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Abstract

Background: Tyrosine kinase receptors (RTKs) comprise a large family of membrane receptors that regulate various cellular
processes in cell biology of diverse organisms. We previously described an atypical RTK in the platyhelminth parasite
Schistosoma mansoni, composed of an extracellular Venus flytrap module (VFT) linked through a single transmembrane
domain to an intracellular tyrosine kinase domain similar to that of the insulin receptor.

Methods and Findings: Here we show that this receptor is a member of a new family of RTKs found in invertebrates, and
particularly in insects. Sixteen new members of this family, named Venus Kinase Receptor (VKR), were identified in many
insects. Structural and phylogenetic studies performed on VFT and TK domains showed that VKR sequences formed
monophyletic groups, the VFT group being close to that of GABAB receptors and the TK one being close to that of insulin
receptors. We show that a recombinant VKR is able to autophosphorylate on tyrosine residues, and report that it can be
activated by L-arginine. This is in agreement with the high degree of conservation of the alpha amino acid binding residues
found in many amino acid binding VFTs. The presence of high levels of vkr transcripts in larval forms and in female gonads
indicates a putative function of VKR in reproduction and/or development.

Conclusion: The identification of RTKs specific for parasites and insect vectors raises new perspectives for the control of
human parasitic and infectious diseases.
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Introduction

Receptor tyrosine kinases (RTKs) are single-pass membrane

proteins constituted of an extracellular ligand-binding domain and

an intracellular kinase domain [1]. RTK-mediated signals play key

roles in the regulation of various cellular processes, such as the

control of cell growth, differentiation, metabolism, and migration.

In mammals, a large number of RTKs have been identified and

classified into 20 subfamilies that mostly differ by the structural

organization of their ligand recognition domain. These include, for

examples, the epidermal growth factor receptors (EGFRs or

ErbBs), the fibroblast growth factor receptors (FGFRs), the insulin

and the insulin-like growth factor receptors (IR and IGFR), the

platelet-derived growth factor receptors (PDGFRs), the vascular

endothelial growth factor receptors (VEGFRs) and the proto-

oncogene receptor tyrosine kinase ROS [2]. The RTK family is

even more complex when considering invertebrate receptors. For

example Caenorhabditis elegans genome contains 40 RTKs of which

only 13 can be classified in 10 out of the 20 subfamilies of human

RTKs [3]. In addition, several unusual RTKs have been described

in Hydra vulgaris, such as Lemon which is a RTK characterized by

the presence of extracellular immunoglobulin-like repeats [4], or

Sweet Tooth with an extracellular portion containing four C-type

lectin-like domains [5]. In all cases, these receptors function as

oligomers (either constitutive oligomers or ligand-induced oligo-

mers), the activation process involving a precise control of the

relative position of the TK domains, leading to their auto-

phosphorylation and then, their self activation [2].

Recently, we reported the identification and characterization of

an unexpected atypical RTK in the blood-dwelling fluke

platyhelminth Schistosoma mansoni. This receptor is composed of

an extracellular Venus Flytrap module (VFT), usually found in

class C G-protein-coupled receptors such as the c-aminobutyric

acid type B (GABAB) receptor, linked through a single transmem-

brane domain to an intracellular tyrosine kinase similar to that of

the IR [6]. This unusual receptor was called VKR for Venus

Kinase Receptor. VFTs are large domains composed of two lobes

connected via flexible tethers that close around the bound ligand
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similarly to the leaves of the Venus Flytrap carnivorous plant,

Dionaea muscipula, when they catch their preys. VFTs were first

identified as bacterial periplasmic-binding proteins (PBP) involved

in the transport of small molecules, such as amino acids, sugars or

ions [7]. VFTs constitute the binding pocket of different receptor

types such as class C G-protein coupled receptors that are

activated by amino acids (GABA or glutamate), sugar (the sweet

taste receptor) or ions (the calcium sensing receptors), the

ionotropic glutamate receptor iGluR, in which it constitutes a

binding domain for natural allosteric modulators, and the atrial

natriuretic peptide receptors (ANFR) with guanylate cyclase

activity (Fig. 1) [8]. All these receptors function as homo- or

hetero-oligomers, and the VFTs are directly involved in the

oligomeric assembly. They even play an important role in receptor

activation through the control of the general oligomeric organi-

zation of these receptors, mostly by controling the relative position

of the protomers [9–12].

In this work, we characterized a new family of VKR proteins

mainly present in insects, and showed that many of these receptors

have specific expression patterns, being predominantly found in

larvae and in the gonads of various organisms. Here, we provide

direct evidence for their TK activity, their oligomeric assembly,

and show that at least members of this new RTK family can be

activated by amino acids such as L-arginine.

Materials and Methods

Biological material
Laboratory strains of Apis mellifera, Tribolium castaneum and

Drosophila pseudoobscura were kindly provided respectively by Prof.

Monique Gauthier, Prof. Eric Haubruge (FUSAGX, Gembloux,

Belgique) and Prof. Geneviève Prevost (Université de Picardie,

Amiens, France). Anopheles gambiae and Strongylocentrotus purpuratus

dissected tissues were respectively furnished by Dr Catherine

Figure 1. VKR are original proteins composed of a VFTM associated to a TK domain. The top panel represents the VFTM found in the
bacterian periplasmic binding proteins (PBP) and in eukaryotic cell surface membrane receptors (iGluR: ionotropic Glutamate Receptor; ANFR: Atrial
Natriuretic Factor Receptor; mGluR: metabotropic Glutamate Receptor; GABABR: metabotropic a-aminobutyric acid Receptor). The bottom panel
represents various RTK (EGFR: Epidermal Growth Factor Receptor; FGFR: Fibroblast Growth Factor Receptor; IR: Insulin Receptor composed of a and b
chains). VFTM: Venus Flytrap Module, GC, Guanylate Cyclase domain; TK, Tyrosine Kinase domain; CRD: Cystein Rich Domain; IgD: Immunoglobulin
Domain; FNIII: FibroNectin III Domain.
doi:10.1371/journal.pone.0005651.g001
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Bourgouin (CEPIA, Institut Pasteur, Paris, France) and Dr Karen

Wilson (Kristineberg Marine Research Station, Fiskebäckskil,

Sweden).

In silico identification and gene structure analyses of VKR
tBLASTn searches were performed on different insect genomes

available on FlyBase [version FB2009_01, released January 23,

2009] (flybase.bio.indiana.edu/) [13] and VectorBase [Last

Updated January 23rd, 2009] (www.vectorbase.org) [14]. A two-

step screening strategy was employed. First, smvkr gene was used as

probe to search for similar genes in insect genomes. Sequences of

candidate VKR genes were identified manually by analysing

genomic DNA flanking open reading frames, using splice donor/

acceptor consensus sequences (GT/AG) and the eukaryotic

genomic gene prediction programs Augustus (http://augustus.

gobics.de/) [15] and GENSCAN (http://genes.mit.edu/GEN-

SCAN.html). Next, we ran secondary tBLASTn searches to

identify additional insect VKR genes using the candidate insect

VKR genes identified in the first step to increase accuracy of

research. Additionally, the sea urchin VKR was found in the sea

urchin genome database (http://urchin.nidcr.nih.gov/blast/index.

html).

All the conserved exon-intron boundaries were identified by

amino acid sequence alignments in a pair-wise manner using

CLUSTALW [16] in BioEdit Sequenced Alignment Editor

version 7.0.9.0 and revised by eye. This exon-intron structure

was confirmed by the cDNA sequence when available. The

domain organization of the putative proteins was deduced using

algorithms from SMART ‘‘Simple Modular Architecture Re-

search Tool’’ (http://smart.embl-heidelberg.de/). Transmem-

brane regions of VKR were confirmed by domain by Kyte and

Doolittle Hydropathy Plot (http://gcat.davidson.edu/rakarnik/

kyte-doolittle.htm) [17] and TMHMM server (http://www.cbs.

dtu.dk/services/TMHMM/) [18].

Comparative analyses of amino acid sequences and
phylogenetic analysis

VFTM and TK domains were delimited by SMART and/or

BLAST structural analysis algorithms. Pair-wise mannered align-

ments were generated with Clustal W program (MEGA 4) [19] and

slightly modified by eye. Phylogenetic reconstruction was performed

using the MEGA 4 neighbour joining method, based on a Poisson

correction substitution model, to generate unrooted best phyloge-

netic tree. Bootstrapping was performed to estimate the confidence

of the branches using 10 000 neighbour joining replicates [20].

Genbank accession numbers of receptors used are in table S1.

cDNA cloning and sequencing of insect VKRs
Total RNA was extracted from whole adult insect tissues using

Nucleospin RNA II kit according to the manufacturer’s procedure

(Clontech Laboratories, Inc.). Reverse transcription was per-

formed for 1 h at 55uC in a total volume of 25 ml with 1 mg total

RNA per sample following the Thermoscript standard procedure

(Invitrogen, Inc). Dpseuvkr, Agvkr, Tcvkr and Amvkr cDNAs

were amplified by PCR using Platinum Hi-Fi Taq DNA

polymerase (Invitrogen) and the following primer sequences

respectively ( Dpseuvkr R 59-GAGTGGGGACATTATACTG-

TATCCATCTGGGGT-39, Dpseuvkr F 59-GCGCTCAGGTA-

TATAGAAATCCGAACTGCG-39, Agvkr R 59-CGGACACCT-

CCGAGGCGGAGGGT-39, Agvkr F 59-GCGTGAAGTGTGC-

GCTGGTGCTGG-39, Tcvkr R 59-AGCGGCCGCGACA-

TTGG AGACAACGTAGCCATTC-39, Tcvkr F 59-AGGATC-

CAGGCATCGTCCACGGGGC-39, Amvkr R 59-GCTATCTA-

GAAAGAATCGACACGTCCTCCGACTTTC-39 and Amvkr F

59-GGACCGGTAAATCGTGATCTCAAATCGATGTCTG-39).

PCR products were purified from agarose gels using the gel

extraction kit JETSORB (Genomed, Inc) and inserted into

pCR2.1-TOPO (Invitrogen). AmVKR cDNA sequence was sub-

cloned into the prk5-ST-HA mammalian expression vector contain-

ing the human mGluR5 signal sequence, SNAP and HA epitope [21]

by an in-frame insertion using Age1 and Xba1 sites. Selected clones

of AmVKR constructs were sequenced by Genoscreen (Lille, France).

Sequences were reviewed by visual inspection with Chromas software

(version 1.45; Technelysium).

Quantitative RT-PCR
vkr transcripts were quantified in different developmental stages

or tissue types of the organisms using the technique of real-time

RT-PCR. Total RNA was extracted using Nucleospin RNA II kit

according to the manufacturer’s procedure (Clontech Laborato-

ries, Inc.) and reverse transcribed using the ThermoscriptTM RT-

PCR System (Invitrogen). cDNAs were used as templates for PCR

amplification using the qPCR Mastermix SYBR Green I sequence

detection system (Eurogentec). VKR specific and internal standard

primers were designed by the primer express program (Applied

Biosystems) and used for amplification in triplicate assays.

Agvkr (GenBankTM accession number EU878397, positions

3386–3404; 3417–3436)

Agactin (GenBankTM accession number CR954256, positions

900–919; 931–950)

Spvkr (GenBankTM accession number BK006716, positions

3568–3587; 3610–3630)

Sptubulin (GenBankTM accession number XM_001177294.1,

positions 599–618; 630–549)

Tcvkr (GenBankTM accession number EU878395, positions

2154–2170; 2184–2205)

Tctubulin (GenBankTM accession number XM_961491.1,

positions 687–706; 718–737)

Amvkr (GenBankTM accession number EU878396, positions

27–49; 105–127)

Amactin (GenBankTM accession number XM_623378.1, posi-

tions 1325–1344; 1405–1425)

For graphical representation of quantitative PCR data, the

delta-delta Ct (DDCt) method [22] was applied.

Site-directed mutagenesis
A dead-kinase AmVKR (AmVKRdk) construct was obtained by

site-directed mutagenesis of the active D1031FG1033 motif into a DNA

inactive motif using the QuickChangeHSite-Directed Mutagenesis

Kit (Stratagene) with the 59-GTGAAGCTTGGAGACaaTGcTAT-

GACGAGGTTG-39 mutated sequence and its reverse complement

(mutated residues are in lowercase italic). Other mutations concerned

the K1043 and F1044 residues next to the potential YY1042 autopho-

sphorylation site of AmVKR by using respectively the 59-CGA-

GAACGATTACTACgAGTTCAATCGAAGAGGTATG-39 (Am-

VKRYYEF) and the 59-GTACGAGAACGATTACTACAAGga-

gAATCGAAGAGGTATGC-39 (AmVKRYYKE) mutated sequences

and their reverse complement. The AmVKRYYEE construct with a

double mutation on K1043 and F1044 residues was obtained by

mutating a selected clone of AmVKRYYEF with the 59-CGAGAAC-

GATTACTACGAGgagAATCGAAGAGGTATG-39 primer.

Cell transfection procedures
Human embryonic kidney 293 (HEK293) cells were cultured in

DMEM-Glutamax (Gibco-BRL) supplemented with 10% fetal calf

serum (FCS). Cells were grown in an incubator at 37uC with

humidified 5% CO2 atmosphere. 46105 cells were cultured in 6-

Venus Kinase Receptor Family
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well plates and transiently transfected using a polyethylenimine

(PEI) method in the presence of 10% FCS according to the

manufacturer’s instructions. Cells were incubated for 24 h in 1 ml

of culture medium with 1 mg of AmVKR or various mutant

plasmid DNA and 3,3 ml of Exgen500 (Fermentas). Recombinant

protein expression was detected by Western blot of transfected cell

lysates or by immunocytochemistry on fixed (not permeabilized)

cells using HA-Tag (6E2) mouse monoclonal antibodies according

to the manufacturer’s instructions (Cell Signaling).

In vitro kinase assays
Kinase activity of native or mutated forms of recombinant

AmVKR was detected on proteins immunoprecipitated from

detergent lysates of HEK 293 cells transfected by AmVKR

constructs for a period of 24 h in the conditions described above.

Briefly, 106 cells were washed twice in PBS pH 7.4, then lysed in

500 ml lysis buffer (50 mM Tris pH 7.8, 150 mM NaCl, 1%

Nonidet P40), placed on ice for 15 min and centrifuged 30 min at

10 000 g. Cell lysates were added with HA-Tag (6E2) antibodies

(1:200 final dilution) and incubated at 4uC overnight together with

5 mg protein G- agarose beads (Sigma). Beads were washed three

times with lysis buffer, twice with kinase buffer (50 mM HEPES,

pH 7.5, 12.5 mM MgCl2, 150 mM NaCl, 1 mM dithiothreitol,

1 mM Na3VO4) containing protease inhibitor cocktail (Sigma,

1:1000 final), then incubated in a total volume of 20 ml kinase buffer

in the presence of 50 mM ATP at 30uC for 30 min. Kinase reactions

were stopped by the addition of 6,6 ml of 46 SDS–PAGE sample

buffer and heated at 70uC for 3 min. Eluates were analysed by SDS-

PAGE in a 8% polyacrylamide gel, blotted onto nitrocellulose

membrane and proteins were detected by Western blot using HA-

Tag (6E2) (1:5000) or P-Tyr-100 (1:2000, Cell Signaling) antibodies.

Anti-mouse rabbit antibodies conjugated to horseradish peroxidase

(Sigma) were used as secondary antibodies and signals were detected

using the SuperSignal West FemtoTM ECL kit (Pierce).

SNAP-tag labeling and time resolved-FRET SNAP-tag
measurements with compatible fluorophores

Twenty-four hours after transfection with AmVKR constructs

(prk5-ST-HA plasmids), HEK293 cells (100,000 per well of a

Greiner CellStar 96-well plate) were washed with DMEM and

10% fetal calf serum (FCS) and labeled with BG (Benzyl Guanine)

conjugated with fluorophore europium cryptate (BG-K) at 4 mM

or acceptor (BG-d2) at 0.5 mM for 1 h at 37uC, in 5% CO2 in

DMEM 10% FCS, as previously described [21]. Cells were

washed four times with Tris-KREBS and we measured the FRET

signal at 665 nm with a 50 ms delay after laser excitation at

337 nm using a Rubystar plate reader (BMG Labtechnologies).

We calculated the FRET intensity as (total signal at 665 nm) –

(background at 665 nm), where the background signal corre-

sponds to cells labeled with the donor fluorophore alone.

Untransfected HEK cells (mock cells) were used as control.

TK and VFTM modelling
A homology model of the AmVKR VFTM of VKR was

generated using the crystal structure of mGlu1 VFT (PDB

accession number 1EWK) as a template. Models were manually

refined with ViTO [23] using the sequence alignment of AmVKR,

AgVKR, TcVKR, SpVKR and SmVKR. Final models were built

using Modeller 7.0 [24] and evaluated using the dynamic

evolutionary trace as implemented in ViTO.

An evolutionary trace analysis of TK domain and VFTM of

VKR was performed after aligning sequences of each domain,

including those from insects and other invertebrates (S. mansoni and

S. purpuratus). The alignment generated with ClustalW was

submitted to the ConSurf website server (http://Consurf.tau.ac.il)

[25]. Conservation scores of each residue were calculated by taking

into account the phylogenetic relationships among the sequences

and the similarity between the amino acids in the alignment.

Results

Identification of a vkr gene family in invertebrates
In order to examine whether SmVKR [6], the atypical RTK

identified in S. mansoni was exclusively present in this organism, or

was common to other species, we searched for possible orthologs

in other animal genomes. A recursive search strategy starting with

the SmVKR sequence and using automatic ortholog annotation in

combination with the TBLASTN algorithm, allowed us to

discover fourteen novel vkr genes in various insect genomes

(Fig. 2). Putative vkr orthologs were identified in several Diptera

including Drosophila (D. ananasse (Genbank Accession

no. BK006724), D. pseudoobscura, D. persimilis (BK006723), D.

willistoni (BK006722), D. mojavensis (BK006720), D. virilis

(BK006719) and D. grimshawi (BK006721)) and in mosquito

(Anopheles gambiae, Aedes aegypti (BK006725) and Culex pipiens

(BK006726)) species, as well as in Coleoptera (Tribolium castaneum),

Hymenoptera (Apis mellifera and Nasonia vitripennis (BK006718)) and

Phthiraptera (Pediculus humanus corporis (BK006717)) organisms.

Surprisingly, whereas vkr genes were present in the genome of

several dipteras, including seven drosophilidae, vkr was not found

in the genome of any species belonging to the melanogaster group

(Fig. 2). Similarly, vkr genes were not detected in any vertebrate

genome, nor in the genome of the nematode Caenorhabditis elegans.

However, a vkr sequence was discovered in the sea urchin

Strongylocentrotus purpuratus [26], indicating that vkr genes were not

specific to protostomia, but can also be found in deuterostomia.

Vkr genes were shown to be highly variable in size. Vkr genes of

drosophilidae ranged from 4 to 5,000 bp whereas those of

mosquitoes measured up to 40,000 bp. In other species, vkr genes

ranged from 6 to 25,000 bp, with the exception of S. purpuratus in

which the size of the gene was remarkably larger (about

60,000 bp). Vkr genes also showed a variable multi-exon structure

in their coding region. Mosquito and fly genes contained a

relatively small number of exons (varying from 4 to 6) whereas

those of S. mansoni and S. purpuratus were shown to be composed of

15 and 21 exons respectively. Intron sizes were highly heteroge-

neous and ranged in size from about 10 to 30,000 bp (as for the

terminal intron of Aavkr). In spite of their variable complexity and

their structural differences, most of the vkr genes were shown to

contain a large C terminal exon coding for half of the VFTM, the

TM hinge region and the entire intracellular part of the protein

including the TK catalytic domain (Fig 3). This observation was

sufficient to rule out the possibility that VFTM and TK sequences

would have been incorrectly fused during contig analysis and

cDNA sequence assemblies and therefore indicated that a new

family of RTK proteins exists associating VFT and TK domains.

To confirm these data obtained from in silico sequence analysis we

cloned and sequenced the vkr transcripts amplified from various

insect species like the adult fly of D. pseudoobscura (EU598264)

(Diptera), the mosquito A. gambiae (EU878397) (Diptera), the red

flour beetle T. castaneum (EU878395) (Coleoptera) and the honey

bee A. mellifera (EU878396) (Hymenoptera).

Phylogenetic analysis and structural conservation of VKR
proteins

Sequencing of the different cloned vkr cDNAs allowed us to

confirm that VFT and TK domains were effectively encoded by a

Venus Kinase Receptor Family
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single transcript, as it was already demonstrated for Smvkr. Further

analysis of full-length cDNA and deduced protein sequences

indicated that VFT and TK domains were separated by an

hydrophobic region rich in isoleucine, leucine and valine, and

identified as the transmembrane (TM) domain by Kyte and

Doolittle Hydropathy Plot and TMHMM analysis (with a

probability value of 1). No other known protein family domain

could be revealed in the various VKR structures.

VFTM sequences of VKR proteins were compared to those of

known VFTM-containing receptors including class C GPCRs

(mGluR, GABABR1/2, pheromone, sweet and umami taste and

CaS receptors), receptors with guanylate cyclase activity (ANFR)

and NMDA ionotropic glutamate receptor (iGluR). With the

exception of pheromone and sweet taste receptors which are found

only in high vertebrates [27], all of these VFTM-containing

receptors have been shown to be present both in invertebrates

(from cnidaria to insects) and vertebrates. Phylogenetic data

obtained from an alignment implying predominantly insect

VFTM sequences, showed that all VKR proteins effectively

formed a distinct monophyletical protein clade (about 80% of

identity between VKR of insects) which is closely related to

GABABR (with a 92% bootstrap score)( Fig 4A). Since the VKR

class apparently arose before the divergence of GABABR1 and

GABABR2 sub-classes, it was not possible to determine whether

VKRs were closer to one than to the other receptor subclass.

Inside of the VKR group, overall sequences were ordered

Figure 2. Genomic structure of vkr genes. Genes were ordered following the FlyBase hierarchical tree that showed insect species for which data
were available. Predicted exons were represented by rectangles drawn to scale for each vkr gene. Genes of seven Drosophila species (D. ananasse, D.
pseudoobscura, D. persimilis, D. wilistoni, D. mojavensis, D. virilis, and D. grimshawi), three mosquitoes (C. pipiens, A. aegypti, A. gambiae), the
coleopteran T. castaneum, two hymenopteran species (A. mellifera and N. vitripennis), the phthirapteran P. humanus corporis, the trematode S.
mansoni and the echinoderm S. purpuratus are presented. Numbers indicate respective gene lengths in kilobases. Not found indicates that the
presence of the vkr gene was not found in the species studied.
doi:10.1371/journal.pone.0005651.g002
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according to an expected phylogeny, respecting the subgroups of

dipteran (flies and mosquitoes) and hymenopteran lineages and

thus reinforcing relationships between VKR sequences.

According to the evolutionary analysis, sequence alignment

(Fig. 4B) indicated that VFTM of VKR proteins exhibit all the

characteristics of GABABR1 homologs with the two lobes I and II,

composing the ligand binding domain, as well as the linkers, L1,

L2 and L3 which interconnect both lobes.

Similarly, phylogenetic relationships between the TK domains

from VKRs and from various RTKs (IR, EGFR, FGFR, and

ROS) showed that all VKR TK domains formed a monophyletic

group close to TK domains of IRs (with a 80% bootstrap score)

(Fig. 5A). Moreover, as obtained for VFTM, the TK domains of

VKRs appeared to be ordered according to an expected

phylogeny, sharing between them high percentages (50 to 80%)

of amino acid identity, probably as the result of the large and

general conservation of TK catalytic domains.

VKR TK domains are divided into eleven subdomains, as

expected for RTKs [28] (Fig. 5B). All the motifs crucial for

tyrosine kinase activity such as the ATP binding site (GXGXXG),

the sequence required for ATP stabilization (VAVKX16E), the

catalytic loop implicated in phosphotransfer (HRDXAXRN), the

Mg2+ binding site (DFG), the consensus PVRWMXPE sequence

considered as a strong indicator of tyrosine substrate specificity

and the two putative juxtaposed autophosphorylation sites (YY)

found in a limited number of RTK, including IR [28], are present

in VKR (Fig. 5B). Surprisingly, no NPXY binding motif for IRS

(Insulin Receptor Substrate) which is essential for signal transduc-

tion of IR members could be detected in any VKR sequences, nor

SH2 (Src-homology 2) binding motifs (YXXM) described in most

of the TK proteins.

All together, these results demonstrate that VKRs are formed by

the original association of two already-known domains which are

the GABABR VFTM for the extracellular part of the receptor and

an IR-like TK domain for its intracellular part.

VKRs are expressed in larvae, and in gonads of adults
We investigated the expression of vkr genes in different insects and

analysed the relative amount of transcripts in various developmental

stages or tissue types by real-time RT-PCR. In the insects T.

castaneum and A. mellifera drone, we observed that vkr transcripts were

much more abundant in larval stages than in others like nympha

and imago (Fig 6A). Further experiments also indicated that

transcription of vkr genes was particularly active in gonad tissues of

sea urchin S. purpuratus and mosquito A. gambiae in which we could

detect respectively 5 and 2.5 fold more transcripts in female genital

organs than in the rest of the body (Fig 6B). These results could

argue for a role of VKR proteins in embryonic and larval

development (as in T. castaneum and A. mellifera) as well as in genital

organs and reproductive activity (in A. gambiae and S. purpuratus).

Figure 3. Conserved structure of receptors composing the VKR family. VFTM, TM and TK domains are respectively shown in orange, green
and purple. Arrows give the positions of conserved introns in the different sequences with their corresponding numbers in each sequence. The
different colors used for arrows indicated variable degrees of conservation for intron positions, as mentioned. The positions of residues delimiting the
different domains are indicated by numbers. Red asterisks correspond to VKR for which cDNAs were cloned and sequenced.
doi:10.1371/journal.pone.0005651.g003
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Figure 4. Phylogenetic analyses and sequence alignment of VFTM from VKR. A-Phylogenetic relationship of VFT protein domains from VKR
and VFT-containing receptors, GABAB receptor (GABABR1 and GABABR2 subunits), the natriuretic peptide receptor (ANFR), the metabotropic
glutamate-like receptors (mGluR, sweet taste, pheromone and CaSR calcium receptors) and the iGluR N-methyl-D-aspartate (NMDA) receptor mostly
from insects and invertebrates. Bootstrap values (10 000 replicates) higher than 80% were shown by a red point on the major internal node only.
Genbank accession numbers of receptors used are in table S1. B- Sequence alignment of VFT protein domains from different insect VKRs (AmVKR,
TcVKR, AgVKR and DpseuVKR for which cDNA was cloned and sequenced) with the extracellular domain of the human GABABR1 (Q9UBS5) and of the
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VKR are functional tyrosine kinase receptors
To predict whether the VKR proteins retained a kinase activity,

we first analysed the conservation of residues of the TK domain

using a sequence alignment of the TK domain of the 16 VKRs

and the crystal structure of the TK domain of the human insulin

receptor (PDB accession number 1irk; [29]). This evolutionary

trace analysis revealed that residues composing the catalytic loop

and the ATP-binding site of kinase domains were highly conserved

and identical among all VKRs (Fig. 7A).

Experimental studies about the functional activity of VKR

proteins have been performed essentially on AmVKR, the

receptor of honey bee. Similarly to different insect receptors

which were already shown to be expressed with efficacy in

epithelial mammalian cells (for example A. mellifera [30] and D.

melanogaster [31] mGluR), we demonstrated that HEK cells

transfected by AmVKR expressed significant amounts of the

protein. Moreover, it was observed that the insertion of human

mGluR5 signal peptide sequence upstream of the AmVKR

sequence optimized significatively the expression of the recombi-

nant protein at the surface of the cells. The substantial labeling of

non-permeabilized transfected cells by anti-HA antibodies (direct-

ed against the N terminal tag) demonstrated the presence at the

cell surface of AmVKR as well as its correct position in the

membrane (Fig 7B). The presence of AmVKR in transfected cells

was further confirmed by Western blot analysis of cell lysates

(results not shown) and of proteins immunoprecipitated from cell

lysates by anti-HA antibodies. Results showed that a 170 kDa

band was consistently and specifically recognized blots by anti-HA

antibodies (Fig. 7C).

In order to analyse kinase activity of recombinant AmVKR, we

developed an in vitro kinase assay in which we measured the ability

of immunoprecipitated VKR to autophosphorylate in kinase

buffered conditions. Results in Fig. 7C indicated that AmVKR

was autophosphorylated at a low level, similarly to various RTKs

in the absence of ligand activation. To verify the specificity of

kinase reactions, we used a dead-kinase mutant AmVKRdk in

which the D1031FG1033 Mg2+ binding motif essential for kinase

activity was mutated into a DNA inactive motif. Then, AmVKR

kinase potential was further confirmed using mutated versions of

AmVKR in which glutamic residues were placed near the YY

activation site, thus potentially mimicking tyrosine phosphoryla-

tion and receptor activation, such as the activating mutation found

in fibroblast growth factor receptor 3 (FGFR3) in the type II

neonatal thanatophoric dysplasia disease [32]. Three different

mutants AmVKRYYEF, AmVKRYYKE and AmVKRYYEE were

thus prepared by replacing in AmVKR, either K1045 or F1046 or

both K1045/F1046 by E residues. When tested in the in vitro kinase

assay, AmVKRYYKE and AmVKRYYEE mutants displayed strong

kinase activity as compared to the wild-type AmVKR or to

AmVKRYYEF. These results indicated the importance of the

conserved YY site for activity of VKR proteins and confirmed the

potential activity of their TK domain.

VKR can form dimers
For all RTK, the dimerization is required for the activation, and

they also could form large complexes such as homo- and hetero-

oligomers [33]. Similarly, it is clearly established that the VFTM

of the Class-C GPCRs and ANFR are functioning as dimers

[9,12]. We first performed bioinformatics analyses to predict the

dimerization interface of the VKR VFTMs. An evolutionary trace

analysis of the surface of VKR VFTMs was performed using a

sequence alignment of the VKR VFTMs, and a 3D model of the

AmVKR VFTM. This analysis revealed that one face of the

subunits is more conserved than the others (Fig. 8A), suggesting

that it might correspond to the dimerization interface, as observed

with class-C GPCRs and ANFR dimers [9,34–36]. Moreover,

none of the putative N-glycosylation sites (consensus sequence

Asn-X-Ser/Thr, where X can be any natural amino acid except

proline) found in the VKR sequences from different species were

located within the proposed dimerization interface (Fig. 8B), as

observed with GABA-B receptor dimers [35]. In contrast, most

other faces contained at least one putative glycosylation site in at

least one of the species examined. Taken together, these

observations were consistent with the VFTM dimer interface in

the VKRs being similar to that in class C GPCR and ANFR.

Time-resolved FRET measurements using SNAP-tag technol-

ogy [21] (Fig. 8C) were further performed in order to detect the

ability of AmVKR constructs to form dimers at the cell surface.

Results in Fig. 8C show that a strong FRET signal was obtained

with cells transfected with AmVKR constructs as compared to non

transfected cells, indicating that AmVKR proteins effectively

constitute dimers at the cell surface.

VKR can bind amino acids
VFTM of most of the class C GPCRs contains the binding site

of natural amino acids or derivatives. The amino acid recognition

by the VFTM is encoded in an eight residue motif [37] that

participates directly or indirectly to the binding of the a-aminoacid

functions (primary amine and carboxylic acid). To verify whether

the five main residues of the amino acid recognition motif that

bind glutamate were conserved in VKRs, we compared the

tridimensional model of AmVKR to the structure of mGlu1

VFTM (Fig. 9A). Residue Ser165 that binds the carboxylic acid of

the glutamate ligand and that is the most conserved residue in

binding sites of Class C GPCR [38], is strictly conserved in VKRs.

Other residues that bind the primary amine of the glutamate

ligand in mGlu1 (Thr188, Asp208, Tyr236 and Asp318) are less

conserved in VKRs, but their chemical features are compatible

with the binding of the primary groups of amino-acids. These

results suggest that the ligands of VKRs could be amino-acids or

derivatives. The strictly conserved residue Lys409 in mGlu1

responsible for the glutamate ligand binding, is replaced by a

strictly conserved Tyr in VKRs, indicating that the ligand is

probably not glutamate.

VFTM of class C GPCRs binds small ligands [8] like calcium

ions (CaSR), glutamate (mGluR), GABA (GABABR), L-Arg and

L-Lys (the mammalian GPRC6A [39] and the fish OR5.24 [40]),

saccharose or small sugar (sweet taste receptor). We then

performed a kinase assay to verify if one of these small molecules

could bind and activate AmVKR. Among these molecules, only L-

Arg was shown to induce phosphorylation of the receptor (Fig. 9B).

Discussion

In this study, we reported the discovery of a new family of

tyrosine kinase receptors, called VKR, essentially present in

invertebrates, and particularly in insects. Using a combination of

bioinformatic, molecular biology and biochemical experiments, we

Rattus Norvegicus (NP_058708.1) mGluR5 subunit using the CLUSTAL W method. Residues highlighted in black are those identical in at least 50% of
the sequences. Those in grey background correspond to residues homologous in at least 50% of the sequences. The positions highlighted in red with
an asterisk are those important for glutamate binding in the mGluR5 subunit.
doi:10.1371/journal.pone.0005651.g004
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Figure 5. Phylogenetic analyses and sequence alignment of TK domains from VKR. A-Phylogenetic relationships of TK from VKR and
various RTK, the receptors for insulin (IR), the epidermal growth factor (EGFR), the fibroblast growth factor (FGFR) and the proto-oncogene c-ros
receptor (ROSR). Bootstrap values (10 000 replicates) higher than 80% were shown by a red point on the major internal node only. Genbank accession
numbers of receptors used are in table S1. B- Sequence alignment of the catalytic domains from insect VKR (AmVKR, TcVKR, AgVKR and DpseuVKR)
with the TK domain of human insulin receptor (NP_000199) using the CLUSTAL W method. Shaded areas represent residues which are identical (in
black) or similar (in grey) in at least 50% of the aligned sequences. Numbers I to XI indicate the eleven subdomains conserved in kinase domains.
Consensus sequences required for TK activity are in bold italics.
doi:10.1371/journal.pone.0005651.g005
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demonstrated that the members of this family are single

transmembrane-spanning molecules composed of an extracellular

VFTM and an intracellular TK domain related to that of IR. At

least for Apis mellifera, the VKR proteins are functional and their

kinase activity can be induced by small ligands such as L-Arg.

The VKR proteins are largely represented in the class of insects,

although the first two examples were discovered outside this class,

in the trematode S. mansoni (the parasite responsible for

schistosomiasis, the second most important tropical disease after

malaria [41]) [6], and in the sea urchin S. purpuratus, and named

SmVKR and SpVKR respectively. In 2006, during the inventory

of the genes encoding RTK in the S. purpuratus genome, two genes

Sp-INSR and Sp-ILGFR related to IR family were identified [26],

and we could recognize that the second one Sp-ILGFR was an

RTK homologous to SmVKR. We could notice that gene

structure was overall highly conserved in insects with an important

restriction of size and of exon numbers when compared to other

organisms. Owing to the substantial number of dipteran vkr

sequences identified, we could demonstrate that gene structures

were homogenous in culicidae (mosquitoes) and drosophilidae

(flies). Such a gene conservation in dipterans could argue for a

potential importance of VKR receptors in insect biology.

No vkr gene could be detected in the lepidopteran genome of B.

mori and in the the genome of most of the drosophilidae belonging

to the melanogaster group, despite an extensive and complete

analysis of the genome of these flies, suggesting the absence of the

vkr gene in these insects. In this group, only the D. ananasse species

was demonstrated to contain a putative vkr gene, Davkr. Moreover

Davkr has a genomic structure different from all of the other

drosophilidae vkr genes with an additional exon in the TK domain

that could create an incorrect ATP-binding sequence in the

protein and generate an inactive kinase. Such an observation is

probably related to the disappearance of vkr genes along the

evolution of flies inside of the melanogaster group. Moreover, for this

interpretation, we have to consider that the currently defined

Drosophila genus has been shown to be paraphyletic, including

more than 2 000 species, some but not all of them descending

from a common ancestor [42]. Gene mapping and analysis of vkr

gene environment in the various insects would be helpful for

studying evolution of VKR as well as importance in insect biology.

This homogeneity of the VKR proteins in the phylogenetic

analyses of VFT and TK domains suggests the existence of a

common ancestral gene and the conservation of functional

properties in all of these molecules. Although that no information

can be given about the origin of vkr, we can postulate that,

according to the hypothesis already proposed by Yarden and

Ullrich about the evolution of RTK [1], an ancestral vkr gene

would have resulted from the genetic combination of a pre-existing

VFTM with a TK domain of a cytoplasmic protein. Until now, vkr

has never been detected in any vertebrate genome and therefore it

can be supposed to be invertebrate specific. However, vkr genes

have not been found in every invertebrate species and for example

Figure 6. VKR are expressed in larvae and in gonads of adult insects and invertebrates Vkr transcripts were quantified in the
different developmental stages of T. castaneum and of A. mellifera drone (A) and in tissues of A. gambiae and S. purpuratus (B). For
graphical representation of qPCR data, cycle thresholds (D Ct values) obtained for the different samples were deducted from the D Ct value obtained
for larval stage (A) or gonad (B) transcript levels. Values were normalized as relative fold-difference using the D-D Ct (DD Ct) method. Data are
means6s.e. of triplicates from a typical experiment.
doi:10.1371/journal.pone.0005651.g006
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Figure 7. AmVKR shows tyrosine kinase activity. A- Evolutionary conservation of residues of the VKR TK domain (left panel) visualized on the
human IR TK crystal structure (PDB accession number 1IR3). Conservation scores are according to a color scale from variable (blue) to conserved
(purple) residues. For comparison, the crucial residues needed for kinase activity (right panel) are indicated. B- Expression of the HA-tagged AmVKR in
HEK-293 transfected cells revealed by anti-HA antibodies. C- Tyrosine kinase activity of HA-tagged AmVKR proteins. Lysates from HEK293 cells
transfected by plasmids containing AmVKR or mutated versions of AmVKR, or by empty prk5 plasmid as a control, were immunoprecipitated by anti-
HA antibodies. Kinase assays were performed as described in Materials and Methods. Proteins were analysed by Western blot and tyrosine
phosphorylation was detected using P-Tyr-100 antibodies.
doi:10.1371/journal.pone.0005651.g007
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are absent from the genome of the nematode C. elegans. In

platyhelminths, VKR has been characterized only in Schistosoma

species, but in-depth researches in turbellarian genome data bases

have allowed the detection in the planarian Schmidtea mediterranea of

a genomic sequence (GenBank: AAWT01078636.1) encoding a

putative TK domain of VKR proteins linked to a truncated VFT

module. Further genomic and functional studies are still required

to understand both the origin of vkr genes and their selective

existence/persistence in given invertebrate organisms.

The VFT domain being close to that of class-C GPCRs in

particular GABAB receptors and the TK one being close to that of

IR, it suggests an original mode of functioning for a RTK. First,

we showed that the recombinant AmVKR forms homo- or

oligomers, as expected for membrane receptor containing a

VFTM such as class-C GPCRs and ANFR that are well-known to

function as homo- or hetero-dimers as well as the RTK [2,9,12].

All motifs essential for TK activity were perfectly conserved in the

TK domain of VKR suggesting that dimerized AmVKR receptors

Figure 8. VKR can form dimers. A- Evolutionary conservation of residues at the surface of all VKR VFTMs visualized on both faces of the VFTs (Face
1 and Face 2) using the tridimensional model of AmVKR. Conservation scores are according to a color scale from variable (blue) to conserved (purple)
residues. B- Ribbon view of the AmVKR VFTM is shown, with the putative N-glycosylation sites (C-a of Asn residue) found in AmVKR (in red) and in all
described VKRs (in orange). C- Time-resolved FRET signal measured between snap-tag (ST) labeled AmVKR subunits at cell surface.
doi:10.1371/journal.pone.0005651.g008
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could autophosphorylate and exert kinase activity. Surprisingly,

the basal level of auto-phosphorylation is quite low compared to

that we could expect for a recombinant IR in the same conditions

[43]. In our study, we need to use constitutively active AmVKR

mutants to obtain high levels of kinase activity strongly suggesting

that VKR activation in cell signalling was dependent on the

binding of a ligand in the extracellular domain of the receptor.

Although all RTKs are activated by dimerization, different

ligands employ different strategies for inducing the active dimeric

state [33]. VFTMs of membrane receptors are functioning at least

as dimers, and they contain the binding site for natural small

ligands such as peptides [9], small sugar [44], amino-acids or

derivatives [8] and cations [45,46]. Although the ligand binding

site can be at the VFTM dimeric interface [9,36], usually ligands

bind into the VFTM binding pocket and in Class-C GPCRs

binding of the natural ligands induces closure of the VFT

responsible for receptor activation [12]. In VFTM VKR binding

pocket, we observed a relative conservation of the residue

responsible for binding of the alpha-amino acid functions of the

glutamate in mGlu1, suggesting ligands of VKRs could be amino-

acids or derivatives.

Accordingly, among the various molecules known to bind

VFTM of class C GPCRs (glutamate, GABA, L-a- amino acids),

we could show that L-arginine was able to increase in vitro the basal

kinase activity of AmVKR, suggesting that this aminoacid could

be a preferential ligand for VKR receptors, similarly to the

mammalian GPRC6A [39] and the fish OR5.24 [40] receptors,

two class C GPCRs for which L-arginine is also a potent agonist.

Moreover, it is important to mention that in insects, VFTM-

containing mX receptors are modulated by arginine and

derivatives [31,47].

Future investigations will concern the biological role of VKR in

development and reproduction, particularly in insects. The

presence of high levels of vkr transcripts in larval forms and in

female gonads of different organisms already supposed the

importance of VKR proteins in larval growth and differentiation

Figure 9. VKR VFTM can bind L-aminoacids responsible for activation. A- Detailed view of glutamate binding in the VFTM of mGlu1
structure. The five residues (labeled in green) responsible for the binding of the a-amino acid functions of the glutamate, and the equivalent residues
in VKRs (in black) are shown. The conserved Lys409 in mGlu1 that interact with the carboxylate function of the glutamate side-chain is displayed, and
the corresponding tyrosine residue in VKR is indicated. B- Modulation of recombinant AmVKR protein tyrosine kinase activity by aminoacid ligands.
Kinase assays were performed on HA-tagged AmVKR immunoprecipitated from transfected HEK293 cells as described in Fig. 7C. L-Arg or L-Lys
(100 mM final concentration) amino-acids were added to AmVKR kinase assay reactions, and the constitutively active AmVKRYYEE proteins were used
as positive control.
doi:10.1371/journal.pone.0005651.g009
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as well as in reproduction. RNA interference experiments are

currently performed in honey bee and mosquitoes in order to

elucidate the function of VKR in these processes. Since ovary

development in mosquitoes has been shown to be regulated by

TOR (Target of Rapamycin)- mediated amino acid signaling

[48,49], we will also investigate the importance of VKR signalling

in anautogeny, ie activation of egg development after a blood

meal, a unique feature in the life of mosquitoes.

In conclusion, VKR constitute a novel family of RTK specific

for invertebrates, mainly expressed in reproductive organs and

activated by aminoacids. The biological function of these receptors

is yet unknown but if VKR are effectively implied in reproduction

of parasites (like schistosomes) or in disease-transmitting insects

(like Anopheles vector of malaria or Aedes vector of filaria and

viruses), these receptors already represent interesting drug targets

for novel strategies to combat parasitic and infectious diseases.

Supporting Information

Table S1 Genbank accession numbers of receptors used in

phylogenetic analyses.

Found at: doi:10.1371/journal.pone.0005651.s001 (0.07 MB

PDF)
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