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Immune oncology (IO) is challenged to expand its usefulness to a broader range of
cancers. A second generation of IO agents acting beyond the realm of Checkpoint
Inhibitor Therapy (CIT) is sought with the intent of turning immune-resistant cancers into
appealing IO targets. The published literature proposes a profusion of models to explain
cancer immune resistance to CIT that largely outnumber the immune landscapes and
corresponding resistance mechanisms. In spite of the complex and contradicting models
suggested to explain refractoriness to CIT, the identification of prevailing mechanisms
and their targeting may not be as daunting as it at first appears. Here, we suggest that
cancer cells go through a conserved evolutionary bottleneck facing a Two-Option Choice
to evade recognition by the immune competent host: they can either adopt a clean onco-
genic process devoid of immunogenic stimuli (immune-silent tumors) or display an
entropic biology prone to immune recognition (immune-active tumors) but resilient to
rejection thanks to the recruitment of compensatory immune suppressive processes.
Strategies aimed at enhancing the effectiveness of CIT will be different according to the
immune landscape targeted.

Immune oncology (IO) is urged to expand the usefulness of Checkpoint Inhibitor Therapy (CIT) to a
broader range of refractory cancers [1–3]. In spite of the variety of models proposed to explain cancer
immune resistance, the identification of prevailing mechanisms and their targeting may not be as
daunting as it at first appears [4] as long as answers are sought following a well-designed and system-
atic strategy; to quote Jonas Salk: ‘the answer to biological problems preexists, it is the question that
needs to be discovered’ [5]. A survey of open access data from The Cancer Genome Atlas (TCGA)
comprising four histotypes (breast, lung, colon carcinoma and melanoma) indicated that cancer cells
go through a conserved evolutionary bottleneck facing a Two-Option Choice (TOC) to evade immune
recognition by the immune competent host: they can either adopt a clean oncogenic process devoid of
immunogenic stimuli (immune-silent tumors) or display an entropic biology prone to immune recog-
nition (immune-active tumors) but resilient to rejection thanks to the recruitment of compensatory
immune suppressive processes [3]. We refer to the first option as Primary Immune Resistance (PIRes)
and to the second as Compensatory Immune Resistance (CIRes). These two landscapes may influence
refractoriness to CIT through entirely distinct mechanisms. In addition, Secondary Immune
Resistance (SIRes) may ensue as an escape mechanism following originally successful treatment.
Finally, we refer to False-Immune Resistance in those cases in which treatment could not be
completed due to limiting toxicity.
To explain the distinct landscapes and the respective reasons determining immune refractoriness to

CIT, a wealth of observational and/or experimental models has been advocated that largely outnumber
the three phenotypes of human cancer (Table 1). The current series presents some of the salient
models that propose a targetable mechanism regulating the growth of cancer in the immune competent
host, primarily focusing on immune regulatory control of cancer within the immune-active landscapes.
However, this review will lean toward the discussion of potential strategies to immune convert silent
tumors into immune-active ones, therefore, offering a window of opportunity for IO agents that would
otherwise be unlikely to affect an immune-silent environment where innate resistance dominates.
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We recently proposed a theory that unifies current models of cancer immune resistance into a Theory of
Everything (TOE) assigning each of them to a specific immune landscape according to their transcriptional
expression pattern [3]. This conclusion was based on a survey of two open access datasets comprising
∼3000 cases of breast cancer [3,8,61]. A nomenclature was proposed to define cancers according to their
immune contexture ranking them according to the transcriptional expression of genes associated with
Immune-mediated Tissue-specific Destruction (ITD). ITD is a conserved mechanism responsible for destruc-
tive flares of autoimmunity, acute allograft rejection, and graft-versus-host disease, clearance of pathogen-
infected cells and rejection of cancer [62,63]. A signature representative of the ITD was selected from a
larger set of interferon (IFN)-γ-induced transcripts named the Immunologic Constant of Rejection (ICR)
[62]. The ICR bears both predictive and prognostic implications within a continuum of anticancer immune
surveillance [64] and includes four functional categories: CXCR3/CCR5 chemokines (CXCL9, CXCL10 and
CCL5), Th1 signaling (IFNG, IL12B, TBX21, CD8A, STAT1, IRF1 and CD8B), effector (GNLY, PRF1,
GZMA, GZMB and GZMH) and immune regulatory (CD274, CTLA4, FOXP3, IDO1 and PDCD1) func-
tions. The expression of the 20 representative genes is highly correlated with the extended ICR signature that
includes ∼500 genes [62,63,65]. It has been conclusively shown that responsiveness to CIT is observed
almost exclusively in the immune-active landscape and is predetermined by a conducive microenvironment
[35,66,67]. However, while the immune-active landscape is a prerequisite, it is not sufficient alone to predict
immune response.
This concept was described originally by our group in 2002 in the context of other types of immunotherapy,

including response to antigen-specific vaccination administered in combination with systemic interleukin-2
[68], and subsequently validated in the context of systemic interleukin-2 administration [69] and the adoptive
transfer of tumor-infiltrating lymphocytes [70]. Therefore, immune responsiveness is promiscuous to treatment
and it is multifactorial with the tumor microenvironment, playing a permissive but not exclusive role [71].

Table 1 Salient models explaining cancer immune landscapes
and pertinent literature

References ICR group

WNT/β−Catenin [6,7] Depleted

MAPK hypothesis [8] Depleted

Immunogenic cell death [9,10,11] Active

Regulatory T cells [12,13] Active

IL23-Th17 axis [14–18] Active

Myeloid suppressor cells [19] Active

PI3K-γ signature [20–24] Depleted

IDO/NOS signature [25–27] Ubiquitous

SGK1 signature [28,29] Depleted

Shc1 signature [30] Depleted

Barrier molecules [31,32] Depleted

Mesenchymal transition [33–35] Depleted

Cancer-associated fibroblasts [36–40] Ubiquitous

TAM receptor tyrosine kinases [41–45] Active

Hypoxia/adenosine suppression [46,47] Active

TREX1 clearance of cytosolic DNA [48–50] NA

Checkpoint cluster [51,52] Active

Oncogene addiction [53,54] Depleted

Epigenetic regulation [55–58] Depleted

Regulatory B cells [59] Active

NF-κB activation [60]
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The 20-gene ICR signatures bear strong analogy with other IFN-γ-dependent signatures predictive of
immune responsiveness to interleukin-2-based therapies [68–70] and CIT [66]. Thus, we used these 20 genes
as surrogate biomarkers to define immune landscapes more or less likely to be susceptible to CIT. The
expression pattern of the 20 ICR genes defined four cancer immune landscapes that were segregated from ICR1
to ICR4 according to the crescendo of expression of ICR transcripts. ICR1 and ICR2 represent various degrees
of immune depletion, while ICR3 and ICR4 demonstrate rising levels of expression of ICR genes. For the
purpose of discussion, the four landscapes were conflated conceptually into immune-silent or immune-active
clusters.
Subsequently, a selection of transcripts reported in association with various cancer immune resistance

models was collated into a signature meant to unify within a single study the hallmarks of cancer immune
biology (Table 1). We refer to this collection as the TOE signatures of resistance (sRes) and used it to define
the geographical distribution of each model within immune landscapes.
We observed that most transcripts representative of immune regulatory mechanisms tightly correlated in

expression with the ICR and TIS (tumor inflammation signature), suggesting that immune suppression goes
hand-in-hand with immune activation [3].
Based on this analysis of breast cancer data, we hypothesized that immune-silent tumors evolve by

employing a strictly essential interface of interactions with the host’s stromal cells that exclude immune cell
recognition. This may be due to the development of a cancer cell cycle that avoids Immunogenic Cell Death
(ICD) or by the downstream induction of biochemical or mechanical barriers that hamper immune infiltration.
Thus, these ‘clean’ tumors evolve through the promotion of cancer cells that adopt refined growth mechanisms
reduced to the bare necessities of life. Indeed, similar observations could be corroborated by the analysis of
another three cancer histotypes including lung, colon carcinomas and melanoma (Figure 1).
This hypothesis is corroborated by the observation that these tumors (1) are transcriptionally dormant com-

pared with the immune-active ones and (2) bear low prevalence of mutations in oncogenes suggesting a more
orderly growth process [8]. It is, therefore, reasonable to suppose that clean tumor growth is dependent on a
stepwise oncogenic mechanism that avoids immune recognition [72–74]. Thus, we propose that the natural
history of cancer is shaped at the cross-road of two biologies by a ‘TOC’ or Hobson’s predicament: (1)
immunogenic tumors can only survive in the host when immune suppressive mechanisms balance the reaction
of the host and (2) silent tumors can grow undisturbed.
Here, we suggest that interference of a clean oncogenic pathway may result not only in cancer cell death but

also in the disruption of its biology leading to less pristine processes conducive to ICD and allowing, therefore,
a window of opportunity for IO agents [9–11,75–95].
This concept is based on the premise that cancer is fundamentally a cell biology problem with cancer cells

orchestrating and directing their surroundings. Therefore, efforts aiming at altering the tumor microenviron-
ment should primarily be directed toward the disruption of intrinsic cancer cell processes. A best example of
the central role played by cancer cells in determining their surroundings is the Patient-Derived Xenograft
(PDX) model; after three passages in immune-deficient mice, the mouse stromal cells completely replace the
human, yet the original architecture of the cancer is maintained [96–98]. A second premise is that the immune
environment of cancer is driven by a cascade of innate mechanisms (first signal), while the adaptive immune
response requires signals initiated by the innate immune system that inform about the origin of the antigen
and the type of response to be induced as described by Charles A. Janeway and by Polly Matzinger’s Danger
Model [83,99–108].
The leading role played by ICD in driving the immune landscape of cancer is counteracted by lines of

thought that promote priming of adaptive immune responses by non-self-antigens (neo-antigens) generated
by the translation of missense mutations into novel protein domains. This hypothesis is based on several
experimental [109,110] as well as the clinical observation that cancers with high mutational burden are more
frequently associated with the immune-active landscape and consequently with responsiveness to CIT
[33,98,109]. This concept has been, however, questioned by recent observations by our [8] and others’ groups
[111]. Moreover, basic understanding of immunologic processes confutes the primary role that adaptive
immunity plays in the rejection of cancer in the absence of a first initiating signal [99–104,107]. The condi-
tionality of adaptive immune responses is suggested by experimental evidence that they are not an essential
requirement for the rejection of cancer as exemplified by the transferrable anticancer innate immunity model
[112–115] and by oncotropic virus-mediated immune rejection of xenografts in immune-deficient mice
[116,117]. From the clinical standpoint, the secondary role played by adaptive immunity could also explain
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the paradoxical observation that vaccines aimed at priming adaptive immune responses can consistently elicit
systemic immunity, which, however, does not correlate with tumor rejection [118,119]. It could be postulated
that because of the adjuvants used in vaccine administration, at the site of vaccination the afferent loop of
the adaptive immune response can be initiated stimulating chemoattraction and antigen presentation.
However, at the tumor site, in the absence of a strong innate immunity-mediated chemoattraction, the effer-
ent loop languishes mostly because of lack of trafficking on vaccine-induced cancer-specific T cells to the
target tissue. It should also be pointed out that seminal studies done on the effectiveness of tumor-infiltrating
lymphocytes demonstrated that their homing at the tumor site is necessary, though not sufficient, to induce
tumor regression, emphasizing the critical role that chemoattraction plays in immune responsiveness [120]. In
turn, chemoattraction of circulating T cells is tightly dependent on the expression of CXCR3- and
CCR5-binding chemokines that are expressed in response to innate immune activation as a component of the
ICR signature. Finally, it has been recently shown that the intra-lesional injection of oncolytic virus can turn
an immune-silent tumor into an immunogenic one with activation of innate signals that secondarily attracts
adaptive immune responses [121].
Thus, we believe that the prospect for IO therapy is to segregate future efforts according to immune land-

scapes and respective cause for refractoriness to CIT. It is likely that cancers displaying immune-activated land-
scapes and associated CIRes will benefit from combination of various IO agents that could shift the balance in
favor of immune-effector over immune regulatory mechanisms. On the other hand, silent cancers will need to
be primed to stir ICD and subsequent recruitment of innate and adaptive immune cells that could become suit-
able targets for IO agents including CIT.

Figure 1. Consistency of immune resistance signature expression across different.

Mapping gene signatures according to their expression in different immune landscapes of breast (BRCA), lung (LUAD) and

colon (COAD) carcinoma, and melanoma (SKCM); in red are signatures selectively expressed in the immune-active (ICR4)

landscape, in blue those selectively expressed in the immune-silent (ICR1) landscape and in white those that are ubiquitously

expressed independent of immune landscape.
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Summary
• Immune suppression goes hand-in-hand with immune activation.

• Immune-active tumors include almost exclusively all the immune regulatory mechanisms to
counterbalance their immunogenicity.

• Immune-silent tumors are enriched of signatures that reflect activation of oncogenic mechan-
isms and exclude immune regulatory mechanism.

• Human cancers go through a conserved evolutionary bottleneck facing a two-option choice to
evade immune recognition by the immune competent host: they either adopt a clean onco-
genic process devoid of immunogenic stimuli or display an entropic biology prone to immune
recognition but resilient to rejection thanks to the recruitment of compensatory immune sup-
pressive processes.

• Immunotherapy agents including check point inhibitors work only on the immune-active
tumors enriched of immune regulatory mechanisms.

• Immune-silent tumors need to be targeted with agents that can disrupt their lean biology and
induce immunogenic cell death.
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