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Abstract: Exercise has been shown to affect gut the microbiome and metabolic health, with athletes
typically displaying a higher microbial diversity. However, research on the gut microbiota and
systemic metabolism in elite athletes remains scarce. In this study, we compared the gut microbiota
profiles and serum metabolome of national team cross-country skiers at the end of an exhausting
training and competitive season to those of normally physically-active controls. The gut microbiota
were analyzed using 16S rRNA amplicon sequencing. Serum metabolites were analyzed using nu-
clear magnetic resonance. Phylogenetic diversity and the abundance of several mucin-degrading gut
microbial taxa, including Akkermansia, were lower in the athletes. The athletes had a healthier serum
lipid profile than the controls, which was only partly explained by body mass index. Butyricicoccus as-
sociated positively with HDL cholesterol, HDL2 cholesterol and HDL particle size. The Ruminococcus
torques group was less abundant in the athlete group and positively associated with total cholesterol
and VLDL and LDL particles. We found the healthier lipid profile of elite athletes to co-occur with
known health-beneficial gut microbes. Further studies should elucidate these links and whether
athletes are prone to mucin depletion related microbial changes during the competitive season.

Keywords: winter games; athletes; exercise; microbiology; metabolomics; lipids

1. Introduction

Gut microbiota refer to the trillions of microbial cells inhabiting the gastrointestinal
tract that, in addition to many other tasks, break down the macromolecules and nutrients
from ingested food [1,2]. Bacterial metabolites such as short chain fatty acids (SCFAs)
provide energy for muscles and intestinal epithelial cells [3–5]. Physical activity and lean
body composition are associated with a gut microbiome that contains high abundances of
health-promoting bacterial taxa [6–9], and higher microbial diversity is a common finding
in athletes compared to sedentary controls [10]. Exercise may help develop a microbiome
with a greater ability to harness energy from the diet and with an increased capacity for
carbohydrate metabolism, cell structure, and nucleotide biosynthesis [11,12]. On the other
hand, dysbiotic, i.e., metabolically unbalanced, gut microbiota have been shown to impair
skeletal muscle adaptation to exercise [13]. Certain gut microbes have been shown to
increase and diminish acutely in response to exercise [14], and high-intensity endurance
training has even been linked to increased dysbiosis on some occasions [15].
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During training and competition season, elite-level athletes are predisposed to in-
creased levels of energy expenditure, stress and low-grade inflammation [16,17] and are at
an increased risk of respiratory infections [18]. Chronic training can have notable effects
on metabolic and inflammatory states [19], and these effects can persist in workloads
below those constituting overtraining [20,21]. To this end, new studies suggest that certain
microbial metabolic functions can enhance athletic performance and these functions could
be accessed with certain bacterial taxa: Scheiman et al. [22] demonstrated that inoculation
into mice of the lactate-fermenting species Veillonella atypica, isolated from Boston marathon
competitors, increased the run times of the mice on a treadmill. Likewise, a recent similar
trial on humans demonstrated that oral administration of a subspecies of Bifidobacterium
longum isolated from a weightlifting Olympic athlete could increase Cooper’s running test
results [23].

Both physical activity and the gut microbiome can have an instrumental role in
maintaining cardiovascular and metabolic health [24–27], yet chronic high-intensity exercise
can also increase inflammation and cause shifts in the microbiome. Integrative studies on
the gut microbiome and the interplay of microbial and systemic metabolism in elite athletes
are still scarce. We investigated whether the gut microbiota and serum metabolome of
high-level cross-country skiers at the end of the competition season differs from those of
age and sex-matched non-athletes.

2. Results
2.1. Gut Microbiota Diversity

The gut microbiota alpha-diversity measures, Chao1 (i.e., species richness, Figure 1A)
and Shannon index (i.e., species diversity, Figure 1B) were found to be similar among the
athletes and controls. However, the athletes had lower phylogenetic diversity than the
controls (Figure 1C). According to the Bray–Curtis distance and PERMANOVA analysis
(p = 0.66), the groups did not differ in beta-diversity, that is, in inter-individual species
diversity of the gut microbiota (Figure 1D).

2.2. Gut Microbiota Composition

The average gut microbiota composition of the athletes and controls at the phylum,
family and genus levels are shown in Figure 2. In the athletes, Bacteroidetes (50.4% of
all sequences) and Firmicutes (46.0%) were the dominant bacterial phyla, followed by
Proteobacteria (2.3%), Actinobacteria (0.79%), Verrucomicrobia (0.05%), Cyanobacteria
(0.20%) and Tenericutes (0.03%). In the controls, Firmicutes (48.3%) and Bacteroidetes
(46.2% of all sequences) were the dominant bacterial phyla, followed by Proteobacteria
(3.36%), Actinobacteria (1.57%), Cyanobacteria (0.33%), Verrucomicrobia (0.20%), and
Tenericutes (0.14%). A total of 27 families and 82 genera were identified in the athletes
and controls. The family Bacteroidaeae (13.3%, mostly genus Bacteroides) explained the
dominance of Bacteroidetes in the athletes, and the family Lachnospiraceae (25.5%, mostly
genus Blautia) the dominance of Firmicutes in the controls.
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In the ANOVA-like comparison, differences in the abundance of six gut microbiota
genera were found between the groups (Figure 3). The athletes had a lower relative
abundance of Phascolarctobacterium, Lachnospiraceae UCG-001, Bacteroides, Lachnoclostridium
and the Ruminococcus torques group as well as a higher relative abundance of the Eubacterium
eligens group than the controls (p < 0.038 for all). However, LEfSe analysis, that takes into
account biological consistency and effect size, revealed the phylum Actinobacteria and
the genera Akkermansia, Bifidobacterium, the Prevotellaceae NK3B31 group, Alloprevotella,
Flavonifractor, Ruminococcaceae UCG 014 and the Ruminococcaceae NK4A214 group, to be
more abundant in the controls.
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In the control group, the amount of weekly exercise was associated positively with the
family Pasteurellaceae and inversely with Acidamidococcaceae (Supplements, Figure S1). The
training load of the athletes was associated inversely with Enterobacteriaceae, Bacteroidaceae
and Veillonellaceae. In addition, age was inversely correlated with Tannerellaceae and body
mass index (BMI) with Clostridium sp. K4410.MGS-306.

2.3. Serum Metabolome

Overall, the athletes and controls were largely similar in their serum metabolome.
Over the two first principal components, principal component analysis (PCA) showed no
separation between the groups (Figure 4A). The supervised method, partial least squares-
discriminant analysis (PLS-DA), reached a predictive ability of 0.75 (Q squared) and showed
a moderate level of separation between the groups (Figure 4B). None of the metabolites
differed by large factors (Figure 4C). A random forest classification task reached a sensitivity
of 0.7 and a specificity of approximately 0.8 at peak (Figure 4D).
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Figure 4. (A) The principal component (PC) analysis plot of all metabolites shows that most of the
variance was explained by other factors than group. (B) The volcano plot indicates that the group
differences were less than 2-fold for all metabolites. (C) The partial least squares-discriminant analysis
plot and (D) receiver operand characteristics curve for random forest show that the classification task
reached moderate accuracy.

The age of the participants associated positively with circulating lipids including
total cholesterol, total apolipoproteins, and LDL particle concentrations. BMI associated
negatively with HDL cholesterol, average HDL size, amino acids, and glycolysis-related
metabolites (Supplements, Figure S2). Despite similarities between the groups, the athletes
had higher total concentrations of both total HDL and its subfraction HDL2 compared to
controls (Figure 5). Apolipoprotein A, the backbone of HDL, was higher and the mean
HDL particle size was larger in the athlete group. In addition, the ratio of saturated fatty
acids to total fatty acids was significantly elevated in the athletes. After adjusting for age
and BMI, the group differences remained significant (see Figure S3).

The absolute and relative amounts of lipids within the different-sized HDL particles
varied both within and between the groups. The athletes had a higher concentration of large
and very large HDL particles (Figure 6A) and, consequently, higher lipid concentrations in
these particles (Figure 6B). In the large and very large HDL particles (typically correspond-
ing to HDL2 subfractions), the athletes had a higher cholesterol to phospholipid ratio than
the controls did (Figure 6C). This difference was reversed as the particle size decreased.
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Figure 6. HDL particle concentrations and contents. (A) Total particle concentrations and (B) abso-
lute lipid concentrations in the particles. Athletes had more large to very large HDL particles and
consequently more lipids contained within them. (C) Relative proportions of lipids: the outer donut
chart represents the athletes, and the inner represents controls. The athletes had a smaller phospho-
lipid/cholesterol ratio in the large particles than the controls did. Kruskal–Wallis p value: * < 0.05,
** < 0.01.

The primary ketone bodies beta-hydroxybutyrate (bOHB) and acetoacetate were
slightly lower in the athlete group, as was glycerol. In addition, the athletes had a higher
concentration of pyruvate (Figure 7). After adjusting for age and BMI, the group differences
in these metabolites remained significant (see Supplements: Figure S3).
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2.4. Associations between the Metabolites and Gut Microbiota

Notably, both microbial genera (Figure 8) and families (Figure 9) formed visible clusters
according to their correlation coefficients with the lipoprotein lipid contents, with certain
genera or families standing out. Most notably, a beneficial butyrate-producing genus,
Butyricicoccus, positively associated with HDL and HDL2, as well as large to very large
HDL concentrations and lipid contents (p < 0.05 for all). This genus also inversely associated
with serum acetoacetate and albumin concentrations. Collinsella inversely associated with
HDL and HDL2 concentrations and lipid concentrations in large HDL particles. The genus
positively associated with medium to large VLDL concentrations and VLDL lipid contents.
Both the R. torques group and Lachnospiraceae UCG-008 positively associated with the
lipoprotein concentration and lipid content in the range of very small VLDLs to medium
LDLs. Both genera also negatively associated with serum acetate.
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Figure 9. Heatmap of Spearman correlation coefficients between the serum metabolites and gut
microbial families. Spearman p value * < 0.05 ** < 0.01.

At the family level (Figure 9), Muribaculaceae inversely associated with the lipoprotein
concentration and lipid content in the range from large to small LDLs. They were also
inversely related with virtually all circulating lipids. Prevotellaceae and Coriobacteriaceae
associated with chylomicrons and large to medium VLDLs. In addition, Prevotellaceae
associated with total triglycerides and tended to associate with triglycerides in almost all
classes of lipoproteins, as apparent from the heatmap. Christensenellaceae, having only one
representative genus, associated with medium sized HDLs. In addition, Rikenellaceae were
found to inversely associate with histidine, branched chain amino acids (leucine, isoleucine,
and valine), lactate, and pyruvate.

We ran a confirmatory analysis using multiple regression on the described associations
between bacterial taxa and the metabolites (Supplements, Table S1). HDL2 cholesterol,
HDL size and acetoacetate were significant predictors of the Butyricicoccus abundance
(F = 82.88, p < 0.01, R2 = 0.854). Total cholesterol and acetate were significant predictors of
the abundance of the R. torques group (103.7, p < 0.01, R2 = 0.830).

3. Discussion

In this study, we show that both the gut microbiota and the serum metabolome profiles
of elite athletes were largely identical with their age- and sex-matched non-athletic controls.
The phylogenetic diversity of the gut microbiota was higher in the control group. We also
found several bacterial genera to differ between the groups. We observed that the athletes
had higher serum concentrations of total HDL cholesterol and the subfraction HDL2. In
addition, the athletes had a higher mean HDL particle size and more lipids contained in
the largest HDLs.

A recent study explored the associations between the gut microbiota and plasma
metabolites using the same methods [28]. The study also found that several microbial taxa
are associated with the lipoprotein concentrations and lipid contents, especially VLDLs and
HDLs. Our study and theirs describe only one intersecting taxon, the family Christensenel-
laceae, with somewhat similar associations found in both studies. This particular bacterial
family is notable for having exceptional heritability and its abundance has been shown to be
inversely associated with BMI and body fat [29,30], traits which usually mediate lipoprotein
levels. Another recent study [31] also explored these associations using 16S rRNA gene
sequencing and targeted metabolomics using liquid chromatography/mass spectrometry
(LC-MS) rather than NMR, that was used here. It reported significant associations between
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BMI, branched chain amino acids and four microbial taxa (Blautia, Dorea, Ruminococcus,
and SHA-98).

In addition, a set of studies has explored the gut microbiomes of professional rugby
players compared to healthy controls [11,32]. The microbiome was both compositionally
and functionally different between the groups and strongly associated with various aspects
of diet. In contrast to our results, the alpha- and phylogenetic diversities of the gut micro-
biota were found to be higher and Akkermansia, a SCFA-producing and health-beneficial
genus of the phylum Verrucomicrobia, more abundant in the athletes. The findings of
the rugby study could partly be explained by dietary extremes observed in the groups,
whereas we did not analyze diet. In another study comparing senior orienteers to sedentary
controls, no differences in the microbial diversity were found altogether [33]. Previously,
microbial diversity and the abundance of Akkermansia have been positively linked with
physical activity in several other studies [6]. Since Akkermansia did not associate with
weekly physical activity in either of our study groups, our results somewhat contradict
these findings. However, it should be noted that our control group was not sedentary but
exercised normally.

The genus R. torques group, which was more abundant in the controls than it was in
the athletes (1.3% vs. 0.8%, respectively), has been associated with increased intestinal
barrier leakage and increased serum triglycerides [34,35]. Although R. torques group
did not associate with serum triglycerides in our study, we found the genus, along with
Lachnospiraceae UCG-008, to be positively associated with total cholesterol, small VLDLs and
large LDLs, which are mediators in hyperlipidemia [36,37]. These genera had an inverse
association with serum acetate, which is both a microbial metabolite and a less ubiquitous
ketone body. Interestingly, the species R. torques, along with Akkermansia muciniphila and
species of Bacteroides and Bifidobacterium, is a consumer of mucins, the glycosylated proteins
in the intestinal mucosa [38]. These genera were also less abundant in the athletes, which
could indicate lower mucin availability, possibly due to high physical stress during the
competitive season. However, this hypothesis warrants further studies.

Butyricicoccus is a butyrate-producing genus of the gut bacteria that has been proposed
as a next generation probiotic [39]. The most prominent species of this genus, B. pullicaeco-
rum has been shown to inversely associate with the incidences of ulcerative colitis and
Crohn’s disease [40], suggesting that it can be health-beneficial. Ketone bodies acetoacetate
and bOHB can be used as a substrate by several butyrate-producing bacteria [41,42] in-
cluding Butyricicoccus. Here, the relative abundance of Butyricicoccus was not higher in the
athlete group, but acetoacetate inversely and significantly predicted its abundance, which
might indicate utilization of this ketone body by Butyricicoccus. Further, this genus was
positively associated with higher HDL and HDL2 cholesterol and larger HDL particle size.
This association has not been observed before but is an encouraging discovery considering
future studies and raises the question whether the species belonging to this genus could
mediate a healthier blood lipid profile when orally administered as probiotics or, vice versa,
whether they thrive under such conditions.

The HDL cholesterol associates with improved health outcomes [43,44], and analyzing
lipoprotein particle size and different HDL subfractions allows for more accurate probing
of lipoproteins and associated health risks [45–47]. Mature HDL particles that are formed
from small, lipid-poor, pre-beta HDLs are further divided into subfractions HDL2 and
HDL3 according to their density and size [45]. Of the subfractions, HDL2 are larger, less
dense and more lipid-rich forms of HDL. Both subfractions transport cholesterol into the
liver to be excreted as bile salts, but HDL2 is also able to excrete cholesterol directly via
transintestinal cholesterol excretion [44]. In our study, we found the athletes to have a
higher proportion of cholesterol in the largest HDLs and, conversely, a lower proportion in
the smallest ones. This could indicate more efficient cholesterol excretion in the athletes
either as bile salts or through transintestinal cholesterol excretion. The gut microbes can
both deconjugate bile salts and assimilate cholesterol [48], and some bacteria, including R.
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Torques, readily convert primary bile acids into secondary [49]. This could in part explain
the observed associations between bacterial genera and lipoproteins.

A limitation of this study is the difficulty in selecting a control group matched for
body composition. No body composition measurements were performed in the study
and BMI alone can give a limited insight into this. Dietary data was not recorded in this
study, and although not the primary interest in the study, the diet can affect both the gut
microbiota and lipid parameters. Generally, elite athletes can be presumed to eat a different
diet from the general population, e.g., a diet rich in carbohydrates and protein [50], while an
individual diet can vary depending on many factors [51]. The absence of overnight fasting
can confound the concentrations of some metabolic markers such as total triglycerides,
yet this heterogeneity affected both groups equally. Since our study is cross-sectional,
all results are associative and are interpreted as such. When comparing athletes and the
general population, genetic background can confound some of the associations since the
same polygenic risk factors can predict both physical activity and health outcomes [52,53].
Likewise, the gut microbiome exhibits at least some degree of heritability [54]. The possible
ergogenic capacity (e.g., ability to ferment lactate) in the gut microbiome of elite skiers
should be elucidated with further studies.

To conclude, we found lower phylogenetic diversity in elite cross-country skiers as
well as minor overall differences in the gut microbiota composition and serum metabolome
between the athletes and controls. The athletes had lower abundances of several bacterial
genera, including many mucin-degrading bacteria, and a healthier serum lipid profile.
Butyricicoccus, a genus with potential as a next-generation probiotic, was associated with
higher HDL cholesterol and larger HDL particle size. In addition, we found the R. torques
group, a genus associated with gastrointestinal disorders and dyslipidemia, less abundant
in the athlete group, and associated with more abundant VLDL and LDL particles. Whether
the athletes’ serum lipid profile is facilitated by the microbiome or vice versa, or whether
these factors share a genetic makeup, could be studied with metagenomics and fecal
metabolomics. Further longitudinal studies could also investigate whether elite athletes
during competitive season are prone to mucin depletion and related changes in microbial
composition and diversity.

4. Materials and Methods
4.1. Study Design and Population

This observational case-control study was carried out during the Finnish Nordic Ski
Championships in Äänekoski, Finland between 28 March and 1 April 2019, an event held
at the end of the skiers’ competition year. The study recruitment was accepted by 27 of 28
athletes belonging to the national Nordic Ski Team of Finland. The training season of the
athletes had started at the beginning of May and the competition season at the beginning
of November in 2018. The athletes had, therefore, experienced heavy physical stress for
11 months. For every athlete, one healthy, moderately exercising (<6 h per week) control
subject was recruited from among the students and staff of Turku University Hospital and
University of Turku, Finland. The controls (n = 27) were matched for age (+/− 2 years)
and sex. The control subjects were studied in Turku, Finland according to the same study
protocol as the athletes in Äänekoski, between 2 and 11 April 2019.

The clinical data and health-related information from the athletes and controls were
collected by interview at the study visit by the study nurse (Table 1). The training load of the
athletes was collected from the day-to-day training diary data of the previous 11 months.

The blood samples were collected by the study nurse a day before the competition.
The athletes had followed their own individual training protocol when preparing for the
following day’s race. The time frame between the last training bout and the blood sampling
varied and we did not record the exact time. Due to the competition circumstances, no
fasting from athletes and, correspondingly, nor from controls was required. The blood
samples were centrifuged, and the serum separated immediately. The serum was aliquoted,
immediately frozen at −20 ◦C and then stored at −80 ◦C.
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Table 1. Clinical characteristics of the study population. Values are represented as mean ± SD or as n
of participants.

Athletes (n = 27) Controls (n = 27)

Age 27.1 ± 5.1 27.4 ± 5.6
Male/Female 14/13 (52/48%) 14/13 (52/48%)
BMI 22.05 ± 1.8 24.0 ± 3.5
Exercise load, h/week 15 ± 2 4 ± 1
Used oral antibiotics during
previous 6 weeks 2 1

BMI = Body mass index.

4.2. Fecal Sample Collection and Microbial DNA Extraction

Both athletes and control subjects received a package containing self-collection equip-
ment and instructions for fecal sampling. The package also included a questionnaire
focusing on health status and lifestyle factors at the time of fecal sampling. The participants
were guided to send both the sample and questionnaire to the Microbiome Biobank labo-
ratory (University of Turku, Finland) by mail as soon as possible after the collection. The
specimens were collected into OMNIgene®•GUT collection tubes (DNA Genotek, Kanata,
OT, Canada) according to the manufacturer’s instructions. Briefly, the participants were
guided to collect a small amount (approximately 500 mg) of fecal material into the tube,
to homogenize the sample by vigorous shaking for 30 s and to mark the date and time of
the sampling on the accompanying collection form. As OMNIgene®•GUT collection tubes
include a stabilizing solution that guarantees DNA integrity in typical ambient temperature
fluctuations and stability at room temperature for as long as 60 days, collection, storage
and shipping of the samples could be performed at ambient temperatures [55].

At the laboratory, the samples were homogenized by gentle mixing, and the bacterial
DNA was extracted from 200–250 µL of sample solution with a GXT Stool Extraction Kit
VER 2.0 (Hain Lifescience GmbH, Nehren, Germany). Before the extraction, an additional
homogenization by bead-beating in 1.4 mm Ceramic Bead Tubes (MO BIO Laboratories,
Inc., Carlsbad, CA, USA) at 1000 rpm for 3 minutes with a MO BIO PowerLyzer™ 24 Bench
Top Bead-Based Homogenizer (MO BIO Laboratories, Inc., Carlsbad, CA, USA) to enhance
the cell lysis. The DNA concentrations were measured with a Qubit dsDNA HS Assay kit
and Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA), and the DNA
samples were stored at −75 ◦C.

4.3. 16 S rRNA Gene Sequencing and Sequence Data Processing

The gut microbiota profiles were analyzed by 16S rRNA gene sequencing. To this end,
the variable region V4 of the bacterial 16S rRNA gene was amplified with custom-designed
dual-indexed primers and sequenced with the Illumina MiSeq system as described [56].
The raw 16S rRNA gene sequencing data were demultiplexed and the sequence adapters,
primers and barcodes were clipped by using the Illumina BaseSpace platform. The raw
sequence quality was checked with FastQC [57].

4.4. Gut Microbiota Composition Analyses

The 16S rRNA gene sequences were clustered to operational taxonomic units (OTUs)
at 97% similarity using CLC Microbial Genomics Package (Qiagen, Hilden, Germany). The
rRNA gene sequences were classified using the SILVA SSU Reference database (v132, 99%).
The statistical analyses were performed with CLC Microbial Genomics Package. To analyze
the gut microbiota alpha-diversity, Chao1 and Shannon indices were quantified. In addition,
phylogenetic diversity was determined. The differences in the alpha-diversity measures
between the groups were analyzed with the Kruskal–Wallis test. The beta-diversity analysis,
which describes the dissimilarities in the ecosystem level community composition between
samples, was based on Bray–Curtis distance and PERMANOVA for significance testing
and the group differences were visualized with Principal Coordination Analysis (PCoA)
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in CLC. The taxonomic differences between the groups were analyzed with ANOVA-like
comparison in CLC Microbial Genomics Package. The statistical significance in group
comparisons was set at p < 0.05 after the multiple testing correction (Benjamini–Hochberg
false discovery rate). The differences were also analyzed by LEfSe using the browser
module and standard protocol [58]. The statistical significance was set at p < 0.05.

4.5. Metabolite Analyses

A high-throughput proton NMR metabolomics platform (Nightingale Health Ltd., Helsinki,
Finland) was used to analyze the serum metabolic profiles as described earlier [59,60]. The
analysis platform assesses 228 variables, including biomarkers of lipid and glucose metabolism,
amino acids and ketone bodies. Zero values were imputed as the lowest values in the data
set above zero, as per the laboratory instructions. Since more than half of the metabolites and
derived parameters were not normally distributed, the Kruskal–Wallis test was used to test for
feature-wise group differences. The effects of the background variables were investigated using
Quade’s ANCOVA (nonparametric analysis of covariance). PCA and PLS-DA were used for
multivariate analysis and visualization of the metabolites. To reduce the dimensionality in select
visualizations, the metabolites were clustered and summed according to the biological function
as reported by Nightingale Health.

For the correlation analyses between the microbes and metabolites, the microbial taxa
with a prevalence of less than 10% at 0.001 relative abundance were excluded and the data
was center log ratio (clr) transformed. Before the clr transformation, a pseudo-count of 10−8

was added to all fields to mitigate zero values. Any metabolites with missing values were
also filtered out. The Spearman correlations between the metabolites and microbial taxa
were measured and clustered on the microbial axis using the Ward method and Euclidean
distance. The general linear model with ordinary least squares method was used to further
test the associations. In addition, random forest and XGBoost in Python were used to test
the predictive ability of the metabolites and taxa on the group membership.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12040335/s1: Figure S1. Spearman correlation coeffi-
cients between the bacterial families and background variables; Figure S2. Spearman correlation
coefficients between the metabolite groups and background variables; Figure S3. The metabolites
and derived parameters. Table S1. Results summary for linear regression model using Butyricicoccus
and Ruminococcus torques group as dependent variables and associated metabolites as regressors.
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