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Abstract

The cell is compartmentalised into complex micro-environments allowing an array of spe-

cialised biological processes to be carried out in synchrony. Determining a protein’s sub-

cellular localisation to one or more of these compartments can therefore be a first step in

determining its function. High-throughput and high-accuracy mass spectrometry-based

sub-cellular proteomic methods can now shed light on the localisation of thousands of pro-

teins at once. Machine learning algorithms are then typically employed to make protein-

organelle assignments. However, these algorithms are limited by insufficient and incomplete

annotation. We propose a semi-supervised Bayesian approach to novelty detection, allow-

ing the discovery of additional, previously unannotated sub-cellular niches. Inference in our

model is performed in a Bayesian framework, allowing us to quantify uncertainty in the allo-

cation of proteins to new sub-cellular niches, as well as in the number of newly discovered

compartments. We apply our approach across 10 mass spectrometry based spatial proteo-

mic datasets, representing a diverse range of experimental protocols. Application of our

approach to hyperLOPIT datasets validates its utility by recovering enrichment with chroma-

tin-associated proteins without annotation and uncovers sub-nuclear compartmentalisation

which was not identified in the original analysis. Moreover, using sub-cellular proteomics

data from Saccharomyces cerevisiae, we uncover a novel group of proteins trafficking from

the ER to the early Golgi apparatus. Overall, we demonstrate the potential for novelty detec-

tion to yield biologically relevant niches that are missed by current approaches.

This is a PLOS Computational Biology Methods paper.
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Introduction

Aberrant protein sub-cellular localisation has been implicated in numerous diseases, including

cancers [1], obesity [2], and multiple others [3]. Furthermore, recent estimates suggest that up

to 50% of proteins reside in multiple locations with potentially different functions in each sub-

cellular niche [4, 5]. Characterising the sub-cellular localisation of proteins is therefore of criti-

cal importance in order to understand the pathobiological mechanisms and aetiology of many

diseases. Proteins are compartmentalised into sub-cellular niches, including organelles, sub-

cellular structures, liquid phase droplets and protein complexes. These compartments ensure

that the biochemical conditions for proteins to function correctly are met, and that they are in

the proximity of interaction partners [6]. A common approach to map the global sub-cellular

localisation of proteins is to couple gentle cell lysis with high-accuracy mass spectrometry

(MS) [4, 7–9]. These methods are designed to yield fractions differentially enriched in the sub-

cellular compartments rather than purifying the compartments into individual fractions. As

such, these spatial proteomics approaches aim to interrogate the greatest number of sub-cellu-

lar niches possible by relying upon rigorous data analysis and interpretation [10, 11].

Current computational approaches in MS-based spatial proteomics utilise machine learn-

ing algorithms to make protein-organelle assignments (see [11] for an overview). Within this

framework, novelty detection, the process of identifying differences between testing and train-

ing data, has multiple benefits. For model organisms with well annotated proteomes, novelty

detection can potentially uncover groups of proteins with shared sub-cellular niches not

described by the training data. Novelty detection can also prove useful in validating experi-

mental design, either by demonstrating that contaminants have been removed or that

increased resolution of organelle classes has been achieved by the experimental approach. For

most non-model organisms, we have little a priori knowledge of their sub-cellular proteome

organisation, making it challenging to curate the marker set (training dataset) from the litera-

ture [12]. In these cases, novelty detection can assist in annotating the spatial proteome.

Crucially, if a dataset is insufficiently annotated, i.e sub-cellular niches detectable in the experi-

mental data are missing from the marker set, then this leads to the classifier making erroneous

assignments, resulting in inflated false discovery rate (FDR) and uncertainty estimates (where

available). Thus, novelty detection is a useful feature for any classifier, even if novel niche

detection is not a primary aim.

Previous efforts to discover novel niches within existing sub-cellular proteomics datasets

have proved valuable. [13] presented a phenotype discovery algorithm called phenoDisco
to detect novel sub-cellular niches and alleviate the issue of undiscovered phenotypes. The

algorithm uses an iterative procedure and the Bayesian Information Criterion (BIC) [14] is

employed to determine the number of newly detected phenotypes. Afterwards, the dataset can

be re-annotated and a classifier employed to assign proteins to organelles, including those that

have been newly detected. [13] applied their method on several datasets and discovered new

organelle classes in Arabidopsis [15] and Drosophila [16]. This approach later successfully

identified the trans-Golgi network (TGN) in Arabidopsis roots [17].

Recent work has demonstrated the importance of uncertainty quantification in spatial pro-

teomics [18–20]. [18] proposed a generative classification model and took a Bayesian approach

to spatial proteomics data analysis by computing probability distributions of protein-organelle

assignments using Markov-chain Monte-Carlo (MCMC). These probabilities were then used

as the basis for organelle allocations, as well as to quantify the uncertainty in these allocations.

On the basis that some proteins cannot be well described by any of the annotated sub-cellular

niches, a multivariate Student’s T distribution was included in the model to enable outlier

detection. The proposed T-Augmented Gaussian Mixture (TAGM) model was shown to

PLOS COMPUTATIONAL BIOLOGY Bayesian novelty detection and sub-cellular localisation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008288 November 9, 2020 2 / 21

Mathematical Genomics and Medicine student

funded by the Cambridge School of Clinical

Medicine. A BBSRC case award to OV BB/

R505365/1. As well as MRC awards to PDWK

MC_UU_00002/13 and MC_UU_00002/10. AG

was funded through the Alexander S. Onassis

Public Benefit Foundation, the Foundation for

Education and European Culture (IPEP), the A. G.

Leventis Foundation and the Embiricos Trust

Scholarship of Jesus College Cambridge. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript. This work was supported by the

National Institute for Health Research [Cambridge

Biomedical Research Centre at the Cambridge

University Hospitals NHS Foundation Trust] [�].
�The views expressed are those of the authors and

not necessarily those of the NHS, the NIHR or the

Department of Health and Social Care. KSL is

supported by the Wellcome Trust 110071/Z/15/Z.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1008288


achieve state-of-the-art predictive performance against other commonly used machine learn-

ing algorithms [18]. Furthermore, the model has been successfully applied to reveal unrivalled

insight into the spatial organisation of Toxoplasma gondii [12] and identify cargo of the Gol-

gins of the trans-Golgi network [21].

Here, we propose an extension to TAGM to allow simultaneous protein-organelle assign-

ments and novelty detection. One assumption of the existing TAGM model is that the number

of sub-cellular niches is known. Here, we design a novelty detection algorithm based on allow-

ing an unknown number of additional sub-cellular niches, as well as quantifying uncertainty

in this number.

Quantifying uncertainty in the number of clusters in a Bayesian mixture model is challeng-

ing and many approaches have been proposed in the literature (see for example [22–24] and

the appendix for further details). Here, we make use of asymptotic results in Bayesian analysis

of mixture models [25]. The principle of overfitted mixtures allows us to specify a (possibly

large) maximum number of clusters. As shown in [25] these components empty if they are not

supported by the data, allowing the number of clusters to be inferred. [26] previously made

use of this approach in the Bayesian integrative modelling of multiple genomic datasets. In our

application, some of the organelles may be annotated with known marker proteins and this

places a lower bound on the number of sub-cellular niches. Bringing these ideas together

results in a semi-supervised Bayesian approach, which we refer to as Novelty TAGM (Fig 1.

Table 1 summarises the differences between the current available machine-learning methods

for spatial proteomics.

We apply Novelty TAGM to 10 spatial proteomic datasets across a diverse range of proto-

cols, including hyperLOPIT [4, 7], LOPIT-DC [8], Dynamic Organellar Maps (DOM) [27] and

spatial-temporal methods [28]. Application of Novelty TAGM to each dataset reveals addi-

tional biologically relevant compartments. Notably, we detect 4 sub-nuclear compartments in

the the U-2 OS hyperLOPIT dataset: the nucleolus, nucleoplasm, chromatin-associated, and

the nuclear membrane. In addition, an endosomal compartment is robustly identified across

Fig 1. An overview of novelty detection in subcellular proteomics.

https://doi.org/10.1371/journal.pcbi.1008288.g001

PLOS COMPUTATIONAL BIOLOGY Bayesian novelty detection and sub-cellular localisation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008288 November 9, 2020 3 / 21

https://doi.org/10.1371/journal.pcbi.1008288.g001
https://doi.org/10.1371/journal.pcbi.1008288


hyperLOPIT and LOPIT-DC datasets. Finally, we also uncover collections of proteins with pre-

viously uncharacterised localisation patterns; for example, vesicle proteins trafficking from the

ER to the early Golgi in Saccharomyces cerevisiae.

Methods

Datasets

We provide a brief description of the datasets used in this manuscript. We analyse hyperLOPIT

data, in which sub-cellular fractionation is performed using density-gradient centrifugation [7,

15, 32], on pluripotent mESCs (E14TG2a) [4], human bone osteosarcoma (U-2 OS) cells [5,

8], and S. cerevisiae (baker’s yeast) cells [33]. The mESC dataset combines two 10-plex biologi-

cal replicates and quantitative information on 5032 proteins. The U-2 OS dataset combines

three 20-plex biological replicates and provides information on 4883 proteins. The yeast data-

set represents four 10-plex biological replicate experiments performed on S. cerevisiae cultured

to early-mid exponential phase. This dataset contains quantitative information for 2846 pro-

teins that were common across all replicates. Tandem Mass Tag (TMT) [34] labelling was used

in all hyperLOPIT experiments with LC-SPS-MS3 used for high accuracy quantitation [35, 36].

[28] integrated a temporal component to the LOPIT protocol. They analysed HCMV-infected

primary fibroblast cells over 5 days, producing control and infected maps every 24 hours. We

analyse the control and infected maps 24 hours post-infection, providing information on 2220

and 2196 proteins respectively. In a comparison with phenoDisco, we apply Novelty TAGM to

a dataset acquired using LOPIT-based fractionation and 8-plex iTRAQ labelling on the HEK-

293 human embryonic kidney cell line, quantifying 1371 proteins [13].

Our approach is not limited to spatial proteomics data where the sub-cellular fractionation

is performed using density gradients. We demonstrate this through the analysis of DOM data-

sets on HeLa cells and mouse primary neurons [27, 37], which quantify 3766 and 8985 proteins

respectively. These approaches used SILAC quantitation with differential centrifugation-based

fractionation. We analyse 6 replicates from the HeLa cell line analyses in [27] and 3 replicates

from the mouse primary neuron experiments in [37]. [38] also used the DOM protocol cou-

pled with CRISPR-CAS9 knockouts in order to explore the functional role of AP-5. We analyse

the control map from this experiment. Finally, we consider the U-2 OS data which were

acquired using the LOPIT-DC protocol [8] and quantified 6837 proteins across 3 biological

Table 1. Examples of computational methods for spatial proteomics datasets for prediction and novelty detection.

MS-based Spatial Proteomics Computational Methods for Prediction and Novelty Detection

Method Localisation

prediction

Uncertainty in

protein localisation

Outlier

detection

Novelty

detection

Uncertainty in number

of novel phenotypes

Uncertainty in

allocation to new

phenotypes

Integrative

Supervised Machine

Learning (as reviewed in

[11])

✓ ✘ ✘ ✘ ✘ ✘ ✘

Correlation Profiling [29,

30]

✓ ✘ ✘ ✘ ✘ ✘ ✘

Transfer Learning [31] ✓ ✘ ✘ ✘ ✘ ✘ ✓

Mclust (as used in [9]) ✘ ✘ ✓ ✓ ✘ ✘ ✘
PhenoDisco [13] ✘ ✘ ✓ ✓ ✘ ✘ ✘
TAGM [18] ✓ ✓ ✓ ✘ ✘ ✘ ✘
Novelty TAGM (This

manuscript)

✓ ✓ ✓ ✓ ✓ ✓ ✘

https://doi.org/10.1371/journal.pcbi.1008288.t001
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replicates. In favour of brevity, we do not consider protein correlation profiling (PCP) based

spatial proteomics datasets in this manuscript, though our method also applies to such data

[29, 39, 40] and other sub-cellular proteomics methods which utilised cellular fractionation

[9].

Model

Spatial proteomics mixture model. In this section, we briefly review the TAGM model

proposed by [18]. Let N denote the number of observed protein profiles each of length L, cor-

responding to the number of quantified fractions. The quantitative profile for the i-th protein

is denoted by xi = [x1i,. . .,xLi]. In the original formulation of the model it is supposed that there

are K known sub-cellular compartments to which each protein could be localised (e.g. cytosol,

endoplasmic reticulum, mitochondria, . . .). For simplicity of exposition, we refer to these K
sub-cellular compartments as components, and introduce component labels zi, so that zi = k if

the i-th protein localises to the k-th component. To fix notation, we denote by XL the set of

proteins whose component labels are known, and by XU the set of unlabelled proteins. If pro-

tein i is in XU, we seek to evaluate the probability that zi = k for each k = 1, . . ., K; that is, for

each unlabelled protein, we seek the probability of belonging to each component (given a

model and the observed data).

The distribution of quantitative profiles associated with each protein that localises to the k-

th component is modelled as multivariate normal with mean vector μk and covariance matrix

Sk. However, many proteins are dispersed and do not fit this assumption. To model these

“outliers”, [18] introduced a further indicator variable ϕ. Each protein xi is then described by

an additional variable ϕi, with ϕi = 1 indicating that protein xi belongs to an organelle-derived

component and ϕi = 0 indicating that protein xi is not well described by these known compo-

nents. This outlier component is then modelled as a multivariate T distribution with degrees of

freedom κ, mean vector M, and scale matrix V. Thus the model can be written as:

xijzi ¼ k; �i � N ðμk;SkÞ
�iT ðk;M;VÞ1� �i : ð1Þ

Let f(x|μ, S) denote the density of the multivariate normal with mean vector μ and covari-

ance matrix S evaluated at x, and similarly let g(x|κ, M, V) denote the density of the multivari-

ate T-distribution. For any i, the prior probability of the i-th protein localising to the k-th

component is denoted by p(zi = k) = πk. Letting θ ¼ fμk;Skg
K
k¼1

denote the set of all compo-

nent mean and covariance parameters, and π ¼ fpkg
K
k¼1

denote the set of all mixture weights,

it follows that:

pðxijθ; π; �i; k;M;VÞ ¼
XK

k¼1

pkðf ðxijμk;SkÞ
�i gðxijk;M;VÞ

1� �iÞ: ð2Þ

For any i, we set the prior probability of the i-th protein belonging to the outlier component

as p(ϕi = 0) = �, where � is a parameter that we infer.

Eq (2) can then be rewritten in the following way:

pðxijθ; π; k; �;M;VÞ ¼
XK

k¼1

pkðð1 � �Þðf ðxijμk;SkÞ þ �gðxijk;M;VÞÞ; ð3Þ

As in [18], we fix κ = 4, M as the global empirical mean, and V as half the global empirical

variance of the data, including labelled and unlabelled proteins. To extend this model to permit

novelty detection, we specify the maximum number of components Kmax > K. Our proposed

model then allows up to Knovelty = Kmax − K� 0, new phenotypes to be detected. Eq 3 can then
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be written as

pðxijθ; π; k; �;M;VÞ ¼
XK

k¼1

pkðð1 � �Þðf ðxijμk;SkÞ þ �gðxijk;M;VÞÞÞ

þ
XKmax

k¼Kþ1

pkðð1 � �Þðf ðxijμk;SkÞ þ �gðxijk;M;VÞÞÞ;

ð4Þ

where, in the first summation, the K components correspond to known sub-cellular niches

and the second summation corresponds to the new phenotypes to be inferred. The parameter

sets are then augmented to include these possibly new components; that is, we redefine

θ ¼ fμk;Skg
Kmax
k¼1

to denote the set of all component mean and covariance parameters, and

π ¼ fpkg
Kmax
k¼1

denotes the set of all mixture weights. Relying on the principle of over-fitted mix-

tures [25], components that are not supported by the data are left empty with no proteins allo-

cated to them. We find setting Knovelty = 10 is ample to detect new phenotypes. To complete

our Bayesian model, we need to specify priors. Detailed prior specifications and sensitivity

analysis are provided in the S1 Text.

Bayesian inference and convergence. We perform Bayesian inference using Markov-

chain Monte-Carlo methods. We make modifications to the collapsed Gibbs sampler approach

used previously in [18] to allow inference to be performed for the parameters of the novel com-

ponents (see S1 Text for full details). Since the number of occupied components at each itera-

tion is random, we monitor this quantity as a convergence diagnostic.

Visualising patterns in uncertainty. To simultaneously visualise the uncertainty in the

number of newly discovered phenotypes, as well as the uncertainty in the allocation of proteins

to new components, we use the so-called posterior similarity matrix (PSM) [41]. The PSM is an

N × N matrix where the (i, j)th entry is the posterior probability that protein i and protein j
reside in the same component. Throughout we use a heatmap representation of this quantity.

The PSM is summarised into a clustering by maximising the posterior expected adjusted Rand

index (see appendix for details; [41]). Formulating inference around the PSM also avoids some

technical statistical challenges, which are discussed in detail in the appendix.

Uncertainty quantification. We may be interested in quantifying the uncertainty in

whether a protein belongs to a new sub-cellular component. Indeed, it is important to distin-

guish whether a protein belongs to a new phenotype or if we simply have large uncertainty

about its localisation. The probability that protein i belongs to a new component is computed

from the following equation:

Pðzi 2 fK þ 1; . . . ;KmaxgjXÞ ¼ 1 � Pðzi 2 f1; . . . ;KgjXÞ; ð5Þ

which we approximate by the following Monte-Carlo average:

1 �
1

T

XT

t¼1

PðzðtÞi 2 f1; . . . ;KgjXÞ ¼ 1 �
1

T

XT

t¼1

XK

k¼1

PðzðtÞi ¼ kjXÞ; ð6Þ

where T is the number of Monte-Carlo iterations. Throughout, we refer to Eq 6 as the discovery
probability.

Applying the model in practice. Applying Novelty TAGM to spatial proteomics datasets

consists of several steps. After having run the algorithm on a dataset and assessing conver-

gence, we proceed to explore the ouput of the method. We explore putative phenotypes, which

we define as newly discovered clusters with at least 1 protein with discovery probability greater

than 0.95.
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Validating computational approaches

In a supervised framework the performance of computational methods can be assessed by

using the training data, where a proportion of the training data is withheld from the classifier

to be used for the assessment of predictive performance. In an unsupervised or semi-super-

vised framework we cannot validate in this way, since there is no “ground truth” with which to

compare. Thus, we propose several approaches, using external information, for validation of

our method.

Artificial masking of annotations to recover experimental design. Removing the labels

from an entire component and assessing the ability of our method to rediscover these labels is

one form of validation. We consider this approach for several of the datasets; in particular,

chromatin enrichment was performed in two of the hyperLOPIT experiments, where the

intention was to increase the resolution between chromatin and non-chromatin associated

nuclear proteins [4, 5, 7]. As validation of our method we hide these labels and seek to redis-

cover them in an unbiased fashion.

The Human Protein Atlas. A further approach to validating our method is to use addi-

tional spatial proteomic information. The Human Protein Atlas (HPA) [5, 42] provides confo-

cal microscopy information on thousands of proteins, using validated antibodies. When we

consider a dataset for which there is HPA annotation, we use this data to validate the novel

phenotypes for biological relevance.

Gene Ontology (GO) term enrichment. Throughout, we perform GO enrichment analy-

sis with FDR control performed according to the Benjamini-Höchberg procedure [43–45].

The proteins in each novel putative phenotype are assessed in turn for enriched Cellular Com-

ponent terms, against the background of all quantified proteins in that experiment.

Robustness across multiple MS-based spatial proteomics datasets. On occasion some

cell lines have been analysed using multiple spatial proteomics technologies [8]. In these cases,

the putative phenotypes discovered by Novelty TAGM are compared directly. If the same phe-

notype is discovered in different proteomic datasets we consider this as robust evidence for

sufficient resolution of that phenotype.

Results

Motivated by the need for novelty detection methods which also quantify the uncertainty in

the number of clusters and the assignments of proteins to each cluster, we developed Novelty

TAGM (see Methods). This approach extends our previous TAGM model [18] to enable the

detection of novel putative phenotypes, which we define as newly discovered clusters with at

least 1 protein with discovery probability greater than 0.95. Our proposed methodology allows

us to interrogate individual proteins to assess whether they belong to a newly discovered phe-

notype. Through the posterior similarity matrix (PSM) we can visualise the global patterns in

the uncertainty in phenotype discovery (see supplement). We summarise this posterior simi-

larity matrix into a single clustering by maximising the posterior expected adjusted rand index

(see Methods). This methodology infers the number of clusters supported by the data, in con-

trast to many existing approaches which require specification of the number of clusters (such

as K-means or Mclust [46]). To demonstrate the value of this approach, we applied Novelty

TAGM to a diverse set of spatial proteomics datasets.

Validating experimental design in hyperLOPIT

Initially, we validated Novelty TAGM in a setting where we have a strong a priori expectation

for the presence of an unannotated niche. For this we used a human bone osteosarcoma cell

(U-2 OS) hyperLOPIT dataset [5] and an mESC hyperLOPIT dataset [4]. These experimental
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protocols used a chromatin enrichment step to resolve nuclear chromatin-associated proteins

from nuclear proteins not associated with chromatin. Removing the nuclear, chromatin and

ribosomal annotations from the datasets, we test the ability of Novelty TAGM to recover them.

Human bone osteosarcoma (U-2 OS) cells. For the U-2 OS dataset, Novelty TAGM

reveals 9 putative phenotypes, which we refer to as phenotype 1, phenotype 2, etc. . . These

phenotypes, along with the uncertainty associated with them, are visualised in Fig 2. We con-

sider the HPA confocal microscopy data for validation [5, 42]. The HPA provides information

on the same cell line and therefore constitutes an excellent complementary resource. This

hyperLOPIT dataset was already shown to be in strong agreement with the microscopy data

[5, 8]. Proteins in phenotypes 3, 4, 5 and 8 have a nucleus-related annotation as their most fre-

quent HPA annotation, as well as differential enrichment of nucleus-related GO terms (Fig 2).

Fig 2. (a) PCA plot of the hyperLOPIT U-2 OS cancer cell line data. Points are scaled according to the discovery probability with larger points

indicating greater discovery probability. (b) Heatmaps of the posterior similarity matrix derived from U-2 OS cell line data demonstrating the

uncertainty in the clustering structure of the data. We have only plotted the proteins which have greater than 0.99 probability of belonging to a new

phenotype and probability of being an outlier less than 0.5 for the U-2 OS dataset to reduce the number of visualised proteins. (c) Tile plot of

discovered phenotypes against GO CC terms to demonstrate over-representation, where the colour intensity is the -log10 of the p-value.

https://doi.org/10.1371/journal.pcbi.1008288.g002
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Phenotype 3 validates the chromatin enrichment preparation (Fig 2C) and phenotype 4 reveals

a nucleoli cluster, where nucleoli and nucleoli/nucleus are the 2nd and 3rd most frequent HPA

annotations for proteins belonging to this phenotype. For phenotype 5, the most associated

term is nucleoplasm from the HPA data and this is further supported by GO analysis (Fig 2C).

Phenotype 8 demonstrates further sub-nuclear resolution and has nuclear membrane as its

most frequent HPA annotation and has corresponding enriched GO terms (Fig 2C). In addi-

tion, phenotypes 1 and 2 are enriched for ribosomes and endosomes respectively.

Pluripotent mESCs (E14TG2a). In the case of the mESC dataset, Novelty TAGM reveals

8 new putative phenotypes. The chromatin enrichment preparation is also validated in these

cells, as well as new phenotypes with additional annotations such nucleolus and centrosome
(see S1 Text). We also used this dataset to explore how our results are impacted if we reduce

the number of markers from other niches (see S1 Text).

Uncovering additional sub-cellular structures

Having validated the ability of Novelty TAGM to recover known experimental design, as well

as uncover additional sub-cellular niches resolved in the data, we turn to apply Novelty TAGM

to several additional datasets.

U-2 OS cell line revisited. We first consider the LOPIT-DC dataset on the U-2 OS cell

line [8]. Again, we removed the nuclear, proteasomal, and ribosomal annotations. Novelty

TAGM reveals 10 putative phenotypes (Fig 3).

In a similar vein to the analysis performed on the hyperLOPIT U-2 OS dataset, we initially

use the available HPA data to validate these clusters [5]. Phenotypes 3, 5, 7 and 9 display

nucleus-associated terms as their most frequent HPA annotation. Clear differential enrich-

ment of phenotypes with GO Cellular Component terms is evident from Fig 3E. This analysis

reveals nucleolus, ribosome, proteasome phenotypes. Furthermore, a chromatin phenotype is

also resolved. Notably, this is the first evidence for sub-nuclear resolution in this LOPIT-DC

dataset. Phenotype 6 represents a cluster with mixed plasma membrane and extracellular
matrix annotations and this is supported by HPA annotation with vesicles, cytosol, and plasma

membrane being the top three annotations. An extracellular matrix-related phenotype was not

previously known in these data and might correspond to exocytic vesicles containing ECM

proteins. Furthermore, phenotype 8 is significantly enriched for endosomes, again a novel

annotation for this data. In addition, 107 of the proteins in this phenotype are also localised

to the endosome-enriched phenotype presented in the U-2 OS hyperLOPIT dataset (section

Human bone osteosarcoma (U-2 OS) cells). Thus, we robustly identify new phenotypes across

different spatial proteomics protocols. Hence, we have presented strong evidence for addi-

tional annotations in this dataset, beyond the original analysis of the data [8]. In particular,

although a separate chromatin enrichment preparation was not included in the U-2 OS

LOPIT-DC analysis and the original authors did not identify sufficient resolution between the

nucleus and chromatin clusters in this dataset, Novelty TAGM could, in fact, reveal a chroma-

tin-associated phenotype in the U-2 OS LOPIT-DC data. In addition, we have joint evidence

for an endosomal cluster in both the LOPIT-DC and hyperLOPIT datasets. Finally, through

the discovery probability and by using the PSMs we have quantified uncertainty in these pro-

posed phenotypes, enabling more rigorous interrogation of these datasets.

Saccharomyces cerevisiae. Novelty TAGM uncovers 8 putative phenotypes in the yeast

hyperLOPIT data [33]. Four of these phenotypes have no significant over-represented annota-

tions. Fig 3F demonstrates that the remaining four phenotypes are differentially enriched for

GO terms. Firstly, a mixed cell periphery and fungal-type vacuole phenotype is uncovered

along with a kinetochore phenotype, and a cytoskeleton phenotype. Phenotype 8 represents a
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Fig 3. (a, c) PCA plots of the LOPIT-DC U-2 OS data and the hyper LOPIT yeast data. The points are scaled according to the discovery

probability. (b, d) Heatmaps of the posterior similarity matrix derived from the U-2 OS and yeast datasets demonstrating the uncertainty in the

clustering structure of the data. We have only plotted the proteins which have greater than 0.99 probability of belonging to a new phenotype and

probability of being an outlier less than 0.95 (10−5 for LOPIT-DC to reduce the number of visualised proteins). (e, f) Tile plots of phenotypes

against GO CC terms where the colour intensity is the -log10 of the p-value.

https://doi.org/10.1371/journal.pcbi.1008288.g003
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joint Golgi and ER cluster with several enriched GO terms. Indeed, most of the proteins in this

phenotype have roles in the early secretory pathway that involve either transport from the ER

to the early Golgi apparatus, or retrograde transport from the Golgi to the ER [47–50], (also

reviewed in [51]). To be precise, 11 out of the total 20 proteins in this cluster are annotated as

core components of COPII vesicles and 6 associated with COPI vesicles. The protein Ksh1p

(Q8TGJ3) is further suggested through homology with higher organisms to be part of the early

secretory pathway [52]. The proteins Scw4p (P53334), Cts1p (P29029) and Scw10p (Q04951)

[53], as well as Pst1p (Q12355) [54], and Cwp1p (P28319) [55], however, are annotated in the

literature as localising to the cell wall or extracellular region. It is therefore possible that their

predicted co-localisation with secretory pathway proteins observed here reflects a proportion

of their lifecycle being synthesised or spent trafficking through the secretory pathway. The pro-

tein Ssp120p (P39931) is of unknown function and has been shown to localise in high through-

put studies to the vacuole [50] and to the cytoplasm in a punctate pattern [56]. The localisation

observed here may suggest that it is therefore either part of the secretory pathway, or trafficks

through the secretory organelles for secretion or to become a constituent of the cell wall.

Fibroblast cells. We also uncover additional annotations for the HCMV infected and the

control fibroblast spatial proteomics datasets [28]; such as, sub-mitochondrial annotations, as

well as resolution of the small and large ribosomal sub-units. These annotations were over-

looked in the original analysis [28] and further details can be found in the S1 Text.

Refining annotation in organellar maps

The Dynamic Organellar Maps (DOM) protocol was developed as a faster method for MS-

based spatial proteomic mapping, albeit at the cost of lower organelle resolution [27, 57]. The

three datasets analysed here are two HeLa cell lines [27, 38] and a mouse primary neuron data-

set [37]. All three of these datasets have been annotated with a class called “large protein com-

plexes”. This class contains a mixture of cytosolic, ribosomal, proteasomal and nuclear sub-

compartments that pellet during the centrifugation step used to capture this mixed fraction

[27]. We apply Novelty TAGM to these data and remove this “large protein complexes” class,

to derive more precise annotations for these datasets.

HeLa cells (Itzhak et. al 2016). The HeLa dataset of [27] has 3 additional phenotypes

uncovered by Novelty TAGM. Fig 4C shows a mitochondrial membrane phenotype, distinct

from the already annotated mitochondrial class. Phenotype 2 represents a mixed cluster with

nucleus-, ribosome- and cytosol-related enriched terms. The final phenotype is enriched for

chromatin and chromosome, suggesting sub-nuclear resolution. Furthermore, as a result of

quantifying uncertainty, we can see that there are potentially more sub-cellular structures in

this data (Fig 4). However, the uncertainty is too great to support these phenotypes.

Mouse primary neurons and HeLa cells (Hirst et. al 2018). Application of Novelty

TAGM to mouse primary neuron data [37] and another HeLa dataset [38] yields further anno-

tations; such as, ribosomal, cytosolic and extracellular annotations (see S1 Text).

Comparison between Novelty TAGM and phenoDisco

Next, we compare an already available novelty detection algorithm, phenoDisco, with Novelty

TAGM. Despite both methods performing novelty detection, the algorithmsare quite distinct.

The first major difference is that Novelty TAGM is a Bayesianmethod that performs uncer-

tainty quantification. Novelty TAGM quantifies the uncertainty in both the number of newly

identified phenotypes and whether individual proteins should belong to a new phenotype. On

the other hand, phenoDisco uses the Bayesian Information Criterion (BIC) to select just a single

clustering, without taking into account the uncertainty in the number of phenotypes, and does
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not provide an estimate of individual protein-to-phenotype allocation uncertainty. Another

difference is the input to both methods; Novelty TAGM uses the data directly, whereas pheno-
Disco takes the top principal components (by default, the first two) as input. PhenoDisco also

requires an additional parameter—the minimum group size. This parameter can be challeng-

ing to specify, since there is a trade-off between identifying functionally relevant phenotypes of

different sizes and picking up small spurious protein clusters. Furthermore, phenoDisco strug-

gles to scale to many of the datasets presented in this manuscript, because it requires iteratively

refitting models and building of an outlier test statistic.

To demonstrate the differences between the two approaches, we apply phenoDisco and

Novelty TAGM to the HEK-293 spatial proteomics dataset interrogated by [13]. The PCA

plots in Fig 5 reveal broad similarities in the location of the discovered phenotypes. Novelty

TAGM provides more information than phenoDisco; for example, we can scale the pointer size

to the discovery probability. We note that both methods reveal 8 putative phenotypes in the

Fig 4. (a) PCA plots of the HeLa data. The pointers are scaled according to their discovery probability. (b) Heatmaps of the HeLa Itzhak data. Only the

proteins with discovery probability greater than 0.99 and outlier probability less than 0.95 are shown. The heatmaps demonstrate the uncertainty in the

clustering structure present in the data. (c) Tile plot of phenotypes against GO CC terms where the colour intensity is the -log10 of the p-value.

https://doi.org/10.1371/journal.pcbi.1008288.g004
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data. Fig 5D and 5E reveals the distribution of proteins across these phenotypes. We conclude

that both approaches are able to discover small and large clusters, with both methods identify-

ing phenotypes with a few proteins, but also phenotypes with greater than 100 proteins. Fig 5F

shows that both methods find the same number of phenotypes; however, not all of these

Fig 5. (a) PCA plot showing marker proteins for the HEK-293 dataset. (b) PCA plot with phenotypes identified by phenoDisco. (c) PCA plot

with phenotypes identified by Novelty TAGM with pointer size scaled to discovery probability. (d, e) Barplots showing the number of proteins

allocated to different phenotypes by phenoDisco and Novelty TAGM respectively. (f) A table demonstrating the number of phenotypes with

functional enrichment for both methods and the number of phenotypes discovered. (g) A heatmap showing the overlap between phenoDisco
and Novelty TAGM allocations.

https://doi.org/10.1371/journal.pcbi.1008288.g005
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phenotypes are functionally enriched. For phenoDisco, four of the phenotypes had at least 1

significant Gene Ontology term, whereas this was true for five of the Novelty TAGM pheno-

types. Fig 5G characterises the protein overlap between the two approaches. We see that both

methods are in broad agreement, with most of the disagreement attributed to cases where one

method assigns a protein as unknown whilst the other allocates to it a phenotype or organelle.

For example, Novelty TAGM associates phenoDisco phenotype 3, which is a lysosome-

enriched phenotype, with the plasma membrane (albeit with low probability). On the other

hand, Novelty TAGM phenotypes 2 and 3, enriched for chromatin and ribosome respectively,

are associated with the mitochondria by phenoDisco. This demonstrates the ability of Novelty

TAGM to derive more biologically meaningful phenotypes.

Improved annotation allows exploration of endosomal processes

Given the information that the U-2 OS hyperLOPIT dataset resolves an endosomal cluster not

previously explored, we perform a re-analysis of this dataset focusing on the endosomes. We

curate a set of marker proteins for the endosomes and add these annotations to the U-2 OS

hyperLOPIT dataset. After which, we apply our Bayesian generative classifier TAGM to the

data with this additional annotation [18]. Protein allocations to each sub-cellular niche are

visualised in the PCA plot of Fig 6A. Fig 6C demonstrates the increased number of proteins

that can be characterised by improved annotation of the U-2 OS cell dataset. Furthermore, we

examine 7 (of 240) proteins with uncertain endosomal localisation, which can be visualised in

each of the violin plots in Fig 6D.

All 7 proteins with uncertain assignment to our new endosome cluster are known to func-

tion in endosome dynamics. Rab5a and Rab5b (P20339; P61020) are isoforms of Rab5, a small

GTPase which is considered a master organiser of the endocytic system, regulating clathrin-

mediated endocytosis and early endosome dynamics [58–65]. RN-tre (Q92738) is a GTPase-

activating protein which controls the activity of several Rab GTPases, including Rab5, and is

therefore a key player in the organisation and dynamics of the endocytic pathway [64, 66].

KIF16B (Q96L93) is a plus end-directed molecular motor which regulates early endosome

motility along microtubules. It is required for the establishment of the steady-state sub-cellular

distribution of early endosomes, as well as the balance between PM recycling and lysosome

degradation of signal transducing cell surface receptors including EGFR and TfR [67, 68].

Notably, it has been demonstrated that KIF16B co-localises with the small GTPase Rab5,

whose isoforms Rab5a and Rab5b we also identified as potentially localised to the endosome

and PM in this dataset. ZNRF2 (Q8NHG8) is an E3 ubiquitin ligase which has been shown to

regulate mTOR signalling as well as lysosomal acidity and homeostasis in mouse and human

cells and has been detected at the endosomes, lysosomes, Golgi apparatus and PM according

to the literature [69, 70]. Ykt6 (O15498) is a SNARE (soluble N-ethylmaleimide-sensitive fac-

tor attachment protein receptor) protein that regulates a wide variety of intracellular traffick-

ing and membrane tethering and fusion processes. The membrane-associated form of Ykt6

has been detected at the PM, ER, Golgi apparatus, endosomes, lysosomes, vacuoles (in yeast),

and autophagosomes as part of various SNARE complexes [71–78]. In line with this, our

results show a mixed sub-cellular distribution for Ykt6 with potential localisation to the endo-

some and cytosol (Fig 6D). EHD3 (Q9NZN3) is an important regulator of endocytic traffick-

ing and recycling, which promotes the biogenesis and stabilisation of tubular recycling

endosomes by inducing early endosome membrane bending and tubulation [79, 80]. We

observe a mixed steady-state potential localisation to the endosome and PM for EHD3 (Fig

6D). This is in agreement with EHD3’s role in recycling endosome-to-PM transport [80–84].

PLOS COMPUTATIONAL BIOLOGY Bayesian novelty detection and sub-cellular localisation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008288 November 9, 2020 14 / 21

https://doi.org/10.1371/journal.pcbi.1008288


Of these 7 proteins with uncertain endosome assignment, only 4 have localisations annotated

in HPA (Fig 6(b)). The HPA assigns Rab5b to the vesicles which, in this context, include the

endosomes, lysosomes, peroxisomes and lipid droplets. Therefore, a more precise annotation is

available using Novelty TAGM. Ykt6 is localised to the cytosol, in support of our observations.

EHD3 has approved localisation to the plasma membrane, again in agreement with our assign-

ments. KIF16B is assigned to the mitochondrion, which contradicts our findings as well as previ-

ously published literature on the localisation and biological role of this protein. We speculate that

this disagreement arises from the uncertainty associated with the specificity of the chosen anti-

body [5]. Thus, Novelty TAGM enables sub-cellular fractionation-based methods to identify

proteins in sub-cellular niches which can not be fully interrogated by immunocytochemistry.

Fig 6. (a) PCA of U-2 OS hyperLOPIT data with pointer scaled to localisation probability and outliers shrunk. Points are coloured according to their

most probable organelle. (b) Immunofluorescence images and sub-cellular localisation annotation taken from the HPA database (https://www.

proteinatlas.org/humanproteome/cell) for the proteins with UniProt accessions P61020 (Rab5b), O15498 (Ykt6), Q9NZN3 (EHD3), and Q96L93

(KIF16B). The nucleus is stained in blue; microtubules in red, and the antibody staining targeting the protein in green. (c) A barplot representing the

number of proteins allocated before and after re-annotation of the endosomal class. (d) Violin plots of full probability distribution of proteins to

organelles, where each violin plot is for a single protein.

https://doi.org/10.1371/journal.pcbi.1008288.g006
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Discussion

We have presented a semi-supervised Bayesian approach that simultaneously allows probabi-

listic allocation of proteins to organelles, detection of outlier proteins, as well as the discovery

of novel sub-cellular structures. Our method unifies several approaches present in the

literature, combining the ideas of supervised machine learning and unsupervised structure dis-

covery. Formulating inference in a Bayesian framework allows for the quantification of uncer-

tainty; in particular, the uncertainty in the number of newly discovered annotations.

Application of our method across 10 different spatial proteomic datasets acquired using

diverse fractionation and MS data acquisition protocols and displaying varying levels of

resolution revealed additional annotation in every single dataset. Our analysis recovered the

chromatin-associated protein phenotype and validated experimental design for chromatin

enrichment in hyperLOPIT datasets. Our approach also revealed additional sub-cellular niches

in the mESC hyperLOPIT and U-2 OS hyperLOPIT datasets.

Our method revealed resolution of 4 sub-nuclear compartments in the U-2 OS hyperLOPIT

dataset, which were validated by Human Protein Atlas annotations. An additional endosome-

enriched phenotype was uncovered and Novelty TAGM robustly identified an overlapping

phenotype in U-2 OS LOPIT-DC data, providing strong evidence for endosomal resolution.

Further biologically relevant annotations were uncovered in these, as well as other datasets.

For example, a group of vesicle-associated proteins involved in transport from the ER to the

early Golgi was identified in the yeast hyperLOPIT dataset; resolution of the ribosomal sub-

units was identified in the fibroblast dataset, and separate nuclear, cytosolic and ribosomal

annotations were identified in the DOM datasets.

A direct comparison with the state-of-the-art approach phenoDisco demonstrates clear

differences between the approaches. Novelty TAGM, a fully Bayesian approach, quantifies

uncertainty in both the number of newly discovered phenotypes and the individual protein-

phenotype associations—phenoDisco provides no such information.

Improved annotation of the U-2 OS hyperLOPIT data allowed us to explore endosomal

processes, which have not previously been considered with this dataset. We compare our

results directly to immunofluorescence microscopy-based information from the HPA database

and demonstrate the value of orthogonal spatial proteomics approaches to determine protein

sub-cellular localisation. Our results provide insights on the sub-cellular localisation of pro-

teins for which there is no information in the HPA Cell Atlas database.

During our analysis, we observed that the posterior similarity matrices have potential

sub-clustering structures. Many known organelles and sub-cellular niches have sub-com-

partmentalisation, thus methodology to detect these sub-compartments is in preparation.

Furthermore, we have observed that different experiments and different data modalities pro-

vide complementary results. Thus, integrative approaches to spatial proteomics analysis are

also desired.

Our method is widely applicable within the field of spatial proteomics and builds upon

state-of-the-art approaches. The computational algorithms presented here are disseminated as

part of the Bioconductor project [85, 86] building on MS-based data structures provided in

[87] and are available as part of the pRoloc suite, with all data provided in pRolocdata [88].

Supporting information

S1 Text. Analysis of further datasets, additional details of the statistical model, as well as a

sensitivity analysis.

(PDF)
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