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Abstract

Low birth weight may negatively affect energy storage and nutrient metabolism, and impair fetal

growth and development. We analyzed effects of body weight (BW) and gestational period on

nutrient composition in fetal Huanjiang mini-pigs. Fetuses with the lowest BW (LBW), middle

BW (MBW), and highest BW (HBW) were collected at days 45, 75, and 110 of gestation. Crude

protein (CP), crude fat, amino acid (AA), and fatty acid (FA) concentrations were determined.

The BW gain, carcass weight, fat percentage, and uterus weight of sows increased as gestation

progressed, as did litter weight, average individual fetal weight, fetal body weight, and dry matter

(DM). The concentrations of Ala, Arg, crude fat, Gly, Pro, Tyr, C14:0, C16:0, C16:1, C18:1n9c,

C18:2n6c, C18:3n3, C18:3n6, C20:0, C20:3n6, saturated FA (SFA), and monounsaturated FA

(MUFA) increased significantly as gestation progressed. The percentage of skeleton, and the

ratio of the liver, lung, and stomach to BW decreased as gestation progressed. There were also

significant reductions in the concentrations of CP, Asp, Glu, His, Ile, Leu, Lys, Phe, Ser, Thr,

essential AA (EAA), acidic AA, C17:0, C20:4n6, C22:6n3, unsaturated FA (UFA), polyunsatu-

rated FA (PUFA), n-3PUFA, n-6PUFA as gestation progressed, and reductions in EAA/total AA

(TAA), PUFA/SFA, and n-3/n-6 PUFA. The LBW fetuses exhibited the lowest BW and crude fat,

C14:0, C16:1, C17:0, C18:2n6c, and MUFA concentrations at days 75 and 110 of gestation.

They also exhibited lower Tyr concentration at day 45 of gestation and lower Glu concentration

at day 75 of gestation than HBW fetuses. These findings suggest that LBW fetuses exhibit

lower amounts of crude fat and several FAs during mid-gestation and late-gestation, which may

in turn affect adaptability, growth, and development.

Introduction

In swine production facilities, approximately 15–20% of newborn piglets exhibit low birth

weight [1, 2]. This low birth weight may lead to lower rates of survival, slower postnatal growth,
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suboptimal carcass quality, lower efficiency of nutrient utilization, and an increase in the num-

ber of days required to reach the common slaughter weight [3–5]. Low birth weight is caused by

intrauterine growth retardation (IUGR) during gestation [6]. In general, fetal body weight

(BW) that is more than two standard deviations below the mean BW at the corresponding ges-

tational age is considered indicative of IUGR [7, 8]. Pigs are multifetal domestic animals and

frequently exhibit IUGR.

Fetal growth is affected by the nutritional, metabolic, and endocrine status of the maternal

system [9]. Maternal under-nutrition or over-nutrition may result in IUGR [1] that negatively

affects the metabolism, growth, and development of fetal pigs, as well as numerous metabolic

pathways and their feeding efficiency and disease susceptibility [10]. Despite advances in nutri-

tion and management techniques, low birth weight and substantial litter variation in fetal

weight frequently occur during the late gestational phase, and the precise mechanisms under-

lying fetal pig development remain to be fully elucidated.

Huanjiang mini-pigs are anatomically and physiologically similar to humans, and their rel-

atively small size makes them easier to handle than other varieties of pigs [11–13]. In addition,

they are the most popular local pigs in Guangxi, China. Dietary nutrients play important roles

during gestation, and the feeding management and feed intake can affect maternal reproduc-

tive performance and fetal growth and development [14]. Huanjiang mini-pigs are usually

grazed and fed diets with lower nutrient level or with imbalanced nutrition, and have lower

body weight at the first service and bigger litter size. Therefore, these various characteristics of

Huanjiang mini-pigs render them more susceptible to low birth weight. Therefore, Huanjiang

mini-pigs were considered an appropriate experimental model.

The growth rates of fetal pigs vary over the course of gestation, accelerating during the sec-

ond half of pregnancy [15]. As the body composition of fetal pigs may vary in conjunction

with growth rates, the present study aimed to analyze nutrient composition in fetal Huanjiang

mini-pigs in terms of BW and gestational period. We also aimed to determine whether fetal

pigs with different BWs exhibited differences in body composition, as well as the time at which

these potential differences occurred, in order to provide a theoretical basis for developing

nutritional interventions targeting fetuses with low birth weight.

Materials and methods

All pigs used in the present study were managed in accordance with the Chinese Guidelines

for Animal Welfare. The experimental design and procedures were reviewed and approved by

the Animal Care and Use Committee of the Institute of Subtropical Agriculture, Chinese

Academy of Science, China.

Animals, diets, and treatments

The present study was conducted at the Mini-pig Research Center at the Huanjiang Observa-

tion and Research Station for Karst Ecosystems in Huanjiang, Guangxi, China. A total of 24

primiparous Huanjiang mini-pigs with an initial BW of approximately 30 kg were obtained

from a mini-pig farm located in Jixiang, Huanjiang, Guangxi Province, China (108˚27’40.8" E,

25˚9’50" N) and reared in eight pens, with three mini-pigs per pen. The animals were fed a diet

formulated in accordance with the recommendations of the Chinese National Feeding Stan-

dard for Swine (Table 1), which is commonly used in commercial Huanjiang mini-pig farms.

Animals were allowed access to water ad libitum for the duration of the experiment. The ani-

mals were fed at 8:00, 15:00, and 18:00 each day, and the quantity of each feed was approxi-

mately 2% of maternal BW.

Body nutrient composition in fetal pigs
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Sample collection

Sows were fasted and weighed at days 45, 75, and 110 of gestation. One sow per pen was ran-

domly selected and sacrificed under commercial conditions via electrical stunning (120 V, 200

Hz) and exsanguination [16], after which each sow was dissected, and its uterus and fetuses

were each individually weighed. The size of each fetus was recorded. The carcass, muscle, fat,

skeleton, liver, lungs, and stomach were dissected and weighed to determine the percentages

of live BW (tissue weight [kg]/BW [kg] × 100%) or ratio to live BW (organ weight [g]/BW

[kg]) that they comprised. Fetuses with the lowest, middle (similar to mean BW), and highest

BW (LBW, MBW, and HBW, respectively) in each litter were dissected and their internal

organs were removed. The remaining fetuses were stored in sealed plastic bags at -80˚C prior

to further analysis.

Determination of dry matter, crude protein, and crude fat

The fetal pigs were minced after weighing and dried in a vacuum-freeze dryer (CHRIST

RVC2-25 CDPIUS; Christ Company, Osterode, Germany) in order to calculate the dry matter

(DM) concentration. The crude protein (CP) concentration (N × 6.25) was determined using

the Kjeldahl method in accordance with standards provided by the Association of Official

Analytical Chemists [17]. The crude fat concentration was determined using the Soxhlet

extraction method. Petroleum ether was used as the binary extracting solution [18].

Determination of hydrolyzed amino acids

Approximately 0.1000 g of freeze-dried fetal pig powder was hydrolyzed in 10 mL of 6 mol/L

hydrochloric acid solution at 110˚C for 24 h. The suspension was diluted to 100 mL in double-

distilled water [19], then 1 mL of supernatant was transferred to a 1.5-mL centrifuge tube and

evaporated to dryness in a water bath at 65˚C. The sample was then dissolved using 1 mL of

0.02 mol/L hydrochloric acid solution and filtered through a 0.45-μm membrane prior to anal-

ysis [20] with an ion-exchange AA analyzer (L8800, Hitachi, Tokyo, Japan).

Determination of fatty acids

Different fatty acids (FAs) were identified via gas-liquid chromatography (7890A, Agilent, Cal-

ifornia, USA) of methyl esters as previously described [21, 22]. The FA composition was

expressed as g/100 g of total identified FA. The following parameters were calculated based on

Table 1. Ingredient and nutrient levels of the basal diet (air-dry basis).

Dietary ingredient Rate (%) Nutrient Level2

Corn 54.0 Digestive energy (MJ/Kg) 13.40

Soya meal 12.0 Crude protein (%) 12.04

Rice bran 30.0 Ca (%) 0.78

Premix1 4.0 P (%) 0.62

Total 100.0 Lysine (%) 0.53

Arginine (%) 0.65

Proline (%) 0.67

1 Provided by per kg premix: VA 301 000 IU, VD 52 800 IU, VE 742 IU, VK3 71 mg, VB1 30 mg, VB2 177 mg, VB6 32

mg, VB12 0.8 mg, nicotinic acid 1073 mg, D-pantothenic acid 540 mg, folic acid 22 mg, biotin 3.0 mg, chorine 8.0 g,

Fe 2.0 g, Cu 1.0 g, Zn 3.5 g, Mn 1.3 g, I 14 mg, Co 35 mg, Se 8.3 mg, Ca 200 mg, P 20 mg;
2 The values of nutrient levels were analyzed.

https://doi.org/10.1371/journal.pone.0199939.t001
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the FA composition: the sum of saturated FA (SFA, C14:0 + C16:0 + C17:0 + C18:0 + C20:0);

unsaturated FA (UFA, C16:1 + C18:1n9c + C18:1n9t + C18:2n6c + C18:3n3 + C18:3n6

+ C20:1 + C20:3n6 + C20:4n6 + C22:6n3); monounsaturated FA (MUFA, C16:1 + C18:1n9c

+ C18:1n9t + C20:1); polyunsaturated FA (PUFA, C18:2n6c + C18:3n3 + C18:3n6 + C20:3n6

+ C20:4n6 + C22:6n3); n-3PUFA (C18:3n3 + C18:3n6 + C22:6n3); n-6 PUFA (C18:2n6c

+ C20:3n6 + C20:4n6); and the ratios of PUFA to SFA and n-6 to n-3 PUFA.

Statistical analysis

Sow data were analyzed via one-way analysis of variance. Fetal data were analyzed using a

mixed-effects model, and the means were separated using Tukey’s method. Analyses were per-

formed using SAS version 9.2 (SAS Institute, Inc., Cary, NC, USA). Results are presented as

means and standard errors of the mean. Gestational periods, BWs, and their interactions were

included in the statistical model. The level of statistical significance was set at P< 0.05. Proba-

bility values between 0.05 and 0.10 were considered indicative of trends.

Results

Reproductive performance of sows

The reproductive performance of sows is presented in Table 2. Uterus weight, litter weight,

and average individual fetal weight increased (P< 0.05) as gestation progressed.

Body composition and organ ratio of sows

The body composition and organ ratios of sows are shown in Table 3. As gestation progressed,

both BW and carcass weight increased (P< 0.05), and fat percentage tended to increase

(P = 0.074). Skeleton percentage and the ratio of the liver, lung, and stomach to total BW

decreased (P< 0.05), and muscle percentage tended to decrease (P = 0.070).

Body weight of fetal pigs

Table 4 presents the fetal BWs, which increased as gestation progressed (P< 0.05). The BWs

of HBW fetuses were significantly higher than those of LBW fetuses at day 110 of gestation

(P< 0.05), but not at days 45 or 75 of gestation. A trend (P = 0.072) was observed with regard

to interaction between gestation period and fetal BW.

Dry matter, crude protein, and crude fat concentrations of fetal pigs

The DM, CP, and crude fat concentrations of fetal pigs are shown in Table 4. DM and crude

fat concentrations increased (P< 0.05) in fetuses with LBW, MBW, and HBW as gestation

progressed, while CP concentration in fetuses with MBW and HBW decreased (P< 0.05). No

significant differences (P> 0.05) in DM or CP concentrations were observed in fetuses with

LBW, MBW, or HBW at any of the three different gestation periods. In addition, no significant

differences in crude fat concentration were observed at day 45 of gestation. At day 75 of gesta-

tion, crude fat concentration was higher (P< 0.05) in HBW fetuses than in MBW or LBW

Table 2. The reproductive performance of sows at different gestation period (n = 8).

Items Day 45 of gestation Day 75 of gestation Day 110 of gestation SEM P-values

Uterus weight (kg) 2.12 4.72 5.95 0.40 <0.0001

Fetus number 7.13 7.88 7.43 0.51 0.7754

Litter weight (g) 200.30 1455.40 3674.20 9.63 <0.0001

Average individual fetal weight (g) 25.59 183.40 507.30 3.28 <0.0001

https://doi.org/10.1371/journal.pone.0199939.t002
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fetuses. At day 110 of gestation, crude fat concentration in MBW and HBW fetuses was higher

(P< 0.05) than that of LBW fetuses. Interaction effects (P< 0.05) were observed between ges-

tation period and BW with regard to DM, CP, and crude fat concentrations.

Amino acid composition of fetal pigs

The amino acid (AA) composition of fetal pigs is shown in Table 5. As gestation progressed, the

Ala, Arg, Gly, Pro, and Tyr concentrations of fetuses with LBW, MBW, and HBW increased

(P< 0.05), while the concentrations of Asp, Glu, His, Ile, Leu, Lys, Phe, Ser, Thr, and essential

AA (EAA) decreased (P< 0.05). We also observed a significant decrease in the ratio of EAA/

(total AA) TAA. Significant decreases (P< 0.05) in TAA concentration were observed in MBW

and LBW fetuses as gestation progressed. The Cys and Val concentrations in fetuses with LBW,

MBW, and HBW tended to decrease and then increase (P< 0.05) as gestation progressed, and

a similar pattern was observed for TAA and non-essential AA (NEAA) in HBW fetuses.

Relative to levels observed in HBW fetuses, Tyr and NEAA concentrations were higher

(P< 0.05) in LBW fetuses at day 45 of gestation, while Glu concentration was higher at day 75

of gestation. The TAA and EAA concentrations were also higher (P< 0.05) in MBW fetuses at

day 75 of gestation, while NEAA concentration was higher (P< 0.05) in MBW and LBW

fetuses at days 75 and 110 of gestation, relative to levels observed in HBW fetuses.

Significant effects (P< 0.05) of gestation period × BW were observed on Tyr, EAA, and

TAA concentrations in fetal pigs. A similar trend (P = 0.09) was observed for gestation

period × BW interaction on Gly concentration.

Fatty acid composition of fetal pigs

The FA composition of fetal pigs is shown in Table 6. As gestation progressed, significant

increases (P< 0.05) in C14:0, C16:0, C16:1, C18:1n9c, C18:2n6c, C18:3n3, C18:3n6, C20:0,

Table 3. The body composition and organ percentage of sows at different gestation period (n = 8).

Items Day 45 of gestation Day 75 of gestation Day 110 of gestation SEM P-values

Body weight gain (kg) 21.11 28.42 41.53 0.76 <0.0001

Carcass weight (kg) 35.13 37.73 46.17 0.85 0.004

Muscle percentage 13.27 13.49 11.85 0.42 0.0701

Fat percentage 8.20 8.33 9.73 0.41 0.0736

Skeletal percentage 5.24 3.69 3.74 0.23 <0.0001

Liver ratio (g/kg) 20.66 16.96 14.31 0.51 <0.0001

Lung ratio (g/kg) 7.09 5.59 5.29 0.39 0.021

Stomach ratio (g/kg) 11.81 10.26 9.30 0.40 0.0033

https://doi.org/10.1371/journal.pone.0199939.t003

Table 4. Body weight and routine nutrient concentrations of fetal pigs with LBW, MBW, and HBW at different gestation period (n = 8).

Items Day 45 of gestation Day 75 of gestation Day 110 of gestation SEM P-values

LBW1 MBW2 HBW3 LBW MBW HBW LBW MBW HBW Gestation period Body weight GP�BW

Body weight (g) 16.54d 19.75d 21.59d 152.21c 182.72c 209.51c 427.21b 513.00ab 575.03a 2.92 <0.0001 0.003 0.072

Dry matter (%) 9.78c 9.79c 9.97c 12.27b 11.91b 12.61b 18.73a 19.27a 19.22a 0.24 <0.0001 0.04 0.08

Crude protein (%) 13.72ab 14.15a 14.28a 13.00bcd 13.29bc 12.55dce 12.27de 12.41de 11.93e 0.25 <0.0001 0.04 0.03

Crude fat (%) 2.63d 4.21dc 2.99d 3.33d 3.11d 7.55a 2.93d 5.31bc 6.05ab 0.37 <0.0001 <0.0001 <0.0001

1 LBW, the lowest body weight;
2 MBW, the middle body weight;
3 HBW, the highest body weight;
a-e Values within a row without a common superscript letter differ (P< 0.05).

https://doi.org/10.1371/journal.pone.0199939.t004
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C20:3n6, SFA, and MUFA concentrations were observed in fetuses with LBW, MBW, and

HBW, and significant decreases in C17:0, C20:4n6, C22:6n3, UFA, PUFA, n-3PUFA, and n-

6PUFA concentrations were observed, along with corresponding significant decreases in PUFA/

SFA and n-3/n-6PUFA (P< 0.05). C18:0, C18:1n9t, and C20:1 concentrations first decreased

and then increased (P< 0.05) in fetuses with LBW, MBW, and HBW as gestation progressed.

At day 45 of gestation, n-3PUFA concentration was higher (P< 0.05) in MBW fetuses than

in HBW fetuses. At day 75 of gestation, C14:0 and C16:0 concentrations were higher (P< 0.05)

in MBW fetuses than in LBW fetuses. In addition, C17:0 concentration was higher (P< 0.05)

in MBW and HBW fetuses, while C20:4n6, C20:6n3, and PUFA concentrations were lower

(P< 0.05) in HBW fetuses than in LBW fetuses. C18:0 concentration was higher (P< 0.05) in

HBW fetuses than in MBW fetuses at day 75 of gestation. At day 110 of gestation, C18:0 and

n-3PUFA concentrations were higher (P< 0.05) in LBW fetuses than in HBW fetuses. The con-

centrations of C20:4n6, C20:6n3, and PUFA were higher (P< 0.05) in MBW and LBW fetuses,

while MUFA concentration was lower (P< 0.05) than that of HBW fetuses. C14:0 and C16:1

concentrations were higher (P< 0.05) in MBW and HBW fetuses, while the n-3/n-6PUFA ratio

was lower (P< 0.05) than that of LBW fetuses. C18:2n6c concentration was lower (P< 0.05) in

LBW fetuses than it was in both MBW and HBW fetuses.

Table 5. Composition of hydrolyzed amino acids of fetal pigs with LBW, MBW, and HBW at different gestation period (g/100g; n = 8).

Items Day 45 of gestation Day 75 of gestation Day 110 of gestation SEM P-values

LBW1 MBW2 HBW3 LBW MBW HBW LBW MBW HBW Gestation period Body weight GP�BW

Arg 2.64c 2.68c 2.61c 2.71bc 2.70bc 2.54c 3.00ab 3.11a 3.13a 0.15 <0.0001 0.24 0.62

His 1.33ab 1.38a 1.30abc 1.18bcd 1.18bcd 1.10d 1.13cd 1.13cd 1.14cd 0.11 <0.0001 0.24 0.62

Ile 1.67a 1.61a 1.57ab 1.45bc 1.46bc 1.37c 1.34c 1.36c 1.34c 0.11 <0.0001 0.07 0.51

Leu 3.73a 3.72a 3.58a 3.14bc 3.17b 3.00bcd 2.79d 2.86bcd 2.84cd 0.16 <0.0001 0.17 0.58

Lys 3.59a 3.52a 3.40ab 3.18bc 3.20bc 3.00c 3.06c 3.02c 3.00c 0.16 <0.0001 0.03 0.71

Met 0.96 0.93 0.79 0.85 0.90 0.81 0.84 0.80 0.79 0.14 0.20 0.11 0.62

Phe 1.84a 1.87a 1.81a 1.59b 1.59b 1.50b 1.46b 1.50b 1.49b 0.12 <0.0001 0.32 0.70

Thr 1.98ab 2.01a 1.93ab 1.77bc 1.77bc 1.66c 1.65c 1.63c 1.63c 0.14 <0.0001 0.23 0.85

Val 2.21a 2.21 2.13ab 1.89bc 1.89bc 1.79c 2.14ab 2.02abc 2.01abc 0.15 <0.0001 0.14 0.86

EAA4 19.61a 19.68a 18.83ab 17.77bcd 18.13bc 16.70d 17.49cd 16.76d 17.36cd 0.32 <0.0001 0.013 0.015

Ala 2.73abc 2.69bc 2.60c 2.61c 2.64c 2.48c 2.97ab 3.01a 3.00ab 0.16 <0.0001 0.27 0.69

Asp 3.94ab 4.00a 3.84abc 3.59abc 3.68abc 3.45c 3.54bc 3.59abc 3.56bc 0.18 <0.0001 0.21 0.87

Cys 0.65a 0.59ab 0.60ab 0.39abc 0.25c 0.36bc 0.64a 0.49abc 0.58ab 0.14 <0.0001 0.06 0.89

Gly 3.62bc 3.58bc 3.48c 3.96b 3.99b 3.88bc 4.79a 5.12a 5.21a 0.19 <0.0001 0.46 0.09

Glu 8.14a 8.03a 7.70ab 7.07bc 6.72dc 6.19de 6.18de 6.10de 5.84e 0.26 <0.0001 0.0025 0.68

Pro 2.63ab 2.59ab 2.47b 2.85ab 2.86ab 2.74ab 3.24a 3.24a 2.85ab 0.23 0.0002 0.15 0.86

Tyr 0.93abc 0.57cd 0.49d 1.17a 1.04ab 0.93abc 0.79bcd 0.87abc 0.85abcd 0.17 <0.0001 0.009 0.03

Ser 2.21ab 2.25a 2.12abc 1.92cd 1.94bcd 1.81d 1.90cd 1.90cd 1.91cd 0.15 <0.0001 0.26 0.78

NEAA5 24.88a 24.09ab 23.30b 23.08b 23.59b 21.70c 23.92ab 24.16ab 23.80b 0.35 <0.0001 0.0004 0.0524

TAA 44.50a 43.84ab 41.98abc 40.85cd 41.58bc 38.34d 41.79bc 40.51cd 41.64bc 0.46 <0.0001 0.0016 0.0075

EAA/TAA 0.45a 0.45a 0.45a 0.43b 0.43b 0.43b 0.41c 0.41c 0.42c 0.027 <0.0001 0.31 0.65

1 LBW, the lowest body weight;
2 MBW, the middle body weight;
3 HBW, the highest body weight;
4 EAA: essential amino acids = Arg + His + Ile + Leu + Lys + Met + Phe + Thr + Val;
5 NEAA: nonessential amino acids = Ala + Asp + Cys + Gly + Glu + Pro + Tyr + Ser;
a-e Values within a row without a common superscript letter differ (P< 0.05).

https://doi.org/10.1371/journal.pone.0199939.t005

Body nutrient composition in fetal pigs

PLOS ONE | https://doi.org/10.1371/journal.pone.0199939 July 13, 2018 6 / 13

https://doi.org/10.1371/journal.pone.0199939.t005
https://doi.org/10.1371/journal.pone.0199939


Significant interaction effects (P< 0.05) were observed between gestation period and BW

with regard to C14:0, C16:1, C17:0, C18:0, C18:2n6c, C20:4n6, C22:6n3, MUFA, PUFA, and n-

6PUFA concentrations. Trend-level interaction effects of gestation period × BW were

observed on n-3PUFA (P = 0.072), PUFA/SFA (P = 0.09), and n-3/n-6PUFA (P = 0.061).

Discussion

The present study aimed to determine the changes in the nutrient composition of fetuses

according to BW and gestation period using Huanjiang mini-pig models. LBW fetuses exhib-

ited lower amounts of crude fat and several FAs at mid-gestation and late-gestation, which

may in turn affect adaptability, growth, and development.

Table 6. Composition of fatty acid of fetal pigs with LBW, MBW, and HBW at different gestation period (%; n = 8).

Items Day 45 of gestation Day 75 of gestation Day 110 of gestation SEM P-values

LBW1 MBW2 HBW3 LBW MBW HBW LBW MBW HBW Gestation period Body weight GP�BW

C14:0 1.86e 1.99e 1.92e 2.22d 2.50c 2.38cd 2.73b 2.95a 3.11a 0.13 <0.0001 <0.0001 0.0038

C16:0 28.08c 28.10c 27.85c 29.40b 29.34b 29.06b 33.98a 34.00a 33.86a 0.23 <0.0001 0.10 0.97

C16:1 3.34e 3.38e 3.28e 4.36d 5.12bc 4.69cd 5.46b 6.17a 6.53a 0.20 <0.0001 <0.0001 <0.0001

C17:0 3.91a 3.95a 3.98a 2.42c 2.85b 2.79b 1.61d 1.63d 1.70d 0.03 <0.0001 0.0053 0.025

C18:0 18.11a 17.87ab 17.96ab 17.10cd 16.54d 17.26bc 18.16a 17.67abc 17.35bc 0.24 <0.0001 0.0051 0.0095

C18:1n9c 18.72cd 18.44d 18.88cd 19.04cd 19.37abc 19.35bc 20.02ab 20.06ab 20.20a 0.26 <0.0001 0.32 0.58

C18:1n9t 0.24abc 0.25ab 0.25ab 0.19bc 0.16c 0.16c 0.26ab 0.22abc 0.29a 0.08 <0.0001 0.44 0.16

C18:2n6c 2.80e 2.71e 2.99e 3.77d 3.96d 3.96d 4.46c 4.89b 5.44a 0.16 <0.0001 <0.0001 <0.0001

C18:3n3 0.27c 0.29bc 0.28c 0.35b 0.36b 0.35b 0.48a 0.45a 0.49a 0.08 <0.0001 0.85 0.40

C18:3n6 0.15d 0.17cd 0.16cd 0.25b 0.26b 0.24bc 0.32ab 0.29ab 0.35a 0.08 <0.0001 0.73 0.24

C20:0 0.12d 0.12cd 0.11d 0.18bc 0.17bcd 0.18b 0.44a 0.42a 0.46a 0.07 <0.0001 0.33 0.38

C20:1 0.57ab 0.51abcd 0.53abcd 0.50bcd 0.46cd 0.45d 0.60a 0.55abc 0.57ab 0.09 <0.0001 0.0202 0.98

C20:3n6 0.66b 0.72ab 0.72ab 0.75ab 0.75ab 0.77ab 0.80a 0.83a 0.78a 0.10 <0.0001 0.35 0.50

C20:4n6 16.54a 16.93a 16.87a 15.51b 15.19bc 14.53c 8.72d 8.46d 7.04e 0.27 <0.0001 <0.0001 0.0002

C22:6n3 4.58a 4.64a 4.44a 3.69b 3.27bc 3.22c 1.84d 1.50d 0.99e 0.18 <0.0001 <0.0001 0.003

MUFA4 22.98d 22.54d 23.02d 24.21c 24.99c 24.54c 26.28b 26.65ab 27.52a 0.29 <0.0001 0.024 0.008

PUFA5 24.77ab 25.43a 25.17a 24.30ab 23.76bc 22.80c 17.07d 16.77d 15.09e 0.31 <0.0001 <0.0001 0.0008

PUFA/SFA 0.47a 0.49a 0.49a 0.47a 0.46a 0.46a 0.30b 0.30b 0.28b 0.05 <0.0001 0.34 0.09

SFA6 52.29b 51.72b 51.55b 51.69b 51.17b 51.50b 57.20a 56.85a 56.64a 0.31 <0.0001 0.041 0.78

UFA7 47.71a 48.28a 48.45a 48.31a 48.83a 48.50a 43.34b 43.15b 43.36b 0.32 <0.0001 0.30 0.48

n-3 PUFA8 5.01ab 5.08a 4.65b 4.22c 3.89c 3.79c 2.65d 2.23de 1.99e 0.18 <0.0001 <0.0001 0.072

n-6 PUFA9 19.86a 20.51a 20.60a 20.11a 19.89a 19.85a 14.35b 14.48b 13.57b 0.31 <0.0001 0.40 0.045

n-3/n-6 PUFA 0.24a 0.25a 0.24ab 0.21bc 0.19cd 0.19cd 0.18d 0.15e 0.15e 0.05 <0.0001 0.0006 0.061

1 LBW, the lowest body weight;
2 MBW, the middle body weight;
3 HBW, the highest body weight;
4 MUFA = C16:1 + C18:1n9c + C18:1n9t + C20:1;
5 PUFA = C18:2n6c + C18:3n3 + C18:3n6 + C20:3n6 + C20:4n6 + C22:6n3;
6 SFA = C14:0 + C16:0 + C17:0 + C18:0 + C20:0;
7 UFA = C16:1 + C18:1n9c + C18:1n9t + C18:2n6c + C18:3n3 + C18:3n6 + C20:1 + C20:3n6 + C20:4n6 + C22:6n3;
8 n-3 PUFA = C18:3n3 + C18:3n6 + C22:6n3;
9 n-6 PUFA = C18:2n6c + C20:3n6 + C20:4n6;
a-e Values within a row without a common superscript letter differ (P< 0.05).

https://doi.org/10.1371/journal.pone.0199939.t006
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During gestation, sows undergo dramatic changes and must acquire enough nutrition to

maintain their own health and development and that of their fetuses. An improper supply of

nutrition will negatively affect the health of sows as well as fetal growth and development [23].

In the present study, uterus weight, litter weight, and average individual fetal weights increased

as gestation progressed, mainly due to continuous growth and development of the fetuses.

However, no significant difference in fetus number was observed between days 45, 75, and 110

of gestation. This is likely because of the 20–45% of conceptuses lost throughout gestation,

most are lost between 12 and 30 days after conception [24].

Maximal fetal growth occurs during the third trimester of pregnancy, during which sows

must increase their nutrient intake to meet the demands of the growing fetuses [25]. Therefore,

changes in the body composition of sows may reflect the utilization of the body’s nutrient

reserves. In the present study, the BW gain and carcass weight of sows increased as gestation

progressed, due to the continued growth of the mother and her conceptuses, and previous

studies have indicated that maternal fluid expansion throughout pregnancy contributes to

such increases [26]. We also observed that body fat percentage tended to increase as gestation

progressed, which is beneficial to fetal growth. The percentage of muscle and the ratio of liver,

lung, and stomach to BW decreased as gestation progressed, due to the rapid increase in the

size of the conceptuses.

Fetal growth and development is influenced by several factors including genetics, epigenet-

ics, maternal maturity, maternal nutrition during gestation, uterine capacity, placental effi-

ciency, litter size, day of gestation, and other environmental factors [8, 27, 28]. Our findings

indicate that the BW of fetal pigs undergoes dynamic changes as gestation progresses, suggest-

ing that nutrients are progressively accumulated in fetal pigs. A previous study demonstrated

that the BW of fetal pigs increases sharply as gestation progresses, and that 90% of fetal growth

occurs during the late stage of gestation [29]. At day 110 of gestation, the BW of HBW fetuses

was significantly higher than that of LBW fetuses in the present study, while no significant dif-

ference in BW was observed at days 45 and 75 of gestation, suggesting that the within-litter

variation of fetal BW becomes more apparent during the late stage of gestation, in accordance

with the findings of previous studies [23, 30]. Such findings also indicate that fetal growth

retardation occurs principally during the late gestational stage [23, 31].

The nutrient composition of fetal pigs reflects nutritional deposition in the maternal uterus.

In the present study, we observed that DM and crude fat concentrations in fetuses increased as

gestation progressed, regardless of fetal BW. These findings are consistent with those of previ-

ous studies in which DM, CP, and crude fat concentrations increased exponentially in fetal

pigs as gestation progressed [15, 29]. In the current study, CP concentration in fetuses with

LBW, MBW, and HBW decreased as gestation progressed, possibly due to the use of different

body tissues when determining CP. McPherson et al. [29] demonstrated that CP concentration

in both fetal carcass and brain decreased as gestation progressed, further suggesting that the

rate of CP deposition decreases in the late stage of gestation. At days 75 and 110 of gestation,

crude fat concentration in HBW fetuses was significantly higher than that of LBW fetuses, sug-

gesting that distinctions in crude fat concentration occur among fetal pigs of different BWs

during mid-gestation and late-gestation, and that HBW fetuses can accumulate more fat than

LBW fetuses. Fat concentration is related to energy storage in the body; therefore, our findings

suggest that HBW fetuses conserve more energy and are more capable of adapting to the post-

natal environment than LBW fetuses.

AAs have extremely different biochemical properties and functions, playing a prominent

role not only as building blocks for proteins but also as substrates for the synthesis of a range

of physiologically important molecules of immense biological importance [32–34]. Further-

more, AAs are known to exert various effects on body composition, blood flow, metabolic
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regulation, growth, and development [9]. Several studies have indicated that the concentra-

tions of AAs vary remarkably in fetal fluid during pregnancy [35–37]. An insufficient supply

of AAs from the mother to the fetus may result in IUGR [9, 38]. In the present study, Asp, Glu,

His, Ile, Leu, Lys, Phe, Ser, Thr, and EAA concentrations, as well as EAA/TAA, decreased as

gestation progressed, suggesting that the accretion of these AAs in fetal pigs progressively

decreases (i.e., the rate of protein deposition decreases as gestation progresses). Suryawan et al.

[39] reported that activation of the mammalian target of rapamycin (mTOR), and its effectors

including the ribosomal protein S6 kinase (S6K1) and eIF4E-binding protein-1 (4E-BP1),

which are positive regulators of protein synthesis, decreases with age in muscle. Thus, the

availability of these AAs may become limited, requiring an increase in dietary intake to satisfy

the growth and development of fetuses that occur during mid-gestation and late-gestation.

In the present study, we observed increases in Arg, Gly, and Tyr concentrations as gestation

progressed, indicating that the demand for these AAs progressively increases throughout ges-

tation. An insufficient supply of Arg is likely to limit the growth and development of fetal pigs

during mid-gestation and late-gestation. Dietary supplementation with Arg during these peri-

ods may increase the birth weights of piglets and decrease variation in piglet birth weights [40,

41]. Notably, it has been reported that ovine fetuses have a high metabolic demand for Gly dur-

ing late-gestation [42]. Additional studies have indicated that Tyr concentration increases dur-

ing mid-gestation and late-gestation, and that Tyr is crucial for proper pigmentation of the

skin, hair, and eyes [43]. Taken together, these findings demonstrate that fetuses need more

Arg, Gly, and Tyr during mid-gestation and late-gestation to satisfy their developmental

needs. Therefore, additional supplementation of these AAs during these periods may improve

fetal growth and development.

The LBW fetuses exhibited higher Glu, TAA, and EAA concentrations compared with

HBW fetuses at day 75 of gestation, as well as higher Tyr concentration at day 45 of gestation,

indicating that the accretion of these AAs in LBW fetuses is greater than that in HBW fetuses

during early-gestation or mid-gestation due to the dramatic fetal growth that occurs during

late-gestation [23]. However, this result conflicts with previous reports, which indicated that

transportation of AAs is decreased in IUGR fetal pigs [44, 45]. This may be because the trans-

portation of AAs does not occur distinctly at day 45 or 75 of gestation.

FAs have remarkable metabolic and regulatory versatility in animals [36]. The fetus

demands high levels of FAs, especially PUFA, for optimal growth and development. PUFA

must be transported across the placenta due to the limited fetal capacity for its synthesis, espe-

cially n-3PUFA and n-6PUFA [46–49]. Fetal accretion of PUFA during the third trimester

coincides with a period of substantial growth and continued organ development [50]. In the

present study, C14:0, C16:0, C16:1, C18:1n9c, C18:2n6c, C18:3n3, C18:3n6, C20:0, C20:3n6,

SFA, and MUFA concentrations increased as gestation progressed, indicating that the synthe-

sis of these FAs in liver increases as gestation advances. This enables the storage of energy for

fetal growth and development. Previous studies have indicated that this occurs due to growth

of the liver during early-gestation [29]. As gestation progresses, C17:0, C20:4n6, C22:6n3,

UFA, PUFA, n-3PUFA, and n-6PUFA concentrations decrease, as do PUFA/SFA and n-3/n-

6PUFA, likely due to an inadequate supply of nutrients from the sow, decreasing the synthesis

of these FAs. A previous study has also reported that levels of maternal lipids affect the FA

composition of fetal tissue [51].

At days 75 and 110 of gestation, LBW fetuses exhibited the lowest C14:0, C16:1, C17:0,

C18:2n6c, and MUFA concentrations and the highest C20:4n6, C22:6n3, PUFA, n-3PUFA,

and n-3/n-6 PUFA concentrations, suggesting that the deposition of these FAs occurs during

mid-gestation and late-gestation. FAs with the highest concentrations (including C20:4n6,

C22:6n3, PUFA, n-3PUFA, and n-3/n-6 PUFA) in LBW fetuses may be more important for

Body nutrient composition in fetal pigs

PLOS ONE | https://doi.org/10.1371/journal.pone.0199939 July 13, 2018 9 / 13

https://doi.org/10.1371/journal.pone.0199939


postnatal growth. Moreover, McNeil et al. [52] reported that the smallest fetuses do not exhibit

compromised PUFA status at any stage of gestation.

Conclusions

Maternal body composition changes as gestation progresses. We observed interaction effects

between gestation period and BW on DM, CP, crude fat, Tyr, TAA, EAA, C14:0, C16:1, C17:0,

C18:0, C18:2n6c, C20:4n6, C22:6n3, MUFA, PUFA, and n-6PUFA concentrations. As gesta-

tion progresses, BW increases along with DM and crude fat concentrations, while deposition

of CP decreases. The most marked differences occur primarily during mid-gestation and late-

gestation. LBW fetuses exhibit decreased amounts of crude fat and several FAs (including

C14:0, C16:1, C17:0, and C18:2n6c) during mid-gestation and late-gestation, which may in

turn affect the adaptability, growth, and development of the fetus. These findings may provide

a theoretical basis for developing nutritional interventions that target fetuses with low birth

weight in animals. Additional studies are needed to demonstrate the underlying mechanisms

through which these effects occur during gestation.
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