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Recently, advances in genomic technology such as RNA sequencing and

genome-wide profiling have enabled the identification of considerable num-

bers of non-coding RNAs (ncRNAs). MicroRNAs have been studied for

decades, leading to the identification of those with disease-causing and/or

protective effects in vascular disease. Although other ncRNAs such as long

ncRNAs have not been fully described yet, recent studies have indicated

their important functions in the development of vascular diseases. Here, we

summarize the current understanding of the mechanisms and functions of

ncRNAs, focusing on microRNAs, circular RNAs and long ncRNAs in

vascular diseases.

Introduction

Although only approximately 2% of the human gen-

ome encodes mRNAs, it is well known that a large

portion of the human genome (approximately 70%) is

transcribed and that the majority of the transcripts are

non-coding RNAs (ncRNAs) (Encyclopedia of DNA

Elements – ENCODE, https://www.encodeproject.org;

Encyclopedia of Genes and Gene Vari-

ants – GENCODE, https://www.gencodegenes.org; or

Functional Annotation of the Mammalian

Genome – FANTOM, https://fantom.gsc.riken.jp).

The group of ncRNAs can be divided into small

ncRNAs [e.g. microRNAs (miRNAs)] and transcripts

> 200 nucleotides, named long ncRNAs (lncRNAs).

Among the 228 000 known transcripts, approximately

7500 are classified as small ncRNAs and 48 000 are

grouped as lncRNAs (GENCODE, version 34).

miRNAs constitute the vast majority of the studied

group of ncRNAs. Extensive research has led to strate-

gies to target disease-relevant miRNAs as potential

therapies. On the other hand, it has already been
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reported that almost 20 000 lncRNAs are functional in

humans (FANTOM5) [1]. Thus, many researchers are

now trying to identify lncRNAs that are related to

vascular biology and diseases. However, lncRNAs

have a wide variety of functions, and even their classi-

fication has not yet been fully determined.

In this review, we describe the current understanding

and functions of miRNAs and lncRNAs, which

include circular RNAs (circRNAs), in vascular biology

and diseases. In particular, we try to classify lncRNAs

in terms of their molecular functions and describe the

current understanding and experimental methods of

ncRNA research in vascular diseases (Fig. 1).

miRNAs

miRNAs are the best studied family of ncRNAs. miR-

NAs are 20–25 nucleotides in length and are known to

regulate protein-coding genes through translational

repression or degradation of mRNAs by binding to

sequences in the 3’-UTR of specific mRNAs. The

mechanisms and the functions of miRNA are well

known and strategies to target miRNAs have already

been developed, including miRNA mimics to augment

their functions, miRNA inhibitors (antisense against

miRNA) and miRNA sponges to suppress their func-

tions. miRNAs are stable in plasma and they have

been proposed as biomarkers of myocardial infarction

(MI) and other vascular diseases.

There is already extensive evidence demonstrating

that miRNAs are involved in many pathological

processes in vascular diseases and atherosclerosis.

Recent reviews have already provided insights into the

mechanisms of how miRNAs exert an influence on

atherosclerosis, their potential use in diagnostics and

strategies for improving RNA therapeutics [2–4]. Thus,
we briefly summarize their regulation in lipid handling,

inflammation and cellular mechanisms, which are

involved in endothelial cell (EC) and vascular smooth

muscle cell (VSMC) proliferation, migration and phe-

notypic switching.

Functions of specific miRNAs in vascular

diseases

Several studies have demonstrated an important role

for miR-21 with respect to negatively regulating

inflammation and suppressing pro-inflammatory sig-

naling cascades [5,6]. In addition to its role in regulat-

ing pro-inflammatory responses, many studies have

already reported that miR-21 has essential functions in

ECs and VSMCs [7–9]. miR-21 targets peroxisome

proliferator-activated receptor-a (PPAR-a), which

modulates flow-induced endothelial inflammation. The

role of miR-21 with respect to VSMC functions and

vascular remodeling is well established [10,11]. The

expression of miR-21 is increased following balloon

angioplasty or vascular injury induced by carotid

artery ligation, as well as in human atherosclerotic

lesions. [10,12]. Moreover, miR21 in hematopoietic

cells is important for the progression of atherosclero-

sis. The lack of miR-21 in hematopoietic cells enhances
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Fig. 1. Schematic classification of ncRNAs

based on the function of each ncRNA.

MicroRNAs are known to suppress target

mRNA functions by degradation or inhibition

of translation. Some circRNAs and lncRNAs

work as miRNA sponges or ceRNAs to

inhibit the functions of miRNAs. lncRNAs

can enhance mRNA transcription working

as enhancer RNAs or by recruiting

transcription factor complexes. Moreover,

they can suppress mRNA transcription as

antisense RNAs. Some ncRNAs may

encode micropeptides at the same time.

Chromatin structure can also be modified

by lncRNAs. Because lncRNAs can bind to

nucleic acids and proteins, there may be

many other functions that are not

illustrated. eRNA, enhancer RNA; RBP, RNA

binding protein; RNA P II, RNA polymerase

II.
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atherosclerosis formation [13]. In addition to its effects

on vascular biology, miR-21 has been implicated in

the pathogenesis of myocardial fibrosis and hypertro-

phy. Currently, the investigation of oligonucleotide-

based therapeutics against miR-21 to prevent cardiac

fibrosis is underway [14].

Recent studies have indicated that miR-33a and

miR-33b control lipid metabolism in vivo [15–19].
These miRNAs are encoded in the introns of sterol

regulatory element binding factor (SREBF)2 and

SREBF1, respectively, in larger mammals, including

humans [16,20]. However, there is a deletion in part of

miR-33b in rodents and miR-33b cannot be expressed.

Several groups, including our own, have reported that

Abca1 and Abcg1 are the targets of miR-33a in vivo

through the use of either antisense oligonucleotides or

by generating miR-33a-deficient mice [15–18]. ATP-

binding cassette transporter subfamily A member 1

(ABCA1) promotes cholesterol efflux to lipid-poor

apolipoprotein A-I and forms nascent high-density

lipoprotein (HDL) particles in the liver and intestine,

whereas ABCG1 transports cellular cholesterol to

HDL2 and HDL3. Therefore, upregulation of ABCA1

and ABCG1 results in a 35–50% increase in plasma

HDL without affecting other lipoproteins in mice trea-

ted with anti-miR-33a-oligonucleotides [15–17]. Simi-

larly, miR-33a-deficient mice demonstrated a 25–40%
increase in HDL [18] and showed reduced atheroscle-

rosis formation in an Apoe-deficient background [21].

On the other hand, miR-33b knock-in mice, in which

miR-33b is inserted in the same intron as in humans,

have levels of HDL-cholesterol that are reduced by

almost 35%, in addition to severe atherosclerosis,

when they are crossed with Apoe-deficient mice [22,23].

Moreover, miR-33a deficiency ameliorates aortic

aneurysm both in Ca2+- and angiotensin II-induced

mice models, which suggested that inhibition of miR-

33 may be a novel therapeutic strategy for abdominal

aortic aneurysm [24]. There are several articles summa-

rizing the role of miRNAs in lipid and lipoprotein

metabolism [25,26].

The miR-17-92 cluster is an important regulator of

angiogenesis. It consists of six mature miRNAs includ-

ing miR-17, -18a, -19a, -19b, -20a and -92a, which are

transcribed from a polycistronic transcription unit

C13orf25 [27]. This region is closely related to the

transcription factor c-Myc, and some of these miR-

NAs promote angiogenesis in response to Myc. In par-

ticular, miR-18 and miR-19 target thrombospondin-1

and connective tissue growth factor to promote tumor

angiogenesis via the stimulation of Myc [28]. On the

other hand, miR-92a in the same cluster inhibits

angiogenesis [29]. Overexpression of miR-92a in ECs

blocks the growth of new blood vessels, and inhibition

of miR-92a leads to enhanced angiogenesis and shows

functional recovery from limb ischemia and MI in

mice. Thus, miR-92a may serve as an important target

for the treatment of ischemic disease. The miR-17-92

cluster also has effects on neurological disorders [30].

miR-126 is an endothelial-specific miRNA encoded

in intron 7 of epidermal growth factor-like domain

multiple 7 (Egfl7). Mechanosensitive transcription fac-

tor Kr€uppel-like factor 2a induces miR-126 expression

for the activation of vascular endothelial growth factor

signaling [31]. Thus, miR-126 facilitates the integration

of physiological stimuli with growth factor signaling in

ECs to promote angiogenesis. miR-126 also has anti-

inflammatory effects. Indeed, transfection of ECs with

an oligonucleotide that decreases miR-126 levels

results in an increase in tumor necrosis factor-a-stimu-

lated vascular cell adhesion molecule 1 (VCAM1)

expression and increased leukocyte adherence to ECs

[32]. Thus, miR-126 overexpression can be utilized as a

therapeutic approach and miR-126-conjugated stents

have been developed to inhibit neointimal hyperplasia

in rabbits. [33]. Bubble liposome-mediated systemic

delivery of miR-126 also improved blood flow in a

hind-limb ischemia model [34].

The miR-143/-145 encoding genes are located in

close proximity to each other on murine chromosome

18 and human chromosome 5. miR-145 is essential for

VSMC differentiation. It has been shown that miR-

145 is necessary and sufficient for directing the fate of

VSMCs from multipotent neural crest stem cells [35].

miR-145 is selectively expressed in VSMCs of the vas-

cular wall in adult rats, and it is downregulated during

the formation of neointimal lesions [36]. The target of

miR-145 is KLF5, and a corresponding increase in

myocardin expression is observed by the induction of

miR-145. Overexpression of miR-145 suppressed

neointimal formation in balloon-injured arteries and

might be utilized for the treatment of vascular dis-

eases. The lncRNA miR143HG is located in a similar

locus to miR-143/145, and it was recently implicated

in cardiac specification and smooth muscle differentia-

tion [37,38].

miR-221 and miR-222 expression levels are elevated

in rat carotid arteries after balloon injury [10,39]. p27

(Kip1) and p57 (Kip2) are the target genes of miR-

221- and miR-222, which mediate the effects on

VSMC growth. Thus, knockdown of miR-221 and

miR-222 results in decreased VSMC proliferation both

in vitro and in vivo. Moreover, endothelial progenitor

cells, quiescent ECs and umbilical vein ECs highly

express miR-221/222, which suggests an essential role

for this miRNA cluster in endothelial physiology [40].
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These examples only highlight some of the miRNAs

related to vascular diseases (Table 1). There are many

miRNAs that have similar actions and a single

miRNA can have a variety of functions. Thus, any tar-

geting therapy against miRNAs requires a specificity

of action to reduce off-target problems [41].

lncRNAs

Recent work has shown that many lncRNAs are func-

tional and represent a large class of potential therapeu-

tic targets and agents [42]. Although clear functional

classification of lncRNAs is not established yet, we will

attempt to classify vascular disease-related lncRNAs

according to their molecular functions, such as geno-

mic scaffolds, enhancers, miRNA sponges, regulators

of proteins and so on. However, some lncRNAs have

been shown to exhibit several different mechanisms of

action concurrently. Thus, a better classification may

be created in the future.

circRNAs

In 2012, the ubiquitous expression of circRNA from

genes traditionally assumed to express only mRNAs or

lncRNAs was found and reported [43]. These mole-

cules derive from a noncanonical type of splicing

defined as tail-to-head because it goes from a down-

stream 50 splice site to an upstream 30 splice site, a

process suggested to be guided by specific repetitive

sequences [44]. circRNAs are enriched in the brain and

it has been shown that cerebellar degeneration-related

protein 1 antisense RNA has over 70 binding sites for

miR-7, acting as a sponge for this miRNA and being

able to modulate its activity on miR-7 target genes.

Several studies have addressed circRNAs expression in

the cardiovascular system. The circRNA derived from

alternative splicing of lipoprotein receptor 6 is named

circ_Lrp6. It has a role as an miR-145 sponge. Silenc-

ing of circ_Lrp6 increases the levels of miR-145 and

thereby reduces the expression of miR-145 target

genes, such as integrin-b8, fascin actin-bundling pro-

tein 1, KLF-4, YES proto-oncogene 1 (Yes1) and lysyl

oxidase (Lox). Short hairpin RNA against circ_Lrp6

reduces the neointima formation in a model of stenosis

induced by perivascular carotid collar placement in

ApoE�/� mice [45].

Exons of the lncRNA anti-sense ncRNA in the

INK4 locus (ANRIL), which is described below, can

form circANRIL. circANRIL binds to pescadillo

homologue 1, an essential 60S-preribosomal assembly

factor, thereby impairing exonuclease-mediated pre-ri-

bosomal RNA processing and ribosome biogenesis in

VSMCs and macrophages. As a consequence, circAN-

RIL induces nucleolar stress and p53 activation, result-

ing in the induction of apoptosis and inhibition of

proliferation, which are key cell functions in

atherosclerosis [46].

The Nrg-1-ICD-induced circular alpha-actin-2 (cir-

cACTA2) acts as a sponge, which binds miR-548f-5p.

circACTA2 upregulates a-smmoth muscle actin expres-

sion by the suppression of miR-548f-5p, thereby facili-

tating stress fiber formation and cell contraction in

human arterial smooth muscle cells [47].

lncRNAs that modulate chromatin architecture

Many lncRNAs are known to affect the transcription

of genes. They often impact chromatin readers and

writers to control the gene promoter [48]. Mechanisti-

cally, lncRNAs can recruit chromatin remodelers to

Table 1. Examples of miRNAs that have functions in vascular

diseases.

miRNA

Target genes that

are important for

vascular diseases Disease References

miR-21 PPARa, PTEN,

SPRY1, SMAD7,

BCL-2

Inflammation

resolution,

atherosclerosis

inhibition, fibrosis

progression

[5–14]

miR-33a/

b

ABCA1 Atherosclerosis

inhibition, aortic

aneurysm

inhibition

[15–26]

miR-18

(miR-17-

92

cluster)

CTGF Angiogenesis

promotion

[28]

miR-19

(miR-17-

92

cluster)

TSP1, PPARa,

PTEN

Angiogenesis

promotion

[28]

miR-92a

(miR-17-

92

cluster)

ITGA5 Angiogenesis

inhibition

[29]

miR-126 SPRED1, PIK3R2,

VCAM1, and

ALCAM1

Angiogenesis

promotion

[31–34]

miR-143 ELK1 VSMC

differentiation

[35]

miR-145 MYOCD, KLF5 VSMC

differentiation

[35,36]

miR-221/

222

KIP1, KIP2 VSMC growth [37]
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target genes via binding to DNA, or control their

enzymatic activity or function as negative decoys. Such

lncRNAs with relevance to atherosclerosis include

ANRIL, lincRNA-p21, MALAT1, MEG3, TUG1,

GAS5 and MANTIS.

ANRIL is transcribed from the well-known 9p21.3

cardiovascular disease locus, which has been strongly

implicated in coronary artery disease (CAD) through

genome-wide association studies [49–52]. Although

important tumor suppressor genes CDK2A and

CDKN2B are found near this region, these genes are

not dysregulated in animal models of atherosclerosis

or human samples. Indeed, the approximately 60-kb

risk haplotype is human-specific and lacks coding

genes, hindering efforts to clarify its function.

Recently, induced pluripotent stem cells from risk and

non-risk individuals were generated. After differentia-

tion into VSMCs, risk VSMCs exhibit globally altered

transcriptional networks that resemble the previously

identified CAD risk genetic pathways. Of note, delet-

ing the risk haplotype rescues VSMCs, whereas

expressing ANRIL induces cardiovascular risk pheno-

types in non-risk VSMCs [53]. Some part of the func-

tions of ANRIL is mediated by interactions among

ANRIL, enhancer of zeste homolog 2 (EZH2; as part

of the polycomb repressive complex 2 complex) and

the histone acetyltransferase p300 [54].

lincRNA-p21 is downregulated in a mice model of

atherosclerosis and in patients with CAD. Silencing of

lincRNA-p21 was shown to induce cell proliferation

and inhibit apoptosis in VSMCs and macrophages

in vitro. Moreover, inhibition of lincRNA-p21

increased neointimal hyperplasia in a carotid artery

injury model in vivo. Mechanistically, lincRNA-p21

enhances p53 transcriptional activity via binding to the

E3 ubiquitin ligase mouse double minute 2 (MDM2).

The association of lincRNA-p21 and MDM2 releases

MDM2 repression of p53, thereby enabling p53 to

interact with p300, which enhances p53 transcriptional

activity [55].

Metastasis-associated lung adenocarcinoma tran-

script 1 (MALAT1) was originally identified as a

nuclear-enriched prognostic lung cancer metastasis

marker. Genetic deletion or silencing of MALAT1

in vivo inhibits EC proliferation, postnatal retina vas-

cularization and ischemia-induced neovascularization

[56]. In humans, reduced MALAT1 expression levels

are associated with a worse prognosis [57]. A recent

study suggests that the action of MALAT1 is mediated

by interaction with polycomb repressive complex 2,

binding of the transactivation domain of TEAD pro-

teins, activities of competing endogenous RNAs (ceR-

NAs) and the regulation of various signaling

pathways, including phosphatidylinositol-3-kinase-

AKT, mitogen-activated protein kinase, WNT and

nuclear factor-kappa B [58].

Maternally expressed gene 3 (MEG3) was previously

shown to regulate tumor suppressor genes through

stimulating p53 accumulation [59]. GapmeR-mediated

silencing of MEG3 in aged mice promotes neovascular-

ization after hindlimb ischemia in vivo [60]. In humans,

MEG3 is significantly downregulated in the lung tissue

of patients with pulmonary arterial hypertension [61].

Mechanistically, two distal motifs interact by base

pairing to form alternative, mutually exclusive pseudo-

knot structures, which are called ‘kissing loops’, in an

evolutionarily conserved region of MEG3. Mutations

that destroy these interactions impair MEG3-depen-

dent p53 stimulation in vivo [62]. In addition to the

MEG3-p53 interaction, several studies have suggested

that it functions as a sponge for miR-9, -21, -26 and -

328 [63–66].
Taurine up-regulated gene 1 (TUG1) is expressed in

rat VSMCs and its level is increased in synthetic

VSMCs [67]. Because EZH2-mediated methylation of

a-actin is dependent on TUG1, F-actin polymerization

is promoted by TUG1 in synthetic VSMCs.

Growth arrest-specific transcript 5 (GAS5), which is

located antisense to another lncRNA, GAS5 antisense,

was identified and named as a result of its elevation

upon cell growth arrest. Overexpressed GAS5 increases

lipid accumulation in THP-1 macrophages. GAS5 inhi-

bits the expression of ABCA1 by binding to EZH2.

Knockdown of GAS5 promotes reverse-transportation

of cholesterol and inhibits intracellular lipid accumula-

tion, ultimately preventing atherosclerosis progression

[68]. GAS5 was also shown to have multiple molecular

mechanisms, such as binding to DNA sequences and

forming an RNA–DNA triplex complex, which results

in the triggering or suppression of the expression of

genes in human cancer [69].

Recently, epigenetically controlled lncRNAs in

human umbilical vein ECs were searched using an

exon-array technique after silencing histone demethy-

lase JARID1B. MANTIS was identified as the most

strongly regulated lncRNA [70]. Deletion or silencing

of MANTIS inhibits angiogenic sprouting and align-

ment of ECs in response to shear stress. Mechanisti-

cally, the nuclear MANTIS interacts with BRG1, a

subunit of the switch/sucrose nonfermentable (SWI/

SNF) chromatin remodeling complex. This interac-

tion is required for nucleosome remodeling and the

regulation of key endothelial genes such as SMAD6,

SOX18 and COUP-TFII by facilitating the recruit-

ment of RNA polymerase II to their promoter

regions.

6319The FEBS Journal 288 (2021) 6315–6330 ª 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

K. Ono et al. Non-coding RNAs in vascular diseases



lncRNAs work as enhancer RNAs or regulate

neighboring mRNAs

Many ncRNAs were found to be transcribed as active

enhancers for gene promoters and they are called

enhancer lncRNAs, which confer enhancer activity by

capturing the promoter-contacting mediator protein

complex. There are also ncRNAs that act in cis to reg-

ulate their neighboring mRNAs. Examples of such

important ncRNAs in the field of atherosclerosis

include HOTTIP, LEENE, SMILR and lncRNA-

CCL2.

HOXA transcript at the distal tip (HOTTIP) expres-

sion level is higher in CAD tissues than in normal

arterial tissues. Ectopic expression of HOTTIP pro-

motes EC proliferation and increases the expression of

cyclin D1 and PCNA. On the other hand, downregu-

lated expression of HOTTIP suppresses EC prolifera-

tion and migration [71].

lncRNA that enhances endothelial nitric oxide syn-

thase (eNOS) expression (LEENE) was identified by

combining RNA-sequencing (RNA-seq) techniques

and chromatin conformation capture methods [72].

LEENE facilitates the recruitment of RNA Pol II to

the eNOS promoter region to enhance eNOS mRNA

transcription.

Smooth muscle-induced lncRNA enhances replica-

tion (SMILR) was identified as an lncRNA for which

the expression was altered in human saphenous vein

VSMCs following stimulation with interleukin-1a and

platelet-derived growth factor. Mechanistically, the

expression of genes proximal to SMILR was also

altered by treatment with these cytokines. In addition,

HAS2, which is one of the proximal transcripts of

SMILR, was also reduced by SMILR knockdown.

Increased expression of SMILR is observed in unstable

atherosclerotic plaques and in plasma from patients

with high plasma C-reactive protein [73].

lncRNA-CCL2 is transcribed divergently to C-C

motif chemokine ligand 2 (CCL2), a pro-atheroscle-

rotic chemokine. lncRNA-CCL2 and CCL2 are up-reg-

ulated in response to inflammatory stimuli, and their

expression is elevated in unstable human atheroscle-

rotic plaques [74]. Knockdown experiments showed

the positive regulation of CCL2 by lncRNA-CCL2.

This regulation involves the interaction of lncRNA-

CCL2 with RNA binding proteins such as HNRNPU

and IGF2BP2.

lncRNA localized in the subnuclear body

Some lncRNAs can affect other genes through their

architectural roles in subnuclear territories. A previous

study reported that the nuclear enriched abundant

transcript 1 (NEAT1) is critical for the structural con-

stituent of paraspeckles and tumorigenesis by promot-

ing cell migration and proliferation [75]. Moreover,

another study provided evidence demonstrating a criti-

cal role for NEAT1 with respect to promoting VSMC

proliferation, migration and dedifferentiation during

phenotypic switching. A loss-of-function study of

NEAT1 in VSMCs resulted in enhanced expression of

smooth muscle-specific genes at the same time as

attenuated VSMC proliferation and migration [76].

Mechanistically, NEAT1 sequesters the key chromatin

modifier WD Repeat Domain 5 (WDR5) from smooth

muscle-specific gene loci and initiates an epigenetic off

state, which consequently impairs SRF accessibility to

the CArG boxes, resulting in down-regulation of

smooth muscle-contractile gene expression.

lncRNAs that work as ceRNAs to absorb miRNAs

There are several lncRNAs that work as ceRNAs to

absorb miRNAs. However, most of them are not suffi-

ciently highly expressed compared to the number of

corresponding target miRNAs per cell.

H19 is among the first discovered eukaryotic

lncRNAs and is known to be transcribed as intergenic

RNA from the imprinted H19/IGF2 gene locus [77].

Although it is downregulated after birth, some vascu-

lar diseases are accompanied by re-expression of this

lncRNA. Increased expression of H19 is reported in

aortic aneurysms and in calcific aortic valves [78–80].
Because of a high degree of secondary structure con-

servation, H19 is assumed to function as a structure-

dependent lncRNA. However, miR-675-3p and -5p are

also encoded in H19, which may play a role in disease

progression [81]. Moreover, H19 has a potential bind-

ing site for the let-7 miRNA family and may also

work as a molecular sponge [82].

Cholesterol homeostasis regulator of miRNA

expression (CHROME) was identified as an important

regulator of cellular and systemic cholesterol home-

ostasis [83]. CHROME levels are elevated in the

plasma and atherosclerotic plaques of patients with

CAD. It has been shown that CHROME promotes

cholesterol efflux and HDL biogenesis by changing the

levels of miRNAs that repress genes in these pathways.

Indeed, CHROME binds specifically to miR-27b, miR-

33a, miR-33b and miR-128, which are miRNAs that

repress genes mediating cholesterol transport.

Through a genome-wide association study using sin-

gle nucleotide polymorphisms, chromosome 22q12.1

was identified as a susceptible locus for MI. Within

this locus, a novel ncRNA was isolated and designated
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as MI-associated transcript (MIAT). MIAT consists of

five exons and does not encode any translational prod-

uct. Several studies have reported that MIAT functions

as a sponge for many miRNAs to regulate tumorigene-

sis and progression. These include miRNA-155-5p,

miR-29c, miR-141 and miR-212. MIAT also functions

as a ceRNA against miR-150-5p to form a feedback

loop with vascular endothelial growth factor [84].

Moreover, MIAT also acts to sponge miR-204-5p in

the MIAT/miR-204-5p/HMGB1 axis in cerebral ische-

mia [85].

lncRNAs that bind to and regulate proteins

Liver X receptors (LXRs) are transcription factors that

regulate cellular and systemic cholesterol homeostasis.

Liver-expressed LXR-induced sequence (LeXis) was

shown to control LXRs [86]. Hepatic LeXis expression is

strongly induced in response to a Western diet or pharma-

cological LXR activation. Changes in LeXis levels in the

liver affect the levels of cholesterol biosynthesis-related

genes. This effect is mediated by the interaction of LeXis

with the heterogeneous ribonucleoprotein RALY, which

acts as a transcriptional cofactor for cholesterol biosyn-

thetic genes in the mouse liver.

Macrophage-expressed LXR-induced sequence

(MeXis) was identified as an amplifier of LXR-depen-

dent transcription of Abca1, which is an important

regulator of cholesterol efflux [87]. Mice lacking the

MeXis show reduced Abca1 expression in a tissue-se-

lective manner. Moreover, MeXis-deficient bone mar-

row cells altered chromosome architecture at the

Abca1 locus and accelerated the development of

atherosclerosis in mice. Mechanistically, MeXis inter-

acts with and guides transcriptional coactivator

DDX17 to the promoter region of Abca1 in a context-

specific manner.

lncRNAs that are transcribed as antisense RNAs

Some lncRNAs reside within protein-coding gene units

and overlap coding exons in antisense. Because the

effects on host genes can be positive, negative or neu-

tral, this classification is not directly related to their

functions. Examples of such ncRNAs include ANRIL,

MALAT1, HOXC-AS1, SENCR, GATA6-AS, STEEL

and NEXN-AS1. The functions of ANRIL and

MALAT1 have already been described above.

HOXC cluster antisense RNA 1 (HOXC-AS1) and

homeobox C6 (HOXC6) were shown to be downregu-

lated in carotid atherosclerosis via microarray analysis.

Lentivirus-mediated overexpression of HOXC-AS1

induces HOXC6 expression at mRNA and protein

levels in THP-1 macrophages [88]. However, the pre-

cise functions of HOXC-AS1 in atherosclerosis need to

be clarified in further experiments.

Smooth muscle and EC-enriched migration/differen-

tiation-associated lncRNA (SENCR) was revealed by

RNAseq) of human coronary artery SMCs. SENCR is

transcribed antisense from the 5’-end of the FLI1 gene

and two splice variants exist [89]. Knockdown studies

revealed little to no cis-acting effect of SENCR on

FLI1 or neighboring gene expression. Loss-of-function

studies indicated that SENCR inhibits SMC migration

and maintains EC membrane integrity. Mechanisti-

cally, SENCR physically associates with cytoskeleton-

associated protein 4, thereby stabilizing cell mem-

brane-bound cadherin-5 to promote EC adherens junc-

tion integrity [90].

GATA transcription factors are involved in variety

of processes in development and diseases. The GATA

locus expresses a noncoding antisense transcript of

GATA6, named GATA6-AS [91]. GATA6-AS is upreg-

ulated in ECs during hypoxia. Silencing of GATA6-

AS diminished transforming growth factor-b2-induced
endothelial–mesenchymal transition and promoted

blood vessel formation in mice. Lysyl oxidase homolog

2 (LOXL2), which is known to remove activating

H3K4me3 chromatin marks, is identified as a direct

binding partner of GATA6-AS. Moreover, a set of

angiogenesis-related genes were inversely regulated by

LOXL2 and GATA6-AS negatively regulated nuclear

LOXL2 function. Thus, GATA6-AS controls EC func-

tion as a negative regulator of nuclear LOXL2 func-

tion and activates angiogenesis-related genes by

increasing H3K4me3 methylation.

Spliced-transcript endothelial-enriched lncRNA

(STEEL) is expressed from the homeobox D locus and

is transcribed as antisense to homeobox D transcrip-

tion factors [92]. STEEL promotes blood vessel forma-

tion in vivo. STEEL up-regulates both eNOS and

KLF2 and is inhibited by both of them in a feedback

manner. Mechanistically, up-regulation of eNOS and

KLF2 is mediated via the recruitment of poly-ADP

ribosylase, PARP1 by STEEL. Feedback inhibition of

STEEL expression may modulate angiogenic behavior

in a position- and shear-dependent fashion.

Nexilin F-actin binding protein antisense RNA 1

(NEXN-AS1) interacts with the chromatin remodeler

BAZ1A and upregulates the expression of the actin-

binding protein NEXN. NEXN deficiency results in

enhanced atherosclerosis, whereas NEXN overexpres-

sion reduces atherosclerosis in mice model of

atherosclerosis. Both NEXN-AS1 and NEXN are
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reduced in human atherosclerotic plaques, and patients

with CAD have lower plasma NEXN levels [93].

lncRNAs that encode micropeptides

Emerging evidence indicates that several lncRNA

molecules have short ORFs that encode functional

peptides. LINC00961 was first annotated as a lncRNA

but reassigned as a protein coding gene for the small

regulatory polypeptide of amino acid response

(SPAAR) micropeptide. LINC00961 was increased

during the differentiation in ECs. Silencing of

LINC00961 via siRNA or a GapmeR strategy signifi-

cantly reduced EC adhesion, tube formation, migra-

tion, proliferation and endothelial membrane barrier

integrity. On the other hand, overexpression of the

SPAAR ORF increased tubule formation. Further-

more, overexpression of an ATG mutant of the full

length LINC00961 transcript reduced network forma-

tion, which suggests that a ncRNA function of the

transcript is opposed to the effects of SPAAR. Mecha-

nistically, LINC00961 RNA binds the G-actin seques-

tering protein thymosin beta-4 (Tb4) and Tb4
depletion acts similarly to the overexpression of the

ATG mutant. SPAAR binding partners includes the

actin binding protein, spectrin repeat containing

nuclear envelope protein 1 [94].

Currently, many lncRNAs related to vascular dis-

eases are being identified and a summary of the

lncRNAs is provided in Table 2.

Table 2. Examples of lncRNAs that have functions in vascular disease.

lncRNA Function Disease References

circ_Lrp6 CeRNA/miRNA sponge Atherosclerosis progression [45]

CircANRIL Inhibiting rRNA processing Atherosclerosis inhibition [46]

circACTA2 CeRNA/miRNA sponge VSMC differentiation [47]

ANRIL Transcription

Guiding chromatin regulators

CAD progression [53,54]

lincRNA-p21 Transcription

Protein regulation

CAD progression [55]

MALAT1 Transcription

Binding chromatin remodelers

EC proliferation [56–58]

MEG3 Tethering of chromatin modifier

CeRNA/miRNA sponge

EC and VSMC proliferation inhibition

Pulmonary hypertension inhibition

[59–66]

TUG1 3D chromatin positioning VSMC proliferation [67]

GAS5 Transcription Macrophage lipid accumulation [68,69]

MANTIS Scaffold of chromatin modifier EC angiogenesis promotion [70]

HOTTIP eRNA

Transcription

EC proliferation [71]

LEENE eRNA

Transcription

EC inflammation inhibition [72]

SMILR eRNA

Transcription

VSMC proliferation

Atherosclerosis promotion

[73]

lncRNA-CCL2 eRNA

Transcription

Macrophage chemotaxis promotion [74]

NEAT1 Decoy for chromatin regulator VSMC proliferation [75,76]

H19 CeRNA/miRNA sponge

mRNA decay

Aortic aneurysm and aortic valve calcification promotion [77–82]

CHROME CeRNA/miRNA sponge Cholesterol efflux promotion [83]

MIAT CeRNA/miRNA sponge EC proliferation [84,85]

LeXis Transcription Cholesterol biosynthesis promotion [86]

MeXis Transcription Cholesterol efflux promotion [87]

HOXC-AS1 Transcription Atherosclerosis inhibition [88]

SENCR Transcription VSMC migration inhibition [89,90]

GATA6-AS Transcription

Binding chromatin modifier

Angiogenesis inhibition [91]

STEEL Transcription Angiogenesis promotion [92]

NEXN-AS1 Binding chromatin modifier Atherosclerosis inhibition [93]

LINC00961 Encoding micropeptide Angiogenesis inhibition [94]

6322 The FEBS Journal 288 (2021) 6315–6330 ª 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Non-coding RNAs in vascular diseases K. Ono et al.



Strategies for the identification of
functional ncRNAs

There are already many databases of published

miRNA sequences, annotations and predicted targets

(e.g. http://www.mirbase.org and http://www.targetsca

n.org/vert_72). On the other hand, genome-wide tran-

scriptomic approaches such as RNA-seq, microarray

and cap analysis of gene expression technology are

currently being used for the detection of lncRNAs

[95]. Recently, a computational approach was also

applied for the identification of lncRNAs as a result of

an improvement in lncRNA annotations from RNA-

seq data [1]. RNA-seq is superior with respect to

detecting low-abundance transcripts, although arrays

have the advantage of rapid analysis.

After the identification, validation of the transcripts

is necessary for the next step of the analysis. Quantita-

tive-PCR is commonly utilized for the validation of

the candidate ncRNAs expression and the RACE tech-

nique is applied for the identification of the full

sequence of the lncRNA. Moreover, identification of

the localization of the lncRNA is useful and important

with respect to hypothesizing its potential biological

functions. Precise information of its subcellular local-

ization can be obtained by RNA fluorescence in situ

hybridization (FISH) [96]. Determination of tissue

expression is also important.

As mentioned earlier above regarding lncRNAs that

encode micropeptides, it is necessary to test the coding

potential of novel lncRNAs. For example, a dwarf

ORF encoded by an annotated lncRNA was reported

to encode a peptide of 34 amino acids with unknown

function [97].

Several techniques have also been developed for the

identification of the interactions between lncRNAs and

the genome, RNAs and proteins. Just as chromatin

immunoprecipitation followed by microarray or deep

sequencing has greatly improved our understanding of

protein–DNA interactions on a genomic scale, chro-

matin isolation by RNA purification (ChIRP) was first

developed by Chu et al. [98] to map long RNA occu-

pancy genome-wide at high resolution. This method is

based on the affinity of antisense DNA oligonu-

cleotides to capture the target lncRNA:chromatin

complexes, which then generates a map of genomic

binding sites. Other high-throughput experimental

technologies include capture hybridization analysis of

RNA targets (CHART), RNA antisense purification

(RAP), RNA immunoprecipitation (RIP), cross-linking

immunoprecipitation sequencing (CLIP-seq), ChIRP-

mass spectrometry (MS) and CHART-MS. These tech-

niques have led to a rapid expansion of lncRNA

research and also resulted in many publicly available

databases [99–103]. RNA–RNA interactions can also

be assessed by ChIRP easily because the design of

affinity-probes is straightforward; however, it cannot

differentiate direct RNA–RNA binding from possible

interactions with other intermediate proteins. By con-

trast, cross-linking, ligation and sequencing of hybrids

(CLASH) can be utilized to detect only direct

hybridization between RNA molecules [104].

The unique secondary and tertiary structure of each

lncRNA may contribute to its biological function.

Thus, several techniques have been developed to

obtain the RNA structure. Recent advances in probing

the RNA structurome, including the use of RNA-selec-

tive 20-hydroxyl acylation and primer extension

(SHAPE) or kethoxal reagents or dimethyl sulfate, can

provide unprecedented insights into the architecture of

RNA molecules in living cells [105–107]. However, it is

still unclear what controls lncRNA folding in the com-

plex nuclear environment and to what extent sec-

ondary and tertiary structures are important to

mediate lncRNA function.

Finally, loss-of-function strategies are required to

determine the physiological functions of lncRNAs in

animal models. Typical knockdown assays make use

of short hairpin RNAs, siRNAs or locked nucleic acid

Table 3. Summary of ncRNA research techniques.

Stage Technique References

Identification Microarray, RNA-seq, Cap-

assisted gene expression

sequencing, and nuclear run-

on assay

[95]

Validation Database, quantitative PCR,

RACE and RNA-FISH

[96]

Assessment of

the coding

potential

Bioinformatic tool, and in vitro

transcription assays

[97]

Genome-wide

mapping of

binding sites

ChIRP, Chart, RAP, RIP and

CLIP-seq

[98–101]

Identification of

binding proteome

ChIRP-MS and Chart-MS [102,103]

Identification of

RNA-RNA

interaction

CLASH [104]

Analysis of RNA

secondary

structure

SHAPE and use of kethoxal

reagents or dimethyl sulfate

[105–107]

Identification of

function in vivo

Genetic KO, promoter insertion,

polyA insertion, RNA

interference, CRISPR

interference and transgenics

[108,109]
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GapmeRs. Their results can be assigned with higher

confidence when oligonucleotide-based strategies are

complemented by the recent development of clustered

regularly interspaced short palindromic repeat

(CRISPR) technology [108,109]. A summary of

lncRNA analysis is provided in Table 3.

Future perspectives

In summary, recent studies have provided considerable

evidence about the functions of miRNAs and

lncRNAs on various stages of cardiovascular diseases.

They have indicated that these ncRNAs participate

ECs prolifera�on and migra�on

Macrophage prolifera�on 
and apoptosis VSMC 

apoptosis

VSMC prolifera�on 
and migra�on

Foam cell

T cell

Lipid core

Cholesterol
crystalMigra�ng SMC

Collagen

Cholesterol homeostasis

Macrophage  
migra�on

Fig. 2. Possible targets of ncRNAs in atherosclerosis formation. EC proliferation and migration is affected by miR-21, miR-126, miR-221/222,

ANRIL, MIAT, MEG3, MALAT1, MANTIS, HOTTIP and LINC00961. VSMC proliferation and migration is mediated by miR-21, miR-143/145,

H19, lncRNA-p21, circ-Lrp6, TUG1, SMILR, NEAT1 and SENCR. VSMC apoptosis is affected by miR-125b, lncRNA-p21 and circ-ANRIL.

Macrophage proliferation and apoptosis is enhanced by miR-19 and lncRNA-p21 and macrophage migration is mediated by lncRNA-CCL2.

Cholesterol homeostasis is also important for atherosclerosis formation, which is regulated by miR-33a/b, GAS5, CHROME, MeXis and

LeXis (liver).

Table 4. miRNAs that are currently being investigated in clinical trials.

miRNA

Inhibition or

augmentation Name of drug Target disease Clinical stage

Year and clinical trial

number

miR-122 Inhibition Miravirsen Hepatitis C Phase II 2010/2015

NCT01200420

NCT02508090

NCT02452814

miR-103/

107

Inhibition RG-125 (AZD4076) Nonalcoholic steatohepatitis Phase I 2015

NCT02612662

miR-21 Inhibition SAR339375 Alport’s syndrome Phase II 2016

NCT02855268

miR-155 Inhibition MRG-106

(Cobomarsen)

Cutaneous T cell lymphoma

Mycosis fungoides/lymphoma and

leukemia

Phase II/

Phase I

2018/2015

NCT03713320/

NCT02580552

miR-92a Inhibition MRG-110 Wound Phase I 2018

NCT03603431

miR-16 Augmentation TargomiRs Malignant pleural mesothelioma

Non-small cell lung cancer

Phase I 2015

NCT02369198

miR-29 Augmentation MRG-201 Keloid Phase II 2018

NCT03601052
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especially in the regulation of a broad spectrum of

atherosclerosis (Fig. 2). Most of the ncRNAs have

their own promoter and are regulated by distinct tran-

scriptional factors in the disease condition. However,

some of miRNAs are located within an intron of its

host gene and the regulation totally depends on the

levels of their host genes.

Currently, RNA therapeutics are diverse and include

antisense oligonucleotides, siRNAs, miRNAs,

mRNAs, RNA aptamers, short activating RNAs and

single guide RNAs for CRISPR/Cas9 systems. Molec-

ular functions for miRNAs are relatively clear, and

anti-miRs and miRNA mimics have been developed.

Anti-miRs bind directly to the target miRNA and

inhibit its function. Locked nucleic acids enhance the

function of anti-miRs by increasing their affinity and

stability [110]. miRNA mimics are synthetic, double-

stranded RNAs that resemble a naturally generated

miRNA. Several miRNAs that are currently being

investigated in clinical trials are summarized in

Table 4.

On the other hand, for most of the lncRNAs, the

molecular mode of action remains elusive. Thus, fur-

ther investigations are required aiming to understand

the functions of lncRNAs in vivo. In any case, inhibi-

tion or activation of lncRNAs also leads to beneficial

effects on disease conditions; therefore, the develop-

ment of techniques that enable the fine regulation of

lncRNAs is awaited.
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