

Citation: Lemieux S, Buies A, F. Turgeon A, Hallet J, Daigle G, Côté F, et al. (2021) Effect of Yttrium-90 transarterial radioembolization in patients with non-surgical hepatocellular carcinoma: A systematic review and meta-analysis. PLoS ONE 16(3): e0247958. https://doi.org/10.1371/journal. pone.0247958

Editor: Yi-Hsiang Huang, National Yang-Ming University, TAIWAN

Received: October 31, 2020

Accepted: February 16, 2021

Published: March 4, 2021

Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: https://doi.org/10.1371/journal.pone.0247958

Copyright: © 2021 Lemieux et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the manuscript and its <u>Supporting</u> Information files.

RESEARCH ARTICLE

Effect of Yttrium-90 transarterial radioembolization in patients with nonsurgical hepatocellular carcinoma: A systematic review and meta-analysis

Simon Lemieux^{1,2}*, Alex Buies¹, Alexis F. Turgeon^{3,4}, Julie Hallet^{5,6}, Gaétan Daigle⁷, François Côté¹, Steeve Provencher^{2,8}

Department of Radiology and Nuclear Medicine, Université Laval, Québec City, Québec, Canada,
 Québec Hearth and Lung Institute Research Center, Université Laval, Québec City, Québec, Canada,
 Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Université Laval, Québec City, Québec, Canada, 4 CHU de Québec–Université Laval Research Center, Population Health and Optimal Health Practices Research Unit, Trauma-Emergency-Critical Care Medicine, Québec City, Québec, Canada, 5 Division of General Surgery, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada, 6 Department of Surgery, University of Toronto, Toronto, Ontario, Canada, 7 Faculty of Engineering Sciences, Department of Mathematics and Statistics, Université Laval, Québec City, Québec, Canada, 8 Division of Respirology, Department of Medicine, Université Laval, Québec City, Québec, Canada

Abstract

Background

Recently, the use of Yttrium-90 transarterial radioembolization in non-surgical hepatocellular carcinoma was suggested but the evidence supporting its use is unclear.

Methods

We searched Medline, Embase, Web of Science and Cochrane CENTRAL from inception up to April 14, 2020 for randomized controlled trials comparing Y90-TARE to standard of care in non-surgical HCC patients. Our primary outcome was overall survival (OS). Our secondary outcomes were progression-free survival, time to progression, disease control rate, grade \geq 3 adverse events and rates of gastro-intestinal ulcers. Hazard ratios (HR) and risk ratios (RR) with random-effects model were used for our analyses. The risk of bias of the included studies was assessed using Cochrane's RoB 2 tool.

Results

Of 1,604 citations identified, eight studies (1,439 patients) were included in our analysis. No improvement in overall survival were noted when Yttrium-90 transarterial radioembolization was compared to standard treatments (HR 0.99 [95% CI 0.81–1.21], 6 studies, $I^2 = 77.6\%$). However, Yttrium-90 transarterial radioembolization was associated with fewer grade \geq 3 adverse events (RR 0.64 [95% CI 0.45–0.92], 7 studies, $I^2 = 66\%$). No difference was observed on other secondary outcomes.

These authors contributed equally to this work.
 * simon.lemieux.9@ulaval.ca

Funding: The author(s) received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.

Discussion

In non-surgical HCC patients, Yttrium-90 transarterial radioembolization was not associated with significant effect on survival, progression-free survival, time to progression, disease control rate and the incidence of gastro-intestinal ulcers but was however associated with significantly lower rates of grade \geq 3 adverse events. Further randomized controlled trials are warranted to better delineate optimal treatment.

Introduction

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths in the world, resulting in approximately 800,000 deaths globally annually [1]. It is typically diagnosed late in its course and the median survival following diagnosis ranges from 6 to 20 months [2]. At diagnosis, approximately only 30% of patients are eligible for curative treatments including surgery, mostly owing to extent of disease and patient comorbidities, including cirrhosis [2].

According to the Barcelona Clinic Liver Cancer (BCLC) staging system and guidelines, the standard treatment for intermediate HCC (BCLC stage B) is either conventional or drug-eluting beads transarterial chemoembolization (TACE) [3]. For advanced HCC (BCLC stage C), sorafenib recently became standard treatment after two trials documented benefits in overall survival (OS) [4,5]. However, although new treatments are available, the survival benefit is still not optimal and new alternatives are sought.

More recently, Y90-TARE was developed for the treatment of HCC and offers inherent advantages such as outpatient setting during a single treatment session [6,7]. However, despite significant amount of promising results derived from retrospective data [8,9], its use remains limited due to the uncertainty on its efficacy. Consequently, Y90-TARE is not considered a first-line treatment for HCC in recent guidelines [10–12]. However, Y90-TARE is offered to patients from early to terminal BCLC stage [13] in monotherapy or in combination.

Considering the potential benefit of Y90-TARE and the limited evidence supporting its use, we conducted a systematic review and meta-analysis to assess the efficacy and safety of Y90-TARE in non-surgical HCC patients.

Methods

We conducted a systematic review in accordance with the framework from the Methodological Expectations of Cochrane Intervention Reviews [14]. We reported our work according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA) statement [15]. Patients or the public were not involved in the design, or conduct, or reporting or dissemination plans or our research. Our protocol was registered on Prospero (http://www.crd.york.ac.uk/PROSPERO, CRD42020179211).

Study outcomes

Our primary outcome of interest was the overall survival (OS). Secondary outcomes included (1) time to radiological progression, defined whether as progression-free survival or time to progression at any site; (2) disease control rate, defined as the sum of complete response, partial response and stable disease; (3) severe/significant adverse events, defined as the proportion of patients who developed at least one grade \geq 3 adverse event according to Common

Terminology Criteria for Adverse Events [16]; and (4) incidence of gastro-intestinal ulcers of any severity.

Search strategy and selection criteria

We searched Medline, Embase, Web of Science and Cochrane CENTRAL from inception up to April 14, 2020. Our search strategy was developed in collaboration with an information specialist and is available online (S1 Text). Conference abstracts obtained through our search strategy were considered. We hand searched the National Institutes of Health clinicaltrials. gov. No language restriction was applied.

We included RCTs evaluating Y90-TARE (monotherapy or in combination) in non-surgical HCC patients compared to any treatment or intervention, placebo, sham-intervention, or no intervention. RCTs reporting at least one of our outcomes of interest were considered for inclusion.

Two reviewers (SL, AB) independently reviewed all trial titles and abstracts to determine eligibility. When pertinent, the full publication was assessed independently by the same reviewers to determine final inclusion. When duplicate populations from same trials were reported, the data from the largest cohort of patients was included in the final analysis. Discrepancies or uncertainties at any point were resolved by consensus. The agreement between the two reviewers was measured using the quadratic weighted κ statistic [17].

Assessment of risk of bias

We assessed the risk of bias of the selected trials using Cochrane's revised tool for Risk of Bias in randomized trials (RoB 2) [18]. Two reviewers (SL, AB) independently completed the assessment of bias according to the "Template for completion" (available on <u>riskofbias.org</u>). The RoB 2 tool assesses five domains of bias: randomization process, deviations from the intended interventions, missing outcome data, measurement of the outcome, and selection of the reported results. We classified specifically all reported outcomes from each trial as low risk, some concerns, or high risk of bias.

Quality of evidence

Two reviewers (SL, AB) independently applied the Grades of Recommendations Assessment, Development and Evaluation framework (GRADE) to assess external validity by evaluating the quality of evidence for all outcomes reported in the systematic review [19].

Data extraction and statistical analyses

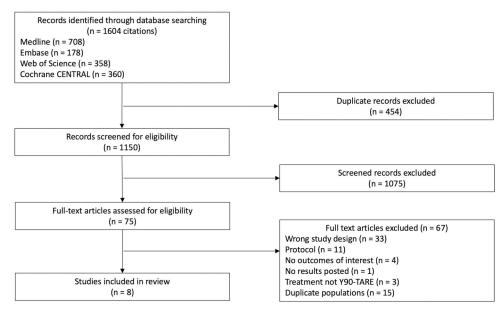
The same reviewers independently (SL, AB) extracted trial identification, name, year of publication, funding sources, disclosures, country of origin, number and location of participating centers, dates of conduction, inclusion/exclusion criteria, population, details about the interventions, including monotherapy or combination, and patient characteristics from included trials.

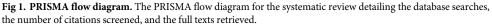
Trial data relevant to time-to-event outcomes (OS, progression-free survival, and time to progression) was analyzed using hazard ratios (HR) and extracted on a suggested data collection form [20]. We requested unpublished data from the authors when necessary. When the HR was not available, we extrapolated approximate individual patient data from published Kaplan-Meier curves with a digitizer software (DigitizeIt, Germany, available from digitizeit. de) to obtain the corresponding HR. The algorithm used is associated with a mean absolute error of 0.017 (95% CI 0.002–1.222), so that the true HR would be between 1.475–1.525 for an

extracted HR of 1.5, therefore representing no relevant systematic error [21]. For time-toevent outcomes, the (log)HR was used to summarize the results. The summary estimates were presented as a HR with its corresponding 95% CI using the inverse-variance method. For dichotomous outcomes, contingency (2x2) tables were constructed and number of events were recorded on the basis of the intervention received. The summary estimates were presented as a risk ratio (RR) with its corresponding 95% CI using the Mantel-Haenszel method. If the numerator cells contained values of zero, we added 1 to the numerator and denominator cells to calculate the RR. Statistical heterogeneity between trials was assessed according to I^2 with the following thresholds: (a) 0–40%: might not be important; (b) 30–60%: may represent moderate heterogeneity; (c) 50–90%: may represent substantial heterogeneity; and (d) 75–100%: considerable heterogeneity. We used the DerSimonian and Laird random-effects model [22] which accounts for within-trial and between-trial variability.

Statistical analyses were performed with Review Manager (version 5.3) and with R Software (version 4.0.0). We explored potential sources of heterogeneity with pre-specified subgroup analyses namely: (1) risk of bias; (2) type of comparator; (3) intervention in monotherapy or combination; (4) disease stage; (5) proportions of early and intermediate HCC (BCLC stages A and B); (6) proportions of advanced HCC (BCLC stage C); (7) portal vein invasion or tumor thrombosis; and (8) type of Y90 microsphere. We planned to visually assess publication bias using funnel plots, but the "rule of thumb" to include of a minimum of 10 trials was not fulfilled for any of the outcomes.

Results


Of the 1,604 citations that were identified through our search strategy, eight RCTs [23–30] (1,439 patients, including one unpublished trial [26], for which study results were obtained via clinicaltrials.gov) met inclusion criteria (κ 0.93 [95% CI 0.78–1]). Flow chart and reasons for exclusion are presented in Fig 1. All trials compared Y90-TARE to another intervention including four trials (165 patients) comparing Y90-TARE to TACE [24,25,27,29], three trials (850 patients) comparing Y90-TARE to sorafenib [23,26,30], and one trial (424 patients) comparing the combination of Y90-TARE + sorafenib to sorafenib alone [28] (Table 1). Male patients represented 86% of the overall population. Of the included trials, 59%, 35.5%, and 5.5% of the patients had respectively advanced HCC, intermediate HCC, and early HCC. Y90-TARE was performed with resin microsphere in five trials [23,25,27,28,30] and glass microsphere in three trials [24,26,29].


Risk of bias

For our primary outcome (OS), four trials were considered at low risk of bias (Fig 2, Table A in S1 Appendix) [23,24,29,30]. For two trials [25,27], the analytical plan was not described a priori and were therefore attributed as some concerns for risk bias. Two trials were considered at high risk of bias [26,28]. In one trial [26], seven participants were withdrawn after randomisation in the sora-fenib group compared to one in the Y90-TARE which this trial also had missing outcome data. In the other trial [28], 47.2% of the participants did not receive the intervention they were allocated to or sustained major protocol deviations. A summary of the risk of bias assessments for the secondary outcomes is available in the online supplementary materials (S1 Appendix).

Quality of the evidence

According to the GRADE framework, we rated the quality of evidence for overall survival (Table A in S2 Appendix). We rated the quality of evidence for the secondary outcomes as very low except for grade \geq 3 adverse event as low (S2 Appendix).

https://doi.org/10.1371/journal.pone.0247958.g001

Primary outcome

The OS was reported in all eight trials. The corresponding HR was reported in three trials [23,28,30], obtained through correspondence with the author in one trial [24], and extrapolated from reconstructed approximate individual patient data from published Kaplan-Meier curves in two trials [27,29]. We could not use the data from two trials in our analyses as they either solely provided the median survival [26] or the survival rates at six and 12 months [25], respectively. Y90-TARE was not associated with differences in overall survival (HR 0.99 [95% CI 0.81–1.21], six trials, I² = 77.6%, Fig 3) compared to standard of care. Our results were comparable in our subgroup analyses (Table 2).

Secondary outcomes

Disease control rate. Disease control rate was reported in five trials [23,25,26,29,30] and showed no difference between interventions (S1 Fig, Table C in S3 Appendix).

Grade \geq **3 adverse events and incidence of gastro-intestinal ulcers.** The number of patients who developed at least one grade \geq 3 adverse event were reported in seven trials

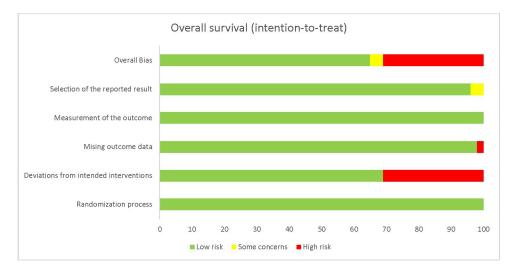
	Number of	Proportion of	BCLC stage n ^a (%)			Type of	Outcomes reported	
	patients	males (%)	Α	В	С	microsphere		
Trials comparing Y90-T.	ARE to TACE							
Dhondt 2020 (TRACE trial) [24]	68	59/68 (87%)	9 (13%)	59 (87%)	0	Glass	Primary: TTP	
							Secondary: TLP, OS, overall response to therapy, toxicities and AEs, QoL, treatment-related costs	
Kolligs 2015 (SIRTACE trial) [25]	28	24/28 (86%)	9 (32%)	13 (46.5%)	6 (21.5%)	Resin	Primary: HRQoL	
							Secondary: PFS, survival, best objective tumor response, AEs	
Pitton 2015 [27]	24	18/24 (75%)	1 (4%)	23 (96%)	0	Resin	Primary: PFS	
							Secondary: local tumor response, OS, TTP, nTTP	
Salem 2016	45	33/45 (73%)	35 (78%)	10 (22%)	0	Glass	Primary: TTP	
(PREMIERE trial) [29]							Secondary: OS, rate of response (DCR), and safety (AEs)	
Trials comparing Y90-T	ARE to sorafe	nib						
Chow 2018 (SIRveNIB	360	298/360 (83%)	1 (0%)	190 (53%)	168 (47%)	Resin	Primary: OS	
trial) [<u>23</u>]							Secondary: TRR, DCR, PFS, TTP, AEs, HRQoL	
Mazzaferro 2019 (YES-P trial) [26]	31	25/31 (81%)	0	0	31 (100%)	Glass	Primary: OS	
							Secondary: TTP, time to worsening portal vein thrombosis, time to symptomatic progression, tumor response, change from baseline in QoL, time to deterioration QoL, TEAE	
Vilgrain 2017 (SARAH trial) [<u>30]</u>	459	414/459 (90%)	21 (4.5%)	127 (27.5%)	311 (68%)	Resin	Primary: OS	
							Secondary: PFS, progression at any site, progression in the liver as the first event, tumor response, disease control, AEs, QoL	
Trials comparing Y90-T	ARE + sorafen	ib to sorafenib al	one					
Ricke 2019 (SORAMIC	424	358/419 ^b (92%)	9 (2%)	124	284	Resin	Primary: OS	
trial-palliative cohort) [28]				(29%)	(67%)		Secondary: AEs	

Table 1. Characteristics of included studies.

OS = overall survival. TRR = tumor response rate. DCR = disease control rate. PFS = progression-free survival. TTP = time to (tumor) progression. AEs = adverse events. HRQoL = health related quality of life. QoL = quality of life. TEAE = treatment emergent adverse events. TLP = time to local progression. nTTP = time to non-treatable progression.

^aIn the BCLC category, seven participants from Table 1 are missing from the SORAMIC trial (Ricke 2019) and one participant from Table 1 is missing from the SIRveNIB trial, due to unknown status.

^bFive participants had unknown status of gender from the SORAMIC trial (Ricke 2019).


https://doi.org/10.1371/journal.pone.0247958.t001

(1,245 patients) [23–26,28–30]. Y90-TARE was associated with significantly lower rates of grade \geq 3 adverse event compared to standard treatment (RR 0.64 [95% CI 0.45–0.92], seven trials, I² = 66%, S1 Fig, Table D in S3 Appendix). This effect was associated with the use of sorafenib as a comparator, the absence of an active co-intervention and a balanced proportion of the different BCLC stages. No significant difference in the incidence of gastro-intestinal ulcers was noted (four trials [23,25,28,30]) (S1 Fig, Table E in S3 Appendix).

A summary of findings table is available online (S1 Table).

Discussion

In our systematic review with meta-analyses, we observed that Y90-TARE yields no effect in the overall survival, progression-free survival, time to progression, disease control rate and incidence of gastro-intestinal ulcers when compared to standard of care treatment in non-surgical patients with HCC. Our results were consistent in all other subgroup analyses, except for the use of glass microsphere that seemed to improve the time to progression. We observed that

Fig 2. Risk of bias of the primary outcome, overall survival. Weighted graph showing the risk of bias according to each domain. Green = low risk. Yellow = some concerns. Red = high risk.

https://doi.org/10.1371/journal.pone.0247958.g002

grade \geq 3 adverse events were significantly less frequent with Y90-TARE compared to the standard of care. However, subgroup analyses showed that this effect was explained by the use of sorafenib as a comparator, the use of an active co-intervention and a balanced proportion of the different BCLC stages.

The results of our systematic review for the overall survival are aligned with those of five systematic reviews showing no effect with the use of Y90-TARE [8,31–34], but are in contradiction with three other systematic reviews [9,35,36]. Our work is however more exhaustive and not limited to one specific comparator in the context of absence of a unique standard of care. Previous systematic reviews suggesting a survival benefit with the use of Y90-TARE [9,35,36] had major limitations in their design including the consideration of non-randomised controlled studies. Differing from other systematic reviews [8,31–33], our work examined both progression-free survival and time to progression, which are outcomes used as primary endpoints in some randomized controlled trials in HCC. Our results suggesting that the use of glass microsphere Y90-TARE may possibly be associated with longer time to progression as compared to standard of care treatment differ from prior meta-analyses [8,9,31–36]. Previous studies comparing the resin and glass microsphere to deliver the treatment showed conflicting results [37,38]. Our observation was derived from a subgroup analysis of only two trials and we cannot exclude a type 1 error.

Strength and limitations

Our study has several strengths. Our study population is exhaustive and, as compared to other systematic reviews, we expressed time-to-event outcomes using HRs [39]. Median survival times was the most reported measurement of the included trials in our meta-analysis, but is not an optimal pooled estimate for survival data [40]. However, underreporting of relevant information concerning survival analysis, notably the HR, was observed in retrieved trials in our systematic review [41]. We managed this limitation in two of the included trials [27,29] by reconstructing individual patient data from published Kaplan-Meier curves using a proposed algorithm [21], enabling us to present a cumulative pooled HRs of time-to-event outcomes, which represents the most up-to-date and relevant effect estimates. Also, the comprehensiveness of the search strategy renders unlikely the omission of pertinent trials.

	g[Hazard Ratio]	SE	Total	reatment Total Weight	Hazard Ratio IV, Random, 95% CI	Hazard Ratio IV, Random, 95% Cl
A. Overall surviv	al					
1.1.1 Fully reported data						_
CHOW2018	0.1133	0.1127	182	178 27.0%	1.12 [0.90, 1.40]	_ +-
DHONDT2020	-0.7993	0.292	32	36 9.2%	0.45 [0.25, 0.80]	
PITTON2015	-0.1576	0.5097	12	12 3.6%	0.85 [0.31, 2.32]	
RICKE2019 SALEM2016		0.1107	216 24	208 27.3%	1.01 [0.81, 1.25]	
VILGRAIN2017	-0.05537 (0.1398	0.1034	237	21 4.4%	0.95 [0.39, 2.30]	-
Subtotal (95% Cl)	0.1350	0.1034	703	677 100.0%	0.99 [0.81, 1.21]	- 4
Heterogeneity: Tau ² = 0.0	3: Chl ² = 9.88. df	= 5 (P = 0)	.08): 1 ² = 49%	0 100.0/1	0.00 [0.01] 1.11]	- T
Test for overall effect: Z =						-
1.1.2 Non-/partially rep						-
KOLLIGS2015	0	0	13	15	Not estimable	-
MAZZAFERRO2019 Subtotal (95% CI)	0	0	28	16 31	Not estimable Not estimable	-
Heterogeneity: Not applica	able		28	31	NOLESUMADIE	-
Test for overall effect: Not	t applicable					-
reaction overall effect. No.	c appreable					
Total (95% CI)			731	708 100.0%	0.99 [0.81, 1.21]	•
Heterogeneity: Tau ² = 0.0)3; Chl ² = 9.88, df	= 5 (P = 0.	.08); I ² = 49%			-
Test for overall effect: Z =						
Test for subgroup different	nces: Not applicab	le				
D. Drogramian f.						
B. Progression-fro	ee survival					
3.1.1 Fully reported data						
CHOW2018	-0.1165	0.1153	182	178 40.9%	0.89 [0.71, 1.12]	
PITTON2015	-0.2093		12	12 3.0%	0.81 [0.35, 1.86]	- <u> </u>
VILGRAIN2017	0.0296		237	222 56.1%	1.03 [0.85, 1.25]	
Subtotal (95% CI)			431	412 100.0%	0.96 [0.83, 1.11]	- 🔶
Heterogeneity: Tau ² = 0.0	00: Chi ² = 1.10. df	= 2 (P = 0)	$(.58): ^2 = 0\%$			-
Test for overall effect: Z =	051 (0 0 61)					-
rest for overall effect: Z =	= 0.51 (P = 0.61)					
						_
KOLLIGS2015	orted data 0	0	13	15	Not estimable	
KOLLIGS2015 Subtotal (95% CI)	0	0	13 13	15 15	Not estimable Not estimable	-
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic	0 able	0				-
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic	0 able	0				
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No	0 able	0	13	15	Not estimable	-
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI)	0 able t applicable		13			
KOLLICS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0	0 able t applicable 20; Chi ² = 1.10, df		13	15	Not estimable	- - -
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	0 able t applicable 20; Chi ² = 1.10, df = 0.51 (P = 0.61)	F = 2 (P = 0	13	15	Not estimable	
KOLLICS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0	0 able t applicable 20; Chi ² = 1.10, df = 0.51 (P = 0.61)	F = 2 (P = 0	13	15	Not estimable	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	0 able t applicable 20; Chi ² = 1.10, df = 0.51 (P = 0.61)	F = 2 (P = 0	13	15	Not estimable	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	0 able t applicable 20; Chi ² = 1.10, df = 0.51 (P = 0.61)	F = 2 (P = 0	13	15	Not estimable	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	0 able t applicable 20; Chi ² = 1.10, df = 0.51 (P = 0.61)	F = 2 (P = 0	13	15	Not estimable	
KOLLICS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: 2 Test for subgroup differe	0 able t applicable 20; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicab	F = 2 (P = 0	13	15	Not estimable	
KOLLICS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: 2 Test for subgroup differe	0 able t applicable 20; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicab	F = 2 (P = 0	13	15	Not estimable	
KOLLICS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: 2 Test for subgroup differe	0 able t applicable 20; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicab	F = 2 (P = 0	13	15	Not estimable	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: 2 Test for overall effect: 2 Test for subgroup differe C. Time to progre 2.1.1 Fully reported data	0 able t applicable 20; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicat	F = 2 (P = 0	13	15	Not estimable	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: 2 Test for overall effect: 2 Test for subgroup differe C. Time to progre 2.1.1 Fully reported data	0 able t applicable >00; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicab	f = 2 (P = 0 ole	13 444 .58); I ² = 0%	15 427 100.0%	Not estimable	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z - Test for overall effect: Z - Test for subgroup differe C. Time to progree 2.1.1 Fully reported data CHOW2018	0 able t applicable)0; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicat :sssion -0.12783371 (F = 2 (P = 0 ole 0.1153	13 444 .58); i ² = 0% 182	15 427 100.0% 178 33.7%	Not estimable	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z - Test for subgroup differe C. Time to progree 2.1.1 Fully reported data CHOW2018 DHONDT2020	0 able t applicable 00; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicat :ssion -0.12763371 -1.30481312	f = 2 (P = 0 ble 0.1153 0.369	13 444 .58); I ² = 0%	15 427 100.0% 178 33.7% 36 28.2%	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56]	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z - Test for overall effect: Z - Test for subgroup differe C. Time to progree 2.1.1 Fully reported data CHOW2018 DHONDT2020	0 able t applicable 00; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicab sssion -1.30481312 0.3038	f = 2 (P = 0 le 0.1153 0.369 0.648	13 444 .58); I ² = 0% 182 32 12	15 427 100.0% 178 33.7% 36 28.2% 12 20.5%	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83]	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z - Test for subgroup differe C. Time to progree 2.1.1 Fully reported data CHOW2018 DHONDT2020 PITTON2015 SALEM2016	0 able t applicable 00; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicat :ssion -0.12763371 -1.30481312	f = 2 (P = 0 le 0.1153 0.369 0.648	13 444 .58); I ⁴ = 0% 182 32	15 427 100.0% 178 33.7% 36 28.2%	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83] 0.12 [0.03, 0.55]	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² – 0.6 Test for overall effect: 2 – Test for subgroup differe C. Time to progree 2.1.1 Fully reported data CHOW2018 DHONDT2020 PITTON2015 SALEM2016 Subtotal (95% CI)	0 able t applicable >00; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicab :sssion -0.12783371 (-1.30481312 0.3058 -2.1037 (F = 2 (P = 0 ble 0.1153 0.369 0.648 0.7721	13 444 .58); I ² = 0% 182 32 12 24 250	15 427 100.0% 178 33.7% 36 28.2% 12 20.5% 21 17.6%	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83]	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z - Test for subgroup differe C. Time to progre 2.1.1 Fully reported data CHOW2018 DHONDT2020 PITTON2015 SALEM2016 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0	0 able t applicable 00; Chl ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicat SSION -0.12783371 (-1.30481312 0.3058 -2.1037 (52; Chl ² = 15.79, c	F = 2 (P = 0 ble 0.1153 0.369 0.648 0.7721	13 444 .58); I ² = 0% 182 32 12 24 250	15 427 100.0% 178 33.7% 36 28.2% 12 20.5% 21 17.6%	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83] 0.12 [0.03, 0.55]	
KOLLICS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z - Test for subgroup differe C. Time to progre 2.1.1 Fully reported data CHOW2018 DHONDT2020 PITTON2015 SALEM2016 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	0 able t applicable 00; Chl ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicab SSSION -0.12783371 (-1.30481312 0.3058 -2.1037 (52; Chl ² = 15.79, c -1.55 (P = 0.12)	F = 2 (P = 0 ble 0.1153 0.369 0.648 0.7721	13 444 .58); I ² = 0% 182 32 12 24 250	15 427 100.0% 178 33.7% 36 28.2% 12 20.5% 21 17.6%	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83] 0.12 [0.03, 0.55]	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z - Test for subgroup differe C. Time to progree 2.1.1 Fully reported data CHOW2018 DHONDT2020 PITTON2015 Subtotal (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z = 2.1.2 Non-/partially rep	0 able t applicable 00; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicat ::SSION -0.12783371 (0 -0.3058 -2.1037 (1 :2; Chi ² = 15.79, c -1.55 (P = 0.12) orted data	F = 2 (P = 0 De 0.1153 0.369 0.648 0.7721 ff = 3 (P =	13 444 1.58); I ² = 0% 182 32 12 24 250 0.001); I ² = 81%	15 427 100.0% 178 33.7% 36 28.2% 12 20.5% 21 17.6% 247 100.0%	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83] 0.12 [0.03, 0.55]	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z - Test for subgroup differe C. Time to progree 2.1.1 Fully reported data CHOW2018 DHONDT2020 PITTON2015 Subtotal (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z = 2.1.2 Non-/partially rep	0 able t applicable 00; Chl ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicab SSSION -0.12783371 (-1.30481312 0.3058 -2.1037 (52; Chl ² = 15.79, c -1.55 (P = 0.12)	F = 2 (P = 0 ble 0.1153 0.369 0.648 0.7721	13 444 .58); I ² = 0% 182 32 12 24 250	15 427 100.0% 178 33.7% 36 28.2% 12 20.5% 21 17.6%	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83] 0.12 [0.03, 0.55]	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z - Test for subgroup differe C. Time to progre 2.1.1 Fully reported data ChOW2018 DHONDT2020 PHTTON2015 SALEM2016 Subtotal (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z = 2.1.2 Non-/partially rep MaZZAFER02019	0 able t applicable 00; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicat ::SSION -0.12783371 (0 -0.3058 -2.1037 (1 :2; Chi ² = 15.79, c -1.55 (P = 0.12) orted data	F = 2 (P = 0 De 0.1153 0.369 0.648 0.7721 ff = 3 (P =	13 444 1.58); I ² = 0% 182 32 12 24 250 0.001); I ² = 81%	15 427 100.0% 178 33.7% 36 28.2% 12 20.5% 21 17.6% 247 100.0%	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83] 0.12 [0.03, 0.55] 0.49 [0.20, 1.21]	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z - Test for subgroup differe C. Time to progre 2.1.1 Fully reported data CHOW2018 DHONDT2020 PITTON2015 Subtotal (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = 2.1.2 Non-/partially rep MaZZAFERRO2019 Subtotal (95% CI)	0 able t applicable 00; Chl ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicat SSION -0.12783371 (1) -0.3058 -0.3058 -2.1037 -1.30481312 0.3058 -2.1037 -1.55 (P = 0.12) orted data 0	F = 2 (P = 0 De 0.1153 0.369 0.648 0.7721 ff = 3 (P =	13 444 .58); I ² = 0% 182 12 24 250 0.001); I ² = 81%	15 427 100.0% 178 33.7% 36 28.2% 12 20.5% 21 17.6% 247 100.0%	Not estimable	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z - Test for subgroup differe C. Time to progree 2.11 Fully reported data CHOW2018 DHONDT2020 PHTON2020 PHTON2015 SALEM2016 Subtotal (95% CI) Heterogeneity: Not applic Netroscore (Not State) Subtotal (95% CI) Subtotal (95%	0 able t applicable 00; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicab (SSION -1.30481312 0.3058 -2.1037 (1.55 (P = 0.12) orted data 0 0 able	F = 2 (P = 0 De 0.1153 0.369 0.648 0.7721 ff = 3 (P =	13 444 .58); I ² = 0% 182 12 24 250 0.001); I ² = 81%	15 427 100.0% 178 33.7% 36 28.2% 12 20.5% 21 17.6% 247 100.0%	Not estimable	
KOLLICS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z - Test for subgroup differe C. Time to progree C. Time to progr	0 able t applicable 00; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicab (SSION -1.30481312 0.3058 -2.1037 (1.55 (P = 0.12) orted data 0 0 able	F = 2 (P = 0 De 0.1153 0.369 0.648 0.7721 ff = 3 (P =	13 444 1.58); I ² = 0% 182 32 12 24 250 0.001); I ² = 81% 15 15	15 427 100.0% 427 100.0% 178 33.7% 36 28.2% 21 17.6% 247 100.0% 16 16	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83] 0.12 [0.03, 0.55] 0.49 [0.20, 1.21] Not estimable Not estimable	
KOLLICS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z - Test for subgroup differe C. Time to progree C. Time to progr	0 able t applicable 00; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicab (SSION -1.30481312 0.3058 -2.1037 (1.55 (P = 0.12) orted data 0 0 able	F = 2 (P = 0 De 0.1153 0.369 0.648 0.7721 ff = 3 (P =	13 444 .58); I ² = 0% 182 12 24 250 0.001); I ² = 81%	15 427 100.0% 178 33.7% 36 28.2% 12 20.5% 21 17.6% 247 100.0%	Not estimable	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z - Test for subgroup differe C. Time to progree 2.1.1 Fully reported data CHOW2018 DHONDT2020 PITTON2015 Subtotal (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: 2 = 2.1.2 Non - / partially rep MAZ2AFERR02019 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.6	0 able t applicable 00; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicab ::SSION -0.12783371 (0.3058 -2.1037 (0.3058 -2.1037 (0.3058 -2.1037 (0.3058 -2.1037 (0.3058 -2.1037 (0.3058) -1.55 (P = 0.12) orted data 0 able t applicable :2: Chi ² = 15.79, c	f = 2 (P = 0 le 0.1153 0.369 0.648 0.7721 ff = 3 (P = 0	13 444 .588; I ⁴ = 0% 182 32 12 24 250 0.001); I ² = 81% 15 15 15	15 427 100.0% 427 100.0% 178 33.7% 36 28.2% 21 17.6% 247 100.0% 16 16	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83] 0.12 [0.03, 0.55] 0.49 [0.20, 1.21] Not estimable Not estimable	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: Z - Test for subgroup differe C. Time to progree 2.1.1 Fully reported data CHOW2018 DHONDT2020 PITTON2015 Subtotal (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: 2 = 2.1.2 Non - / partially rep MAZ2AFERR02019 Subtotal (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.6	0 able t applicable 00; Chi ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicab ::SSION -0.12783371 (0.3058 -2.1037 (0.3058 -2.1037 (0.3058 -2.1037 (0.3058 -2.1037 (0.3058 -2.1037 (0.3058) -1.55 (P = 0.12) orted data 0 able t applicable :2: Chi ² = 15.79, c	f = 2 (P = 0 le 0.1153 0.369 0.648 0.7721 ff = 3 (P = 0	13 444 .588; I ⁴ = 0% 182 32 12 24 250 0.001); I ² = 81% 15 15 15	15 427 100.0% 427 100.0% 178 33.7% 36 28.2% 21 17.6% 247 100.0% 16 16	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83] 0.12 [0.03, 0.55] 0.49 [0.20, 1.21] Not estimable Not estimable	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Test for subgroup differe C. Time to progree 2.1.1 Fully reported date CHOW2018 DHONDT2020 PITTON2015 SALEM2016 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Test for overall effect: No Total (95% CI)	0 able able t applicable 00; Chl ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicable ::sSion -0.12783371 (1) -0.12783371 (1) -0.12783371 (1) -0.12783371 (1) -1.30481312 0.3058 -2.1037 (1) -2.1037 (f = 2 (P = 0 ole 0.1153 0.369 0.369 0.3648 0.7721 ff = 3 (P = 0 4f = 3 (P =	13 444 .588; I ⁴ = 0% 182 32 12 24 250 0.001); I ² = 81% 15 15 15	15 427 100.0% 427 100.0% 178 33.7% 36 28.2% 21 17.6% 247 100.0% 16 16	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83] 0.12 [0.03, 0.55] 0.49 [0.20, 1.21] Not estimable Not estimable	
C. Time to progree C. Time to progree 2.1.1 Fully reported data CHOW2018 DHOND72020 PITTON2015 SALEM2016 Subtotal (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: Not Application of the test of t	0 able able t applicable 00; Chl ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicable ::sSion -0.12783371 (1) -0.12783371 (1) -0.12783371 (1) -0.12783371 (1) -1.30481312 0.3058 -2.1037 (1) -2.1037 (f = 2 (P = 0 ole 0.1153 0.369 0.369 0.3648 0.7721 ff = 3 (P = 0 4f = 3 (P =	13 444 .588; I ⁴ = 0% 182 32 12 24 250 0.001); I ² = 81% 15 15 15	15 427 100.0% 427 100.0% 178 33.7% 36 28.2% 21 17.6% 247 100.0% 16 16	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83] 0.12 [0.03, 0.55] 0.49 [0.20, 1.21] Not estimable Not estimable	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z - Test for overall effect: Z Test for overall effect: Z C. Time to progree 2.1.1 Fully reported data CHOW2018 DHONDT2020 PITTON2015 SALEM2016 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: Z 2.1.2 for overall effect: Not Total (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: 0.7 Total (95% CI) Heterogeneity: Tau ² = 0.7 Test for overall effect: 0.7 Total (95% CI) Heterogeneity: Tau ² = 0.7 Test for overall effect:	0 able able t applicable 00; Chl ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicable ::sSion -0.12783371 (1) -0.12783371 (1) -0.12783371 (1) -0.12783371 (1) -1.30481312 0.3058 -2.1037 (1) -2.1037 (f = 2 (P = 0 ole 0.1153 0.369 0.369 0.3648 0.7721 ff = 3 (P = 0 1f = 3 (P =	13 444 .588; I ⁴ = 0% 182 32 12 24 250 0.001); I ² = 81% 15 15 15	15 427 100.0% 427 100.0% 178 33.7% 36 28.2% 21 17.6% 247 100.0% 16 16	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83] 0.12 [0.03, 0.55] 0.49 [0.20, 1.21] Not estimable Not estimable	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z - Test for subgroup differe C. Time to progre 2.1.1 Fully reported data ChOW2018 DHONDT2020 PHTTON2015 SALEM2016 Subtotal (95% CI) Heterogeneity: Nat applic Test for overall effect: Z - 2.1.2 Non-/partially rep MaZZAFERG2019 Subtotal (95% CI) Heterogeneity: Nat applic Test for overall effect: No Total (95% CI) Heterogeneily: Tau ² = 0.6 Test for overall effect: 0.7 Test for overall effect: 0.7	0 able able t applicable 00; Chl ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicable ::sSion -0.12783371 (1) -0.12783371 (1) -0.12783371 (1) -0.12783371 (1) -1.30481312 0.3058 -2.1037 (1) -2.1037 (f = 2 (P = 0 ole 0.1153 0.369 0.369 0.3648 0.7721 ff = 3 (P = 0 1f = 3 (P =	13 444 .588; I ⁴ = 0% 182 32 12 24 250 0.001); I ² = 81% 15 15 15	15 427 100.0% 427 100.0% 178 33.7% 36 28.2% 21 17.6% 247 100.0% 16 16	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83] 0.12 [0.03, 0.55] 0.49 [0.20, 1.21] Not estimable Not estimable	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z - Test for subgroup differe C. Time to progre 2.1.1 Fully reported data ChOW2018 DHONDT2020 PHTTON2015 SALEM2016 Subtotal (95% CI) Heterogeneity: Nat applic Test for overall effect: Z - 2.1.2 Non-/partially rep MaZZAFERG2019 Subtotal (95% CI) Heterogeneity: Nat applic Test for overall effect: No Total (95% CI) Heterogeneily: Tau ² = 0.6 Test for overall effect: 0.7 Test for overall effect: 0.7	0 able able t applicable 00; Chl ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicable ::sSion -0.12783371 (1) -0.12783371 (1) -0.12783371 (1) -0.12783371 (1) -1.30481312 0.3058 -2.1037 (1) -2.1037 (f = 2 (P = 0 ole 0.1153 0.369 0.369 0.3648 0.7721 ff = 3 (P = 0 1f = 3 (P =	13 444 .588; I ⁴ = 0% 182 32 12 24 250 0.001); I ² = 81% 15 15 15	15 427 100.0% 427 100.0% 178 33.7% 36 28.2% 21 17.6% 247 100.0% 16 16	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83] 0.12 [0.03, 0.55] 0.49 [0.20, 1.21] Not estimable Not estimable	
KOLLIGS2015 Subtotal (95% CI) Heterogeneity: Not applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z - Test for subgroup differe C. Time to progre 2.1.1 Fully reported data ChOW2018 DHONDT2020 PITTON2020 PITTON2015 SALEM2016 Subtotal (95% CI) Heterogeneity: Nat applic Test for overall effect: Z - 2.1.2 Non-/partially rep MaZZAFERR2019 Subtotal (95% CI) Heterogeneity: Nat applic Test for overall effect: No Total (95% CI) Heterogeneity: Tau ² = 0.6 Test for overall effect: 0.7 Total (95% CI) Heterogeneity: Tau ² = 0.7 Test for overall effect: No	0 able able t applicable 00; Chl ² = 1.10, df = 0.51 (P = 0.61) nces: Not applicable ::sSion -0.12783371 (1) -0.12783371 (1) -0.12783371 (1) -0.12783371 (1) -1.30481312 0.3058 -2.1037 (1) -2.1037 (f = 2 (P = 0 ole 0.1153 0.369 0.369 0.3648 0.7721 ff = 3 (P = 0 1f = 3 (P =	13 444 .588; I ⁴ = 0% 182 32 12 24 250 0.001); I ² = 81% 15 15 15	15 427 100.0% 427 100.0% 178 33.7% 36 28.2% 21 17.6% 247 100.0% 16 16	Not estimable 0.96 [0.83, 1.11] 0.88 [0.70, 1.10] 0.27 [0.13, 0.56] 1.36 [0.38, 4.83] 0.12 [0.03, 0.55] 0.49 [0.20, 1.21] Not estimable Not estimable	0.1 0.2 0.5 1 2 5 Favours Y90-TARE Favours Stand

Fig 3. Forest plot of time-to-event outcomes. Cumulative (log)HR estimates with their 95% confidence intervals in the random-effects model for (A) overall survival, (B) progression-free survival, and (C) time to progression.

https://doi.org/10.1371/journal.pone.0247958.g003

Our systematic review also has limitations. First, despite being more exhaustive than previous work, we included a limited number of trials and most of the largest trials were designed to compare Y90-TARE to sorafenib. Moreover, neither the HR nor a Kaplan-Meier curve were provided in two small trials, precluding the extrapolation of missing data on survival and thus reducing our sample size. Most subgroup analyses were also not very robust considering the limited number of trials. For our primary outcome, two of the trials were considered at high risk of bias and two with some concerns on the risk of bias. In addition, for all secondary outcomes except adverse events, most trials were at high risk of bias or of some concerns. The

	Number of trials ^a]	Population	Random-ef	Heterogeneity	
		Y90-TARE	Standard treatment	Pooled HR	95% CI	I ² (%)
Risk of bias (according	to RoB 2)					
Low	4[23, 24, 29, 30]	475	457	0.95	0.69-1.30	69%
Some concerns	1[27]	12	12	0.85	0.31-2.32	N/A
High	1[28]	216	208	1.01	0.81-1.25	N/A
Type of comparator						
TACE	3[24, 27, 29]	68	69	0.63	0.38-1.04	19%
Sorafenib	3[23, 28, 30]	635	608	1.09	0.97-1.24	0%
Co-treatment						
Systemic	1[28]	216	208	1.01	0.81-1.25	N/A
None	5[23, 24, 27, 29]	487	469	0.95	0.71-1.26	59%
Disease stage						
Mostly BCLC A-B	4[23, 24, 27, 29]	250	247	0.81	0.49-1.35	65%
Mostly BCLC C	2[28, 30]	453	430	1.08	0.93-1.26	0%
Proportion of BCLC st	ages A and B					
<33%	2[28, 30]	453	430	1.08	0.93-1.26	0%
33-66%	1[23]	182	178	1.12	0.90-1.40	N/A
>66%	3[24, 27, 29]	68	69	0.63	0.38-1.04	19%
Proportion of BCLC st	age C					
<33%	3[24, 27, 29]	68	69	0.63	0.38-1.04	19%
33-66%	1[23]	182	178	1.12	0.90-1.40	N/A
>66%	2[28, 30]	453	430	1.08	0.93-1.26	0%
Portal vein invasion or	tumor thrombosis					
Majority	1[30]	237	222	1.15	0.94-1.41	N/A
Minority	2[23, 28]	398	386	1.06	0.91-1.24	0%
None	3[24, 27, 29]	68	69	0.63	0.38-1.04	19%
Type of Y90 microsphe	ere					
Resin	4[23, 27, 28, 30]	647	620	1.09	0.96-1.23	0%
Glass	2[24, 29]	56	57	0.60	0.30-1.23	48%

Table 2. Predefined subgroup analyses for the primary outcome.

 $Y90\text{-}TARE = Yttrium-90 \ transarterial \ radioembolization. \ HR = hazard \ ratio. \ CI = confidence \ interval. \ N/A = not \ applicable.$

^aThe SIRTACE (Kolligs 2015) and YES-P (Mazzaferro 2019) trials had partially reported data and are therefore not included in the effect estimate and subgroup analyses for OS.

https://doi.org/10.1371/journal.pone.0247958.t002

quality of the evidence was thus affected by these important limitations. Also, reporting bias could not be excluded as the few numbers of included RCTs precluded the reliable assessment of the funnel plot. Finally, as combination therapies are increasingly being used in contemporary HCC treatments, our meta-analysis did not aim to evaluate optimal sequencing of therapy.

Conclusion

In non-surgical HCC patients, we did not observe a significant improvement with the use of Y90-TARE on overall survival, progression-free survival, time to progression, disease control rate and gastro-intestinal ulcer rates. Y90-TARE was associated with significantly lower rates of grade \geq 3 adverse events which may be related to the use of sorafenib as a comparator, the absence of an active co-intervention and a balanced proportion of the different BCLC stages. However, the small number of trials and limited sample size may explain this later finding.

Well-designed RCTs evaluating the effect of Y90-TARE compared to standard of care on survival are warranted to better delineate its role in the treatment of non-surgical HCC considering the quality of the current evidence.

Supporting information

S1 Checklist. (DOC)

S1 Fig. Forest plot of the cumulative risk ratio of dichotomous outcomes. (PDF)

S1 Table. Summary of findings. (DOCX)

S1 Appendix. Assessment of the risk of bias of included trials for all outcomes. (DOCX)

S2 Appendix. Quality of evidence according to the GRADE framework. (DOCX)

S3 Appendix. Subgroup analyses of the secondary outcomes. (DOCX)

S1 Text. Full search strategy. (DOCX)

Author Contributions

Conceptualization: Simon Lemieux, Alex Buies, Alexis F. Turgeon, Julie Hallet, François Côté, Steeve Provencher.

Data curation: Simon Lemieux, Alex Buies, Gaétan Daigle, François Côté, Steeve Provencher.

Formal analysis: Simon Lemieux, Alex Buies, Alexis F. Turgeon, Gaétan Daigle, Steeve Provencher.

Investigation: Simon Lemieux, Alex Buies, Alexis F. Turgeon, François Côté.

Methodology: Simon Lemieux, Alex Buies, Alexis F. Turgeon, Julie Hallet, Gaétan Daigle, Steeve Provencher.

Project administration: Simon Lemieux.

Software: Gaétan Daigle.

Supervision: Simon Lemieux, Alex Buies, Alexis F. Turgeon, Julie Hallet, Gaétan Daigle, François Côté, Steeve Provencher.

Validation: Simon Lemieux, Alex Buies, Alexis F. Turgeon, Gaétan Daigle, François Côté, Steeve Provencher.

Visualization: Simon Lemieux, Alex Buies, Alexis F. Turgeon, Steeve Provencher.

Writing - original draft: Simon Lemieux, Alex Buies, Steeve Provencher.

Writing – review & editing: Simon Lemieux, Alex Buies, Alexis F. Turgeon, Julie Hallet, Gaétan Daigle, François Côté, Steeve Provencher.

References

- Global Burden of Disease Liver Cancer C, Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu MA, et al. The Burden of Primary Liver Cancer and Underlying Etiologies From 1990 to 2015 at the Global, Regional, and National Level: Results From the Global Burden of Disease Study 2015. JAMA Oncol. 2017; 3(12):1683–91. Epub 2017/10/07. https://doi.org/10.1001/jamaoncol.2017.3055 PMID: 28983565; PubMed Central PMCID: PMC5824275.
- A new prognostic system for hepatocellular carcinoma: a retrospective study of 435 patients: the Cancer of the Liver Italian Program (CLIP) investigators. Hepatology. 1998; 28(3):751–5. Epub 1998/09/10. https://doi.org/10.1002/hep.510280322 PMID: 9731568.
- Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018; 391(10127):1301–14. Epub 2018/ 01/09. https://doi.org/10.1016/S0140-6736(18)30010-2 PMID: 29307467.
- Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008; 359(4):378–90. Epub 2008/07/25. https://doi.org/10.1056/ NEJMoa0708857 PMID: 18650514.
- Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, doubleblind, placebo-controlled trial. Lancet Oncol. 2009; 10(1):25–34. Epub 2008/12/20. <u>https://doi.org/10.1016/S1470-2045(08)70285-7 PMID: 19095497</u>.
- Gates VL, Marshall KG, Salzig K, Williams M, Lewandowski RJ, Salem R. Outpatient single-session yttrium-90 glass microsphere radioembolization. J Vasc Interv Radiol. 2014; 25(2):266–70. Epub 2013/ 12/18. https://doi.org/10.1016/j.jvir.2013.11.005 PMID: 24332243.
- Salem R, Gabr A, Riaz A, Mora R, Ali R, Abecassis M, et al. Institutional decision to adopt Y90 as primary treatment for hepatocellular carcinoma informed by a 1,000-patient 15-year experience. Hepatology. 2018; 68(4):1429–40. <u>https://doi.org/10.1002/hep.29691</u> WOS:000446431700020. PMID: 29194711
- Lobo L, Yakoub D, Picado O, Ripat C, Pendola F, Sharma R, et al. Unresectable Hepatocellular Carcinoma: Radioembolization Versus Chemoembolization: A Systematic Review and Meta-analysis. Cardiovasc Intervent Radiol. 2016; 39(11):1580–8. Epub 2016/09/03. https://doi.org/10.1007/s00270-016-1426-y PMID: 27586657.
- Kim PH, Choi SH, Kim JH, Park SH. Comparison of Radioembolization and Sorafenib for the Treatment of Hepatocellular Carcinoma with Portal Vein Tumor Thrombosis: A Systematic Review and Meta-Analysis of Safety and Efficacy. Korean J Radiol. 2019; 20(3):385–98. Epub 2019/02/26. https://doi.org/10. 3348/kjr.2018.0496 PMID: 30799569; PubMed Central PMCID: PMC6389804.
- Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology. 2018; 68(2):723–50. Epub 2018/04/07. https://doi.org/10.1002/ hep.29913 PMID: 29624699.
- Vogel A, Cervantes A, Chau I, Daniele B, Llovet J, Meyer T, et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018; 29(Suppl 4): iv238–iv55. Epub 2018/10/05. https://doi.org/10.1093/annonc/mdy308 PMID: 30285213.
- European Association for the Study of the Liver. Electronic address eee, European Association for the Study of the L. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2018; 69(1):182–236. Epub 2018/04/10. https://doi.org/10.1016/j.jhep.2018.03.019 PMID: 29628281.
- Gabr A, Ali R, Mora R, Al Asadi A, Abouchaleh N, Kulik L, et al. 4:03 PM Abstract No. 268 Role of Y90 radioembolization in BCLC D patients. Journal of Vascular and Interventional Radiology. 2018; 29(4): S115–S6. https://doi.org/10.1016/j.jvir.2018.01.299
- Chandler J, Churchill R, Higgins J, Lasserson T, Tovey D. Methodological standards for the conduct of new Cochrane Intervention Reviews. SI: Cochrane Collaboration. 2013.
- Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009; 6(7):e1000100. Epub 2009/07/22. https://doi.org/10. 1371/journal.pmed.1000100 PMID: 19621070; PubMed Central PMCID: PMC2707010.
- National Cancer Institute NIoH. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0 2017 [updated 2017, November 27; cited 2019 October 20]. Available from: https://ctep.cancer.gov/ protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf.
- Kramer MS, Feinstein AR. Clinical biostatistics. LIV. The biostatistics of concordance. Clin Pharmacol Ther. 1981; 29(1):111–23. Epub 1981/01/01. https://doi.org/10.1038/clpt.1981.18 PMID: 7460469.

- Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019; 366:I4898. Epub 2019/08/30. https://doi.org/10. 1136/bmj.I4898 PMID: 31462531.
- Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008; 336(7650):924– 6. Epub 2008/04/26. https://doi.org/10.1136/bmj.39489.470347.AD PMID: <u>18436948</u>; PubMed Central PMCID: PMC2335261.
- Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007; 8:16. Epub 2007/06/09. <u>https://doi.org/10.1186/</u> 1745-6215-8-16 PMID: 17555582; PubMed Central PMCID: PMC1920534.
- Guyot P, Ades AE, Ouwens MJ, Welton NJ. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves. BMC Med Res Methodol. 2012; 12:9. Epub 2012/02/03. https://doi.org/10.1186/1471-2288-12-9 PMID: 22297116; PubMed Central PMCID: PMC3313891.
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986; 7(3):177–88. Epub 1986/09/01. https://doi.org/10.1016/0197-2456(86)90046-2 PMID: 3802833.
- Chow PKH, Gandhi M, Tan SB, Khin MW, Khasbazar A, Ong J, et al. SIRveNIB: selective Internal Radiation Therapy Versus Sorafenib in Asia-Pacific Patients With Hepatocellular Carcinoma. Journal of clinical oncology. 2018; 36(19):1913-21. <u>https://doi.org/10.1200/JCO.2017.76.0892</u> CN-01617222. PMID: 29498924
- 24. Dhondt E, Hermie L, Verhelst X, Lambert B, Defreyne L. 4:21 PM Abstract No. 307 Transarterial radioembolization versus drug-eluting beads chemoembolization for treatment of inoperable early and intermediate hepatocellular carcinoma: interim results of the randomized controlled TRACE trial. Journal of Vascular and Interventional Radiology. 2020; 31(3):S140. https://doi.org/10.1016/j.jvir.2019.12.360
- Kolligs FT, Bilbao JI, Jakobs T, Iñarrairaegui M, Nagel JM, Rodriguez M, et al. Pilot randomized trial of selective internal radiation therapy vs. chemoembolization in unresectable hepatocellular carcinoma. Liver international. 2015; 35(6):1715-21. <u>https://doi.org/10.1111/liv.12750</u> CN-01254812. PMID: 25443863
- Mazzaferro V. Efficacy Evaluation of TheraSphere to Treat Inoperable Liver Cancer With Blockage of the Portal Vein. In: Salem R, editor.: https://ClinicalTrials.gov/show/NCT01887717; 2019.
- Pitton MB, Kloeckner R, Ruckes C, Wirth GM, Eichhorn W, Worns MA, et al. Randomized comparison of selective internal radiotherapy (SIRT) versus drug-eluting bead transarterial chemoembolization (DEB-TACE) for the treatment of hepatocellular carcinoma. Cardiovasc Intervent Radiol. 2015; 38 (2):352–60. Epub 2014/11/07. https://doi.org/10.1007/s00270-014-1012-0 PMID: 25373796; PubMed Central PMCID: PMC4355443.
- Ricke J, Klümpen HJ, Amthauer H, Bargellini I, Bartenstein P, de Toni EN, et al. Impact of combined selective internal radiation therapy and sorafenib on survival in advanced hepatocellular carcinoma. Journal of Hepatology. 2019. https://doi.org/10.1016/j.jhep.2019.08.006 PMID: 31421157
- Salem R, Gordon AC, Mouli S, Hickey R, Kallini J, Gabr A, et al. Y90 Radioembolization Significantly Prolongs Time to Progression Compared With Chemoembolization in Patients With Hepatocellular Carcinoma. Gastroenterology. 2016; 151(6):1155–63.e2. Epub 2016/10/30. https://doi.org/10.1053/j. gastro.2016.08.029 PMID: 27575820; PubMed Central PMCID: PMC5124387.
- Vilgrain V, Bouattour M, Sibert A, Lebtahi R, Ronot M, Pageaux GP, et al. SARAH: a randomised controlled trial comparing efficacy and safety of selective internal radiation therapy (with yttrium-90 microspheres) and sorafenib in patients with locally advanced hepatocellular carcinoma. Journal of hepatology. 2017; 66(1):S85-S6. CN-01469290.
- Venerito M, Pech M, Canbay A, Donghia R, Guerra V, Chatellier G, et al. NEMESIS: Non-inferiority, Individual Patient Meta-analysis of Selective Internal Radiation Therapy with Yttrium-90 Resin Microspheres versus Sorafenib in Advanced Hepatocellular Carcinoma. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 2020. Epub 2020/05/03. <u>https://doi.org/10.2967/jnumed.120</u>. 242933 PMID: 32358087.
- Abdel-Rahman O, Elsayed Z. Yttrium-90 microsphere radioembolisation for unresectable hepatocellular carcinoma. Cochrane Database Syst Rev. 2020; 1:CD011313. Epub 2020/01/25. https://doi.org/10. 1002/14651858.CD011313.pub3 PMID: 31978267; PubMed Central PMCID: PMC6984619.
- 33. Katsanos K, Kitrou P, Spiliopoulos S, Maroulis I, Petsas T, Karnabatidis D. Comparative effectiveness of different transarterial embolization therapies alone or in combination with local ablative or adjuvant systemic treatments for unresectable hepatocellular carcinoma: A network meta-analysis of random-ized controlled trials. PLoS One. 2017; 12(9):e0184597. Epub 2017/09/22. https://doi.org/10.1371/journal.pone.0184597 PMID: 28934265; PubMed Central PMCID: PMC5608206.

- Facciorusso A, Serviddio G, Muscatiello N. Transarterial radioembolization vs chemoembolization for hepatocarcinoma patients: A systematic review and meta-analysis. World J Hepatol. 2016; 8(18):770– 8. Epub 2016/07/02. https://doi.org/10.4254/wjh.v8.i18.770 PMID: 27366304; PubMed Central PMCID: PMC4921799.
- Zhang YF, Li YM, Ji H, Zhao X, Lu HW. Transarterial Y90 radioembolization versus chemoembolization for patients with hepatocellular carcinoma: A meta-analysis. Bioscience Trends. 2015; 9(5):289–98. https://doi.org/10.5582/bst.2015.01089 WOS:000369173100004. PMID: 26559021
- 36. Yang Y, Si T. Yttrium-90 transarterial radioembolization versus conventional transarterial chemoembolization for patients with hepatocellular carcinoma: a systematic review and meta-analysis. Cancer biology & medicine. 2018; 15(3):299–310. Epub 2018/09/11. https://doi.org/10.20892/j.issn.2095-3941. 2017.0177 PMID: 30197797; PubMed Central PMCID: PMC6121048.
- Biederman DM, Titano JJ, Tabori NE, Pierobon ES, Alshebeeb K, Schwartz M, et al. Outcomes of Radioembolization in the Treatment of Hepatocellular Carcinoma with Portal Vein Invasion: Resin versus Glass Microspheres. Journal of Vascular and Interventional Radiology. 2016; 27(6):812–21. <u>https://</u> doi.org/10.1016/j.jvir.2016.01.147 PMID: 27062356
- Van Der Gucht A, Jreige M, Denys A, Blanc-Durand P, Boubaker A, Pomoni A, et al. Resin Versus Glass Microspheres for Y-90 Transarterial Radioembolization: Comparing Survival in Unresectable Hepatocellular Carcinoma Using Pretreatment Partition Model Dosimetry. Journal of Nuclear Medicine. 2017; 58(8):1334–40. <u>https://doi.org/10.2967/jnumed.116.184713</u> WOS:000406684600037. PMID: 28082436
- 39. Higgins JPT LT, Deeks JJ (editors). Chapter 6: Choosing effect measures and computing estimates of effect. 2019. In: Cochrane Handbook for Systematic Reviews of Interventions version 60 (updated July 2019) [Internet]. Available from www.training.cochrane.org/handbook: Cochrane.
- Michiels S, Piedbois P, Burdett S, Syz N, Stewart L, Pignon JP. Meta-analysis when only the median survival times are known: a comparison with individual patient data results. Int J Technol Assess Health Care. 2005; 21(1):119–25. Epub 2005/03/02. <u>https://doi.org/10.1017/s0266462305050154</u> PMID: 15736523.
- 41. Mathoulin-Pelissier S, Gourgou-Bourgade S, Bonnetain F, Kramar A. Survival end point reporting in randomized cancer clinical trials: a review of major journals. J Clin Oncol. 2008; 26(22):3721–6. Epub 2008/08/02. https://doi.org/10.1200/JCO.2007.14.1192 PMID: 18669458.