe-
sity should explore this potential increase in clearance. Dos-
ing simulations revealed that all children with obesity aged 
< 12 years met the efficacy and safety targets for both drugs, 
regardless of using the full recommended pediatric weight-
based dose, or capping based on the FDA maximum or adult 
dose. The same was true for children with obesity aged > 12 
years, except fixing the dose to the recommended adult dose 
resulted in underexposure for more than a quarter of virtual 
children. Thus, the recommended pediatric weight-based 
dosing capped with the FDA maximum should be used for 
older age groups.

This is the first virtual population that mechanistically 
describes children with obesity, and the first PBPK modeling 
in this patient population. However, this work is not without 
limitations. In some cases, limited data were available to 
inform the physiological assumptions in the virtual popula-
tion. Data were not available to inform a more gradual effect 
of physiological changes from children without vs with obe-
sity (i.e., changes affecting children with overweight). While 
racial differences were accounted for in body size by the 
updated growth curves, data to inform these differences for 
other physiological parameters in the virtual population are 
lacking. Important future work will need to be conducted as 
more physiological information in minority groups becomes 
available to fully understand how differing obesity preva-
lence might affect dosing in these groups. The changes in 
pharmacokinetic parameters induced by obesity may be 
more pronounced in these patient populations. Additionally, 
data sources were derived from different patient populations 
(e.g., healthy volunteers from NHANES vs inpatient chil-
dren from the PTN Data Repository), and thus may not be 
directly comparable. At present, only three drugs have been 
used to evaluate the virtual population, all of which have 

similar lipophilicities and volumes of distribution. The three 
drugs presented herein do not represent the full spectrum of 
drugs dosed in children with obesity. For the many drugs 
that are more lipid soluble, the degree of obesity is likely 
to have a far greater impact on the volume of distribution 
as previously demonstrated in adults [45–47]. The underly-
ing PBPK models used to apply the virtual population were 
developed using sparse data in children without obesity, and 
it is difficult to attribute any bias in pediatric obese predic-
tions to the underlying PBPK model or the novel virtual 
population. It is important to note that the virtual population 
of children in its current form is intended as an important 
first step in enabling PBPK modeling for this vulnerable 
patient population. It should be viewed as a starting point 
to which a new physiologic understanding of obesity can be 
added as it becomes available.

5  Conclusions

In this study, a virtual population of children with obesity 
was developed that incorporates obesity-related physiologi-
cal changes to enable PBPK modeling. This virtual popu-
lation was evaluated by successfully predicting the PK of 
clindamycin and trimethoprim\sulfamethoxazole in children 
with obesity by using published PBPK models that were 
previously evaluated in non-obese children. Model simula-
tions support current recommended pediatric dosing for all 
three drugs as these regimens achieved target exposure in 
children with obesity with or without dose capping, despite 
decreased weight-normalized clearance and higher absolute 
doses under weight-based dosing. While confirmatory of 
prior dosing recommendations in these cases, this novel 
virtual population can be applied to other drugs to better 
understand dosing in children with obesity.
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