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Abstract

Genome organization is critical for setting up the spatial environment of gene transcription,

and substantial progress has been made towards its high-resolution characterization.

The underlying molecular mechanism for its establishment is much less understood. We

applied a deep-learning approach, variational autoencoder (VAE), to analyze the fluctua-

tion and heterogeneity of chromatin structures revealed by single-cell imaging and to iden-

tify a reaction coordinate for chromatin folding. This coordinate connects the seemingly

random structures observed in individual cohesin-depleted cells as intermediate states

along a folding pathway that leads to the formation of topologically associating domains

(TAD). We showed that folding into wild-type-like structures remain energetically favorable

in cohesin-depleted cells, potentially as a result of the phase separation between the two

chromatin segments with active and repressive histone marks. The energetic stabilization,

however, is not strong enough to overcome the entropic penalty, leading to the formation

of only partially folded structures and the disappearance of TADs from contact maps upon

averaging. Our study suggests that machine learning techniques, when combined with rig-

orous statistical mechanical analysis, are powerful tools for analyzing structural ensem-

bles of chromatin.

Author summary

Chromatin folding, the dynamical process during which chromatin establishes its three-

dimensional organization for proper function, is of critical importance. However, it is dif-

ficult to visualize and characterize due to challenges associated with live-cell imaging at

high temporal and spatial resolution. Here, using a combination of deep learning and sta-

tistical mechanical theory, we demonstrate that great insight can be gained into the fold-

ing process by analyzing snapshots of chromatin structures taken across a population of

cells. Though these static structures are not connected in time, prior research on chemical

reactions suggests that fluctuation within the conformational ensemble provides valuable

information for uncovering the reaction mechanism. Our analysis reconciles the seem-

ingly contradictory results from different experimental techniques and supports the pres-

ence of multiple factors in organizing the chromatin. As single-cell experimental data are

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008262 September 28, 2020 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Xie WJ, Qi Y, Zhang B (2020)

Characterizing chromatin folding coordinate and

landscape with deep learning. PLoS Comput Biol

16(9): e1008262. https://doi.org/10.1371/journal.

pcbi.1008262

Editor: Alexandre V. Morozov, Rutgers University,

UNITED STATES

Received: May 4, 2020

Accepted: August 14, 2020

Published: September 28, 2020

Copyright: © 2020 Xie et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All source code for

VAE model training and analysis are available from

the Github repository: https://github.com/

ZhangGroup-MITChemistry/chromVAE.

Funding: This work was supported by the National

Science Foundation (Grant MCB-1715859) and the

National Institutes of Health (Grant

1R35GM133580-01). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-3982-9305
http://orcid.org/0000-0002-3685-7503
https://doi.org/10.1371/journal.pcbi.1008262
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008262&domain=pdf&date_stamp=2020-10-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008262&domain=pdf&date_stamp=2020-10-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008262&domain=pdf&date_stamp=2020-10-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008262&domain=pdf&date_stamp=2020-10-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008262&domain=pdf&date_stamp=2020-10-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008262&domain=pdf&date_stamp=2020-10-08
https://doi.org/10.1371/journal.pcbi.1008262
https://doi.org/10.1371/journal.pcbi.1008262
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/ZhangGroup-MITChemistry/chromVAE
https://github.com/ZhangGroup-MITChemistry/chromVAE


becoming routine, the approaches presented here could help with their interpretation to

provide more insight into chromatin folding.

Introduction

Three-dimensional genome organization is expected to play a crucial role in transcription,

DNA replication, and repair [1–5]. Significant progress has been made towards its high-reso-

lution characterization as a result of advances in chromosome-conformation-capture based

methods such as Hi-C [6, 7]. These methods approximate the 3D distance between pairs of

genomic loci using contact frequencies measured via proximity ligation and have revealed

many conserved features of genome packaging [8–12]. The emerging picture is a hierarchical

organization for interphase chromosomes that ranges from chromatin loops and topologically

associating domains (TADs) to compartments at kilobase and megabase scales, respectively

[13–15].

Hi-C and related techniques have also provided insight into the dynamical folding process

for the establishment of genome organization. In particular, the extrusion model was proposed

to explain numerous features of chromatin loops and TADs observed in Hi-C contact maps

[16, 17]. It provides a detailed hypothesis on the folding process driven by CCCTC-binding

factor (CTCF) and cohesin molecules [18–20]. Several predictions of the extrusion model have

been validated with perturbative Hi-C [21–25] and in vitro experiments [26, 27]. Due to its

unavoidable ensemble averaging, however, Hi-C cannot capture the heterogeneity within a

cell population, and the average picture it presents may be insufficient to uncover the full com-

plexity of genome folding [28, 29].

Many questions on genome folding remain outstanding and necessitate the development of

additional experimental techniques and theoretical tools of interpretation. Recently, Zhuang

and coworkers applied a super-resolution tracing method [30–34] to characterize single-cell

chromatin structures and observed substantial cell-to-cell variation for TAD boundaries [34].

Upon cohesin depletion, in agreement with population Hi-C experiments [25], their study

suggested that TADs disappear in ensemble averaged distance matrices (see Fig 1). Remark-

ably, however, chromatin domains persist in individual cells. The biological implications of

these imaging results remain to be explored, and it is unclear what folds the chromatin in cells

that lack cohesin molecules and loop extrusion [35]. The large set of single-cell structures pro-

vides unprecedented details into chromatin organization but calls for the use of statistical

mechanical approaches for its interpretation.

Here we combine deep learning techniques with statistical mechanical tools to investigate

the mechanism of genome folding. Specifically, we apply the variational autoencoder (VAE)

[36], a deep generative model, to analyze single-cell imaging data and infer a one-dimensional

reaction coordinate for chromatin folding. This folding coordinate captures the variation of

TAD boundaries in wild-type (WT) configurations and establishes connections among the

seemingly random structures in cohesin-depleted cells. It suggests that these structures are

intermediate states along the folding pathway to chromatin configurations that bear a striking

resemblance to those found in WT cells. Connecting VAE probability of chromatin structures

with the free energy cost of folding, we find that the formation of WT-like structures remains

energetically favorable even in cohesin-depleted cells. This energetic stabilization leads to par-

tially folded structures with varying domain boundaries observed in single cells. The folding is

penalized by the configurational entropy, however, and without the presence of cohesin, chro-

matin cannot fully commit to the WT-like structures. Our discovery of a weak compartment
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boundary suggests that phase separation may contribute to chromatin folding in cohesin-

depleted cells, and its combination with loop extrusion could underlie the stable and robust

TAD formation in WT cells.

Results

Deep generative model differentiates chromatin structures from two cell

types

In Ref [34], Zhuang and coworkers applied single cell imaging to characterize the organization

of a chromatin segment (Chr21:34.6Mb-37.1Mb of HCT116 cells) at high resolution. They

found that, in contrary to the average distance map shown in Fig 1, chromatin domains persist

upon cohesin removal, an observation that cannot be immediately explained by the loop extru-

sion model [16, 17]. A detailed analysis of individual chromatin structures from cohesin-

depleted cells to reveal their similarity and distinction from WT configurations could provide

mechanistic insight into chromatin folding. Such an analysis can be challenging, however, due

to the high dimensionality of the data set. Often, it is useful to reduce dimensionality and

examine the collective features of the structural ensemble. As demonstrated in prior studies

[37–39], focusing on coarsened collective features could facilitate the interpretation of confor-

mational heterogeneity by differentiating functionally meaningful and statistically significant

structural fluctuation from random noise.

We applied the deep learning framework, VAE, to carry out the dimensionality reduction

for an ensemble of chromatin structures from both WT and cohesin-depleted cells. Compared

to existing approaches, VAE not only compresses the data into a low-dimensional space with

non-linear embedding, but also produces a deep generative model for estimating the statistical

probability of each configuration [40–42]. This quantitative aspect is crucial for connecting

with thermodynamic analysis discussed in later sections. We converted the 3D positions from

single-cell imaging into binarized contact matrices to provide rotationally and translationally

invariant representations for chromatin (see Methods Section for details). We then applied

VAE over the binarized representations to find two optimal latent variables in an unsupervised

manner with an encoder that compresses the contact matrices and a decoder that reconstructs

the inputs (Fig 2A).

Fig 1. Average distance maps determined using single-cell chromatin structures collected from WT and cohesin-

depleted (ΔCohesin) cells. The chromatin segment is Chr21:34.6Mb-37.1Mb of HCT116 cells studied in Ref [34].

Boundary score profiles, whose peaks can be used to identify TAD boundaries and are highlighted with red arrows, are

shown below the maps. Detailed definition for the boundary score is provided in the Methods Section. TAD

annotation for WT cells is also shown as a guide to the eye.

https://doi.org/10.1371/journal.pcbi.1008262.g001
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As shown in Fig 2B, we found an apparent separation between WT (red) and cohesin-

depleted (green) cells in the two-dimensional latent space. For the convenience of downstream

analysis, from the two latent variables, we further defined a one-dimensional coordinate as the

distance from the decision boundary that best separates the two cell types (Fig 2B). We identi-

fied the boundary with the support vector machine [43], and WT and cohesin-depleted cells

exhibit the largest difference along the direction perpendicular to the boundary. Projecting

chromatin configurations onto the folding coordinate leads to a clear separation between the

corresponding probability distributions as well (Fig 2C). On the other hand, the two distribu-

tions along the direction perpendicular to the folding coordinate (i.e., the direction along the

SVM decision boundary) overlap significantly (see S1 Fig). The Kullback-Leibler (KL) diver-

gence that quantifies the distinction between the two one-dimensional probability distribu-

tions is 2.1, a value that is comparable to the two-dimensional counterpart (2.0). Therefore, the

one-dimensional coordinate is equally effective in differentiating chromatin structures from

the two cell types. It is worth pointing out that we processed the same structural ensemble

using principal component analysis (PCA) and K-means clustering as well (S2 and S3 Figs.

Neither approach separates the two cell types as well as the one-dimensional variable identified

here.

The biological significance of the one-dimensional coordinate is evident from its correla-

tion with the fraction of TAD contacts (Fig 2D), which is defined as the ratio between the

number of contacts formed inside the two TADs and the total number of contacts. We empha-

size that the VAE coordinate was designed to capture the intrinsic variation within the dataset.

Its correlation with the fraction of TAD contacts suggests that not only the average difference

Fig 2. Chromatin folding coordinate derived using deep learning to differentiate chromatin organization in WT and cohesin-

depleted cells. (A) Illustration of the variational autoencoder for data processing and low-dimensional embedding. Single-cell

chromatin images were first binarized into contact matrices that can be fed into VAE as inputs. The encoder network further projects

the high dimensional contacts into a small set of latent variables that best preserve key features of the original data. The decoder

network then defines the reconstruction from latent variables to contact matrices. (B) Scatter plot for WT and cohesin-depleted cells

in the two-dimensional space of latent variables learned from VAE. The black line represents the decision boundary and the folding

coordinate is defined as the distance from the boundary. To avoid overplotting, only 5% of randomly sampled data are shown. For

the full dataset, if all the points that fall to the lower left of the boundary were all assigned as cohesin-depleted cells and those on the

upper right as WT cells, the misclassification rate is 12.8%. (C) Probability distributions of the folding coordinate for chromatin

structures from WT and cohesin-depleted cells. (D) Correlation between the folding coordinate and the fraction of contacts formed

within the WT TADs. Error bars represent one standard deviation of uncertainty.

https://doi.org/10.1371/journal.pcbi.1008262.g002
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between the two cell types can be understood from the TAD structure, but the conformational

heterogeneity from individual cells is also related to the degree of TAD formation as well.

Folding coordinate reveals TAD formation in cohesin-depleted cells

To more closely examine the relationship between the VAE coordinate and TAD formation,

we characterized the variation of average distance maps along the VAE coordinate. These

maps were determined using chromatin structures from either WT or cohesin-depleted cells.

The number of cells at various values of the folding coordinate are listed in S1 and S2 Tables.

As shown in Fig 3A, for WT cells, we find that the VAE coordinate captures the heterogene-

ity of chromatin organization both within a single TAD and across TAD boundaries. For

example, chromatin in most cells with the coordinate less than 1.2 exhibits two TADs with a

separating boundary at 36.1 Mb. This boundary coincides with the one found in the average

distance matrix (Fig 1) and in Hi-C contact map [25]. The contacts within each TAD, however,

can vary significantly as the coordinate increases. In particular, the emergence of sub-TADs

gives rise to more compact chromatin with decreased spatial distances, and correspondingly,

the colormap varies from red to yellow. Interestingly, we also find a significant population of

cells, i.e., those with the VAE coordinate larger than 1.2, with a shifted TAD boundary at 36.4

Mb. This chromatin reorganization could alter the regulatory environment for genes (e.g.,

RCAN1 and KCNE1) within this region and may impact their expression profiles.

Remarkably, for cohesin-depleted cells (Fig 3B), variation in distance matrices along the

VAE coordinate highlights the gradual formation of chromatin structures with striking resem-

blance to those found in WT cells. For example, for cells with VAE coordinate values between

-1.6 and -0.8, the chromatin segment appears to adopt open, extended configurations and

there is no prominent feature in the distance matrices. At large values (� 0.0), chromatin

adopts two domain-like structures with a boundary identical to that found in WT cells. We

note that the observed structural ordering only become apparent after averaging and the

Fig 3. Variation of chromatin distance maps along the folding coordinate for WT and cohesin-depleted cells. Values of the folding coordinate are

provided on top of the maps. Boundary score profiles are shown below to highlight the position of TAD boundaries with red arrows.

https://doi.org/10.1371/journal.pcbi.1008262.g003
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conformational ensembles at individual folding coordinates can exhibit substantial heteroge-

neity (see S4, S5 and S6 Figs).

Close examination of the distance matrices reveals additional subtlety of chromatin folding

in cohesin-depleted cells. In particular, though both share similar TAD boundaries, the folded

chromatin structures in cohesin-depleted cells are less compact and do not exhibit fine sub-

TADs as those from WT cells. In addition, the VAE coordinate also uncovers off-pathway con-

figurations at values less than -1.6. In these cells, chromatin exhibits a single domain at the end

of the genomic region with a boundary quite different from that of WT cells. This domain

must unfold before chromatin can transition into WT-like structures.

The VAE coordinate therefore tracks the degree of foldedness for chromatin and will be

referred as the folding coordinate in the following. It provides a fresh perspective on the hetero-

geneity intrinsic to single-cell imaging data [44]. The seemingly random organizations

observed in individual cells are, in fact, interrelated to each other as intermediate states along

the folding pathway and only differ in the degree of foldedness. What drives the folding transi-

tion in cohesin-depleted cells and why doesn’t chromatin from these cells fully commit to the

well-folded WT-like structures? In the next two sections, we attempt to address these questions

by examining the free energy landscape of chromatin folding and the correlation between

structural ordering and energetic stabilization.

Deep generative model recovers the energy landscape of in silico chromatin

models

An advantage of VAE is that it provides an estimation for the probability of each chromatin

structure represented as a binary contact matrix Q. Such estimations offer a link between the

machine learning technique with statistical mechanics since the probability is related to the

free energy of contact formation (F(Q)) via the Boltzmann distribution P(Q) = Z−1e−βF(Q),

where Z is the normalization constant. Before interpreting the folding free energy for chroma-

tin, we first evaluated the accuracy of the VAE probability PVAE(Q) in approximating the

actual distribution of molecule conformations, P(Q).

It is useful to first clarify the physical meaning of F(Q). Following Wolynes and coworkers

[45, 46], we decompose the free energy functional into energetic and entropic contributions

F½Q� ¼ U½Q� � TS½Q�: ð1Þ

The contact energy U(Q) accounts for the amount of energy released upon contact formation.

S(Q), on the other hand, corresponds to homogeneous generic properties and describes the

general collapse of a polymer chain of length N. Therefore, when applied to polymer molecules

with different chemical properties but of equal length, the variation in contact free energy will

be reflected in U(Q) while S(Q) remains the same.

The presence of the entropy term in Eq 1 makes the determination of the free energy func-

tional, and correspondingly the comparison with −log PVAE(Q), difficult. One way to circum-

vent this challenge is to evaluate the difference of the two quantities from a reference system.

In particular,

FðQÞ � FrefðQÞ ¼ ½UðQÞ � UrefðQÞ� � T½SðQÞ � SrefðQÞ�

� UðQÞ � UrefðQÞ ¼ DUðQÞ:
ð2Þ

The second equation holds if the two polymer systems share similar persistence length and

excluded volume effect. In such cases, the microscopic entropic functionals that depends only on

generic polymer properties will cancel out. Therefore, if the VAE probability approximates the
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true distribution well, then the difference between VAE free energies, � log½PVAEðQÞ=Pref
VAEðQÞ�,

should reproduce ΔU(Q).

To evaluate its accuracy, we applied VAE to two in silico polymer systems for which the

contact energy difference of a give molecular conformation can be easily determined. We car-

ried out two computer simulations to collect 3D structures for a reference and a chromatin-

like polymer model. The interaction energy in the reference model was fine-tuned to ensure

that the average distance between neighboring beads and the overall size of the polymer are

comparable to those measured experimentally for chromatin. For the chromatin-like model,

in addition to the potential energy defined in the reference system, we introduced attractive

interactions for beads within the first and second half of the polymer to promote the formation

of domain like structures. Snapshots of the reference and chromatin-like polymers are pro-

vided in Fig 4A and 4B, with the simulated average distance matrices shown on the side.

Because the two systems share the same basal interactions that define the polymer topology,

their entropic functional should be identical.

Fig 4. VAE models reproduce the microscopic energy of in silico polymer models. (A,B) Representative

configurations and average distance matrices for the reference (A) and the chromatin-like (B) polymer. (C)

Comparison between the interaction energy calculated from VAE, � log½PVAEðQÞ=Pref
VAEðQÞ�, and molecular dynamics

simulations, ΔU[Q]. Energy unit is kBT. The orange line corresponds to a linear fit to the data.

https://doi.org/10.1371/journal.pcbi.1008262.g004

PLOS COMPUTATIONAL BIOLOGY Deep learning chromatin folding

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008262 September 28, 2020 7 / 19

https://doi.org/10.1371/journal.pcbi.1008262.g004
https://doi.org/10.1371/journal.pcbi.1008262


We then trained two VAE models using a total of 100000 configurations for each polymer.

From these two models, we calculated the VAE interaction energy, � log½PVAEðQÞ=Pref
VAEðQÞ�,

for each one of the chromatin-like configurations. We further determined the corresponding

MD interaction energy, ΔU[Q], by evaluating the potential energy differences in the Cartesian

space. As shown in Fig 4C, the two quantities are significantly correlated with each other, with

a Pearson correlation coefficient of 0.73 (p-value < 0.001). The slope of the linear fit for the

data is slightly larger than 1, with a value of 2.2. This deviation could potentially be a result of

the maximization of a lower bound, rather than the true likelihood function in the VAE frame-

work. It is worth mentioning that without removing entropic contributions, the agreement

between the VAE free energy, −log PVAE(Q), and the contact energy, U(Q), is much worse

(S7 Fig).

Balance between enthalpy and entropy dictates TAD formation

Next, we applied VAE over the WT and the cohesin-depleted imaging data separately to derive

the corresponding chromatin energy landscapes. We note that these landscapes are deemed

effective as chromatin exhibits slow dynamics [47–49] and is subject to perturbations driven

by ATP-powered molecular motors [50, 51]. Nevertheless, provided that they can reproduce

the corresponding steady-state distributions, effective landscapes are powerful concepts for

characterizing non-equilibrium systems [52, 53].

Before analyzing the derived energies, we performed additional tests for the probability dis-

tributions estimated by VAE models and evaluated their accuracy in reproducing the mea-

sured statistics of chromatin conformation. First, we simulated a total of 10000 chromatin

contact matrices by converting randomly distributed latent space variables into contacts using

the VAE decoder networks. From these matrices, we computed the average contact frequen-

cies hQii and the pair-wise correlation between contacts hQi Qji. As shown in Fig 5A–5D, val-

ues determined from VAE models match well with those from imaging data for both WT and

cohesin-depleted cells. It is worth pointing out that a simple independent model fails to cap-

ture the cooperativity among chromatin contacts, as evidenced by the deviation between hQii

hQji and hQi Qji (Fig 5C and 5D). Finally, we found that VAE models also capture the higher-

order collective behavior of chromatin contacts, and the probability distributions of the folding

coordinate obtained from simulated contact matrices agree well with the experimental values

(Fig 5E and 5F).

Therefore, both the tests on in silico models and the reproducing of experimental data sup-

port a quantitative interpretation of the energy landscape inferred from VAE. We next exam-

ined the change of various VAE energies along the folding coordinate by averaging the energy

over individual chromatin structures from both WT and cohesin-depleted cells. As shown in

Fig 6, consistent with the observed low probability of TAD like domains, the free energy, −log

[PVAE(Q)], favors unfolded chromatin configurations with negative folding coordinate values

for cohesin-depleted cells. However, its difference from the homopolymer free energy intro-

duced in the previous section, � log½PVAEðQÞ=Pref
VAEðQÞ�, becomes more negative along the fold-

ing coordinate. This quantity, according to Eq 2, measures the strength of specific interactions

in chromatin relative to the generic potential of a homopolymer. Since the homopolymer

energy itself is weakly attractive and decreases along the folding coordinate (S8 Fig), the spe-

cific chromatin interactions favor folded structures even in cohesin-depleted cells. Therefore,

the formation of two-domain like structures is indeed energetically stable but must be penal-

ized by the configurational entropy to result in an overall unfavorable free energy. For WT

cells, on the other hand, both the free energy and the potential energy stabilizes TADs over

unfolded structures.
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We note that the free energy, −log[PVAE(Q)], shown in Fig 6 cannot be directly compared

with the probability distributions shown in Fig 5. In particular, the mixing entropy that quanti-

fies the number of possible configurations at a given folding coordinate must be accounted for

when evaluating the probability of a folding coordinate (see S9 Fig).

Conclusions and discussion

We applied a state-of-the-art deep learning framework to analyze single-cell imaging data on

chromatin organization. By projecting the 3D configurations onto low-dimensional latent var-

iables, we identified a folding coordinate that tracks the progression of TAD formation. Our

analysis suggests that the seemingly random structures from individual cohesin-depleted cells

can be viewed as intermediate states along the folding transition. Connecting VAE models

with the free energy landscape further reconciles the clear intent of folding with the lack of

fully commitment. The TAD-like structures remain energetically favorable upon cohesin

depletion, driving the formation of chromatin contacts in individual cells. The penalty from

the configurational entropy, however, prevents the formation of the full set of contacts to

Fig 5. Comparison between experimental value and predictions from VAE. (A, B) Contact probabilities, (C, D)

Contact correlations, and (E, F) Probability distributions of the folding coordinate. Parts A, C, and E provide results

for WT cells, while parts B, D, and F correspond to the counterparts for cohesin-depleted cells. Estimations for contact

correlations based on an independent model are also provided as black dots in parts C and D.

https://doi.org/10.1371/journal.pcbi.1008262.g005
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stabilize an entire TAD, resulting in the disappearance of well-defined domains in average dis-

tance matrices.

What are the physicochemical interactions that stabilize the folded WT-like structures in

cohesin-depleted cells? We note that the fraction of cohesin-depleted cells with TAD-like

structures exceeds 15%, a significant fraction that cannot be explained with residual cohesin

molecules that are expected to be much less than 5% after degradation for 6 hours [34, 54].

Numerous studies have demonstrated the importance of phase separation or compartmentali-

zation in genome organization [55–62]. Different regions of the chromatin could adopt dis-

tinct post-translational modifications on histone proteins. Such differences, and potentially in

combination with the presence of additional intrinsically disordered proteins, could drive the

collapse of chromatin into non-overlapping domains in 3D space. An analysis of the underly-

ing combinatorial patterns of twelve histone marks [63] indeed supports this hypothesis. As

shown in Fig 7A, the five states defined using the software chromHMM [64] partition the

chromatin into active and repress segments at the position corresponding to the TAD bound-

ary. We note that the presence of different chromatin types is not obvious with a coarser classi-

fication. As shown in Fig 7B, consistent with the analysis based on Hi-C data [25], this region

is assigned as a single active A compartment when only two states were used. The presence

of both active and repressive histone marks in the chromatin region indicates that phase

separation could be driving the partial TAD formation observed in cohesin-depleted cells [59,

60, 65].

Our study reconciles the seemingly contradictory results from population Hi-C experi-

ments and single-cell imaging. Loop extrusion and contributions from a weak compartmental-

ization boundary, as revealed by the chromatin state analysis, appear to work in harmony to

fold the chromatin region studied here.

Because of the complexity of the cell nucleus, the energetic driving forces uncovered in Fig

6 and the corresponding equilibrium interpretation are inherently approximate. Non-equilib-

rium processes that remodel the chromatin or modify the disordered histone tails could

impact chromatin organization and contribute to the thermodynamic quantities extracted

from imaging data. A detailed microscopic model of chromatin folding that explicitly consid-

ers all the different processes is currently out of reach due to a lack of complete understanding

of the various molecular components. In that regard, the approach outlined here is particularly

Fig 6. Variation of the free energy (A) and the interaction energy (B) in the unit of kBT along the folding

coordinate. The interaction energy is estimated as the free energy difference between the chromatin and a reference

polymer as � log½PVAEðQÞ=Pref
VAEðQÞ�. See Eq 2 and text for details.

https://doi.org/10.1371/journal.pcbi.1008262.g006
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useful as it rigorously accounts for all the contributions in the nucleus while remaining agnos-

tic to the underlying molecular details. As shown in prior studies, such effective equilibrium

models can provide accurate descriptions of non-equilibrium steady states in favorable

regimes [51, 53, 66].

Methods

Imaging data processing

Single-cell super-resolution imaging data were obtained from Ref [34], with a total of 11631

and 9526 chromatin structures for WT and cohesin-depleted cells, respectively. Though the

experiments were performed at a 30 kb resolution, we carried out all our analysis at the 90 kb

resolution for more accurate estimation of the probability distributions from VAE. We built

the distance matrices from 3D positions of every third imaged chromatin segments and con-

verted them into binary contacts with a cutoff of 450 nm. The contact probability between

neighboring genomic segments at the 90 kb resolution is about 0.8. For chromatin segments

with missing imaging positions, we filled in the corresponding entries in contact matrices with

random numbers generated based on the sequence-separation specific average contact proba-

bilities derived from imaging data.

We performed additional tests to confirm that the results shown in Figs 2 and 3 are robust

to the cutoff for binarization (S10 Fig) and resolution of the data (S11 Fig).

Boundary score

To determine the domain boundary in distance maps, we calculated the boundary score profile

using the approach introduced by Lazaris and co-workers [67]. For each genomic loci, we first

Fig 7. Chromatin state analysis reveals the presence of both active and repressive histone marks in the chromatin

region. (A) Results from a five state analysis, with the state assignment shown at the top, and the relative enrichment of

various histone marks for each state shown below. The position of the TAD boundary is highlighted with a red arrow.

(B) Corresponding results from a two state analysis. The entire chromatin segment is now assigned to an active state.

https://doi.org/10.1371/journal.pcbi.1008262.g007
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determined their nearest neighbor (X), upstream (U), and downstream (D) regions that are of

180 kb in length. The boundary score is then determined as
dinter
dintra

, where dinter is the mean dis-

tance of all contacts in region X. dintra = min(dU, dD) is the minimum average distance of the

two neighboring regions.

Variational autoencoder

We applied VAE both for low dimensional embedding and probability estimation. The imag-

ing data (Q) was compressed into the latent variables, z, with an encoding neural network

(q(z|Q)). The latent variables were chosen to maximize their potential in representing the orig-

inal high dimensional data via the optimization of a decoding network (p(Q|z)) to best recon-

struct the original imaging data from them.

The probability of a chromatin configuration represented in the binary contact matrix can

be formally defined as

pðQÞ ¼
Z

pðQjzÞpðzÞdz; ð3Þ

where p(z) is the prior distribution for latent variables. We used the following expression to

provide a lower bound on the (log) probability

log PVAEðQÞ ≜ Eq½log pðQjzÞ� � DKL½qðzjQÞjjpðzÞ�: ð4Þ

The two terms in the above equations correspond to reconstruction error calculated using

cross-entropy and the Kullback-Leibler divergence between the posterior and prior distribu-

tion of latent variables. We modeled the prior as a multivariate Gaussian distribution [36].

We implemented VAE models in PyTorch [68] and employed the stochastic gradient

descent method with the Adam optimizer [69] to derive parameters with a batch size of 500. A

total of 1000 epochs with a learning rate of 0.001 was used for model training to ensure the

convergence of the loss function. One hidden layer with 200 nodes was used for both the

encoding and decoding neural network.

We used different number of latent variables to balance the interpretability and accuracy of

the resulting VAE models. The value of the folding coordinate for a given chromatin structure

was determined with the two-variable model presented in Fig 2. For this model, the resulting

latent variables can be easily visualized and their contribution to distinguishing the two cell

types can be gauged straightforwardly. To obtain more accurate probability estimations, we

separately trained four VAE models with 25 latent variables for the two set of in silico polymer

configurations and the chromatin structures from the two cell types. These models were not

used to estimate the folding coordinate, but only for the probability and free energy shown in

Figs 4, 5 and 6.

After model training, the probability for observing a chromatin configuration, PVAE(Q),

was estimated using Eq 4. A total of 20 independent samples in the latent space was used to

ensure convergence when estimating the expectation values.

Polymer simulations

We carried out two 50 million-step-long polymer simulations using the molecular dynamics

package LAMMPS [70]. These simulations were performed with reduced units with τ, σ, and �

as the time, length and energy unit, respectively. The timestep was set to dt = 0.01τ. Langevin

dynamics with a damping coefficient of γ = 0.5τ was used to maintain the temperature at

T = 1.0. We saved polymer structures at every 500 steps to collect a total of 100000
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configurations from each simulation. Simulated polymer configurations were then converted

to contact matrices with a cutoff of 3.0σ for VAE model parameterization. The cutoff was cho-

sen to ensure that the simulated contact probability between neighboring beads is comparable

to the experimental value.

The polymer consists of 28 beads to mimic the 2.5 MB long chromatin region at 90 kb reso-

lution. The energy function for the reference model is defined as

UrefðrÞ ¼ UbðrÞ þ UscðrÞ þ UnbðrÞ: ð5Þ

Ub(r) is the harmonic bonding potential between neighboring beads with an equilibrium dis-

tance of 2.0σ and a spring constant of 1.0 �/σ2. Usc(r) is a soft-core potential applied to all the

non-bonded pairs to account for the excluded volume effect and to allow for chain crossing

[59]. It is equivalent to a capped off Lennard-Jones potential and only incurs a finite energetic

cost for overlapping beads. Unb(r) is a weak collapsing potential with the following form

UnbðrÞ ¼
X

i;j

a

2
½1þ tanhðZðrc � rijÞÞ�; ð6Þ

where rc = 3.0σ and η = 10.0. α = −0.04� was chosen such that number of contacts formed by

the reference polymer is comparable to that for chromatin. As discussed in the main text,

given their equal length and comparable polymer properties, the entropic functional for the

in silico polymer should be comparable to that of the real chromatin to ensure the accuracy of

Eq 2.

Polymer beads in the chromatin-like model experience additional specific interactions

besides those defined in Eq 5. In particular, an attractive potential similar to Unb(r) with α =

−0.1� was applied between beads within the first or second half of the polymer to promote

domain formation.

Supporting information

S1 Fig. Probability distributions for chromatin structures from WT and cohesin-depleted

cell along the direction perpendicular to the folding coordinate. (i.e., the direction along the

SVM decision boundary).

(TIF)

S2 Fig. Results from principal component analysis (PCA) of chromatin images. (A) Proba-

bility distributions of the first principal component for chromatin structures from WT and

cohesin-depleted cells. The KL divergence between the distributions is 1.7. Therefore, com-

pared to the folding coordinate defined in the main text, the principal component performs

worse for distinguishing the two cell types. (B,C) Variation of chromatin distance maps along

the first principal component for WT (B) and cohesin-depleted cells (C). Values of the first

principal component are provided on top of the maps. Boundary score profiles are shown

below to highlight the position of TAD boundaries with red arrows. We note that there is a sig-

nificant difference between the average distance maps from WT and cohesin-depeleted cells at

principal component values -1, 1 and 3. These differences indicate that the principal compo-

nent fails to recognize the distinction among the structures. No such misassignment occurs for

the folding coordinate and the average distance maps from two cell types look remarkably sim-

ilar, as shown in Fig 3 of the main text.

(TIF)

S3 Fig. Results from K-means clustering of chromatin images using a total of 10 clusters.

(A) Population of individual clusters for WT and cohesin-depleted cells. The overlap ratio
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between the two cell types is 21.5%. Therefore, compared to the folding coordinate defined in

the main text, the k-means clustering performs worse for distinguishing the two cell types. (B,

C) Average chromatin distance maps of individual clusters for WT (B) and cohesin-depleted

cells (C). Cluster IDs are provided on top of the maps. Boundary score profiles are shown

below to highlight the position of TAD boundaries with red arrows. In accord with our main

results, we again found that over 15% of cohein-depleted cells (group 2 and 10) exhibit TAD-

like chromatin structures. The average distance maps from the most populated groups (1, 4

and 6) are similar to the ones shown in Fig 3 of the main text at various VAE coordinate values

as well. Lacking a continuous variable, the physical meaning of the discrete groups and their

connection is hard to interpret, however.

(TIF)

S4 Fig. Example single-cell distance matrices for WT cells with a folding coordinate of 0.4.

(TIF)

S5 Fig. Example single-cell distance matrices for cohesin-depleted cells with a folding coor-

dinate of 0.4.

(TIF)

S6 Fig. Example single-cell distance matrices for cohesin-depleted cells with a folding coor-

dinate of -0.4.

(TIF)

S7 Fig. Comparison between the VAE free energy (−log PVAE(Q)) and the potential energy

used in molecular dynamics simulations (U(Q)) for the chromatin-like polymer (A) and

the homopolymer (B). The correlation coefficients between the two energies are -0.32 and

-0.15, respectively. Therefore, without removing entropic contributions, the correlation

between VAE and MD energy is much worse compared to that shown in Fig 4 of the main

text.

(TIF)

S8 Fig. Variation of the (A) interaction energy and (B) entropy of the reference polymer in

the unit of kBT along the folding coordinate. The energies were estimated using the mean

number of contacts found in imaged chromatin structures at various folding coordinates.

Since the interaction energy for the reference polymer is nearly the same for different folding

coordinates, contributions to the free energy change, ΔF(Q), mainly comes form the entropy,

i.e., DSðQÞ � Dlog Pref
VAEðQÞ.

(TIF)

S9 Fig. Free energy after considering mixing entropy and probability distributions of the

cells along the folding coordinate. Figs 6A and 5E of the main text represent different quanti-

ties and are not supposed to agree with each other. In particular, in Fig 6A, we are plotting

hFðQÞiq¼qo ¼ � hlog½PVAEðQÞiq¼qo : The angular brackets h� � �iq¼qo represent averaging over

chromatin structures at a given folding coordinate q. This quantity differs from the free energy

at the folding coordinate by the mixing entropy, i.e. FðqoÞ ¼ hFðQÞiq¼qo � TSðqoÞ; where T = 1

is the temperature. The mixing entropy S(qo) accounts for the number of possible configura-

tions Q = {Qij} at the folding coordinate q = qo. Wolynes and coworkers [J. Mol. Biol., 1999,

287:657-674] have introduced an approximate expression the mixing entropy as S(qo) = Sij

Qij(qo) log[Qij(qo)] + (1 − Qij(qo)) log[1 − Qij(qo)]. Qij(qo) denotes the average contact probabil-

ity between pairs i and j computed using all chromatin structures with a folding coordinate of

qo. Using the above expression for S(qo), we computed F(qo) (A) and the corresponding
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probability distribution PðqoÞ ¼ e� FðqoÞR
FðqÞdq

(B). As shown here, the resulting probability distribu-

tions are in good agreement with Fig 5E and 5F. We note that due to the approximate expres-

sion for the mixing entropy, an exact match is not expected.

(TIF)

S10 Fig. Folding coordinate definition is robust to the cutoff used to convert distance

matrices into binary contacts for VAE model training. Here we show that the results

obtained from processing the imaging data at 90kb resolution with a binarization cutoff of 400

nm are comparable to those shown in Figs 2 and 3 of the main text. (A) Scatter plot for WT

and cohesin-depleted (ΔCohesin) cells in the two-dimensional space of latent variables learned

from VAE. The black line represents the decision boundary and the folding coordinate is

defined as the distance from the boundary. (B) Probability distributions of the folding coordi-

nate for chromatin structures from WT and cohesin-depleted cells. (C) Correlation between

the folding coordinate and the fraction of chromatin segments that form contacts within the

TADs determined separately using structures from the two cell types. (D,E) Variation of chro-

matin distance matrices along the folding coordinate for WT (D) and cohesin-depleted cells

(E). Values of the folding coordinate are provided on top of the matrices. Boundary score pro-

files are shown below the maps to highlight TAD boundaries as peaks. Red arrow marks the

segment with the largest boundary score.

(TIF)

S11 Fig. Folding coordinate definition is robust to the resolution of imaging data used for

VAE model training. Here we show that the results obtained from processing the imaging

data at 30kb resolution with a binarization cutoff of 300 nm are comparable to those shown in

Figs 2 and 3 of the main text. (A) Scatter plot for WT and cohesin-depleted (ΔCohesin) cells in

the two-dimensional space of latent variables learned from VAE. The black line represents the

decision boundary and the folding coordinate is defined as the distance from the boundary.

(B) Probability distributions of the folding coordinate for chromatin structures from WT and

cohesin-depleted cells. (C) Correlation between the folding coordinate and the fraction of

chromatin segments that form contacts within the TADs determined separately using struc-

tures from the two cell types. (D,E) Variation of chromatin distance matrices along the folding

coordinate for WT (D) and cohesin-depleted cells (E). Values of the folding coordinate are

provided on top of the matrices. Boundary score profiles are shown below the maps to high-

light TAD boundaries as peaks. Red arrow marks the segment with the largest boundary score.

(TIF)

S1 Table. Number of WT cells at various values of the folding coordinate.

(PDF)

S2 Table. Number of cohesin-depleted cells at various values of the folding coordinate.

(PDF)
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1. Hübner MR, Eckersley-Maslin MA, Spector DL. Chromatin organization and transcriptional regulation.

Curr Opin Genet Dev. 2013; 23(2):89–95. https://doi.org/10.1016/j.gde.2012.11.006 PMID: 23270812

2. Sexton T, Cavalli G. The role of chromosome domains in shaping the functional genome. Cell. 2015;

160(6):1049–1059. https://doi.org/10.1016/j.cell.2015.02.040 PMID: 25768903

3. Hnisz D, Day DS, Young RA. Insulated neighborhoods: structural and functional units of mammalian

gene control. Cell. 2016; 167(5):1188–1200. https://doi.org/10.1016/j.cell.2016.10.024 PMID:

27863240

4. Cramer P. Nuclear organization and regulation of gene expression. Science. 2019; 573:45–54.

5. Stadhouders R, Filion GJ, Graf T. Transcription factors and 3D genome conformation in cell-fate deci-

sions. Nature. 2019; 569(7756):345–354. https://doi.org/10.1038/s41586-019-1182-7 PMID: 31092938

6. Dekker J. Capturing chromosome conformation. Science. 2002; 295(5558):1306–1311. https://doi.org/

10.1126/science.1067799 PMID: 11847345

7. Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehen-

sive mapping of long-range interactions reveals folding principles of the human genome. Science.

2009; 326(5950):289–293. https://doi.org/10.1126/science.1181369 PMID: 19815776

8. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes

identified by analysis of chromatin interactions. Nature. 2012; 485(7398):376–380. https://doi.org/10.

1038/nature11082 PMID: 22495300

9. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, et al. Three-dimensional fold-

ing and functional organization principles of the drosophila genome. Cell. 2012; 148(3):458–472.

https://doi.org/10.1016/j.cell.2012.01.010 PMID: 22265598

10. Hou C, Li L, Qin ZS, Corces VG. Gene density, transcription, and insulators contribute to the partition of

the Drosophila genome into physical domains. Mol Cell. 2012; 48(3):471–484. https://doi.org/10.1016/j.

molcel.2012.08.031 PMID: 23041285

11. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, et al. Spatial partitioning of the regu-

latory landscape of the X-inactivation centre. Nature. 2012; 485(7398):381–385. https://doi.org/10.

1038/nature11049 PMID: 22495304

12. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the

human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014; 159(7):1665–

1680. https://doi.org/10.1016/j.cell.2014.11.021 PMID: 25497547

13. Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional organization of genomes: inter-

preting chromatin interaction data. Nat Rev Genet. 2013; 14(6):390–403. https://doi.org/10.1038/

nrg3454 PMID: 23657480

14. Fraser J, Williamson I, Bickmore WA, Dostie J. An overview of genome organization and how we got

there: from FISH to Hi-C. Microbiol Mol Biol Rev. 2015; 79(3):347–372. https://doi.org/10.1128/MMBR.

00006-15 PMID: 26223848

PLOS COMPUTATIONAL BIOLOGY Deep learning chromatin folding

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008262 September 28, 2020 16 / 19

https://doi.org/10.1016/j.gde.2012.11.006
http://www.ncbi.nlm.nih.gov/pubmed/23270812
https://doi.org/10.1016/j.cell.2015.02.040
http://www.ncbi.nlm.nih.gov/pubmed/25768903
https://doi.org/10.1016/j.cell.2016.10.024
http://www.ncbi.nlm.nih.gov/pubmed/27863240
https://doi.org/10.1038/s41586-019-1182-7
http://www.ncbi.nlm.nih.gov/pubmed/31092938
https://doi.org/10.1126/science.1067799
https://doi.org/10.1126/science.1067799
http://www.ncbi.nlm.nih.gov/pubmed/11847345
https://doi.org/10.1126/science.1181369
http://www.ncbi.nlm.nih.gov/pubmed/19815776
https://doi.org/10.1038/nature11082
https://doi.org/10.1038/nature11082
http://www.ncbi.nlm.nih.gov/pubmed/22495300
https://doi.org/10.1016/j.cell.2012.01.010
http://www.ncbi.nlm.nih.gov/pubmed/22265598
https://doi.org/10.1016/j.molcel.2012.08.031
https://doi.org/10.1016/j.molcel.2012.08.031
http://www.ncbi.nlm.nih.gov/pubmed/23041285
https://doi.org/10.1038/nature11049
https://doi.org/10.1038/nature11049
http://www.ncbi.nlm.nih.gov/pubmed/22495304
https://doi.org/10.1016/j.cell.2014.11.021
http://www.ncbi.nlm.nih.gov/pubmed/25497547
https://doi.org/10.1038/nrg3454
https://doi.org/10.1038/nrg3454
http://www.ncbi.nlm.nih.gov/pubmed/23657480
https://doi.org/10.1128/MMBR.00006-15
https://doi.org/10.1128/MMBR.00006-15
http://www.ncbi.nlm.nih.gov/pubmed/26223848
https://doi.org/10.1371/journal.pcbi.1008262


15. Parmar JJ, Woringer M, Zimmer C. How the genome folds: the biophysics of four-dimensional chroma-

tin organization. Annu Rev Biophys. 2019; 48(1):231–253. https://doi.org/10.1146/annurev-biophys-

052118-115638 PMID: 30835504

16. Sanborn AL, Rao SSP, Huang SC, Durand NC, Huntley MH, Jewett AI, et al. Chromatin extrusion

explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl

Acad Sci USA. 2015; 112(47):E6456–E6465. https://doi.org/10.1073/pnas.1518552112 PMID:

26499245

17. Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. Formation of chromosomal

domains by loop extrusion. Cell Rep. 2016; 15(9):2038–2049. https://doi.org/10.1016/j.celrep.2016.04.

085 PMID: 27210764

18. Tang Z, Luo OJJ, Li X, Zheng M, Zhu JJJ, Szalaj P, et al. CTCF-mediated human 3D genome architec-

ture reveals chromatin topology for transcription. Cell. 2015; 163(7):1611–1627. https://doi.org/10.

1016/j.cell.2015.11.024 PMID: 26686651

19. Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin DU, et al. CRISPR inversion of CTCF sites alters genome

topology and enhancer/promoter function. Cell. 2015; 162(4):900–910. https://doi.org/10.1016/j.cell.

2015.07.038 PMID: 26276636

20. de Wit E, Vos ESM, Holwerda SJB, Valdes-Quezada C, Verstegen MJAM, Teunissen H, et al. CTCF

binding polarity determines chromatin looping. Mol Cell. 2015; 60(4):676–684. https://doi.org/10.1016/j.

molcel.2015.09.023 PMID: 26527277
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