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Abstract

The spatial distribution of genetic variants is jointly determined by geography, past demographic processes, natural selection, and its

interplay with environmental variation. A fraction of these genetic variants are “causal alleles” that affect the manifestation of a

complex trait. The effect exerted by these causal alleles on complex traits can be independent or dependent on the environment.

Understanding the evolutionary processes that shape the spatial structure of causal alleles is key to comprehend the spatial distri-

bution of complex traits. Natural selection, past population size changes, range expansions, consanguinity, assortative mating,

archaic introgression, admixture, and the environment can alter the frequencies, effect sizes, and heterozygosities of causal alleles.

This provides a genetic axis along which complex traits can vary. However, complex traits also vary along biogeographical and

sociocultural axes which are often correlated with genetic axes in complex ways. The purpose of this review is to consider these

genetic and environmental axes in concert and examine the ways they can help us decipher the variation in complex traits that is

visible inhumans today. This initiativenecessarily implies adiscussion ofpopulations, traits, the ability to infer and interpret“genetic”

components of complex traits, and how these have been impacted by adaptive events. In this review, we provide a history-aware

discussion on these topics using both the recent and more distant past of our academic discipline and its relevant contexts.
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Introduction

One of the main questions of interest in human genetics is to

understand the genetic factors driving the phenotypic diver-

sity observed among individuals. This is a difficult enterprise

because the majority of the phenotypes of interest are com-

plex traits that are jointly determined by many genetic loci and

environmental variables. Genome-wide association studies

(GWAS) have allowed us to make progress in identifying

the genetic loci that influence the phenotypic diversity of a

complex trait in a particular study cohort and environment.

This has allowed us to start identifying similarities and differ-

ences in the genetic architecture of a complex trait across

human diversity. Here, the genetic architecture is defined by

the number, effects, frequencies, and heterozygosity of the
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genetic variants changing the value of the trait in a particular

environment, taking into account the interactions of the var-

iants with each other and the environment (Timpson et al.

2018). The unraveling of genetic architectures around the

world raises the question of what particular factors could be

driving observed differences in traits, how these factors are

influenced by the environment, and how the phenotypic di-

versity observed in humans across the globe are driven by the

joint effects of the genetic architecture of a trait and the en-

vironment. Here, we emphasize these issues by describing the

evolutionary and historical processes driving differences in the

global distribution of genetic variants and complex traits. We

also discuss the accuracy of current genotype-based

approaches to predict phenotypes and detect polygenic ad-

aptation given variable environments and genetic architec-

tures. We begin our discussion with a historical perspective

on the definition of a population and a complex trait, and we

end our review with a history-aware contemplation to help

guide the trajectory of future research.

Populations in Biology

Researchers typically try to make sense of biological variation

by grouping individuals based on shared observed character-

istics. This is a complicated task that can be approached dif-

ferently depending on the purpose of the definition that we

seek. Focusing on natural populations, Waples and Gaggioti

(2006) categorize two main approaches to define popula-

tions, the ecological approach and the evolutionary approach.

The first one proposes that individuals of a species belong to

the same population based on interactions within the same

space and time but not necessarily requiring reproduction,

whereas the latter requires the potential for reproduction

which implies being in close enough proximity to mate

(Waples and Gaggiotti 2006). However, the delimitation of

a population is complicated due to the distribution and mi-

gration of individuals through space. For instance, if two pop-

ulations are interconnected through constant gene flow

overtime, should they be considered separate populations

or at what point should they be considered one population?

Another related complication is the definition of the space

that they inhabit; how should the area of a population be

delimited, if it all? Moreover, what happens if the ranges of

two populations overlap? If they share a fraction of their

range, then are they two separate populations or part of a

single more extensive range?

Despite the problems of the definition of populations in

space, the concise definition of populations in theoretical

models has been useful to advance our understanding of

the spatial patterns of genetic diversity. As an example, mod-

els of populations with predefined sizes and migration rates

that have a clearly delimited space have helped us elucidate

important concepts such as the patterns of isolation by dis-

tance (IBD). IBD is a very robust prediction derived from a

mathematical framework and posits that there will be more

genetic differences between individuals that are farther away

from each other geographically under a continuous spatial

range (Wright 1943). This overall general pattern has been

observed in humans (Relethford 2004; Ramachandran et al.

2005). Even though IBD is a good model for the genetic dy-

namics of populations, the pattern can be disrupted by the

simple fact that there are areas harder to get to than others

but also because of humans’ unique capability of long-

distance group migration. For example, when looking at

present-day cosmopolitan societies, we would find IBD dis-

ruption because of the historical large-scale migration events

from a variety of distinct geographical locations. We note that

this is not an exclusively contemporary phenomenon and has

happened throughout history (e.g. Lazaridis et al. 2014).

Perhaps an aid to understanding the picture of human varia-

tion would be to incorporate both dimensions of time and

space to current population models (Bradburd and Ralph

2019). Human variation can be neither thought of as many

small isolated populations nor as one large global population,

because boundaries are blurry in space and time.

It is important to note here that idealized population def-

initions that aid the development of mathematical models do

not generally present an accurate representation of present-

day human diversity, hence one should be wary when map-

ping these constructs to empirical biological data. In practice,

the fields of human genetics and genomics have grouped

individuals into populations with a certain ambiguity, where

populations have been used to refer to races, ethnic groups,

individuals sharing genetic ancestry (see Appendix—

Keywords), a nationality, a religion, or a geographic region,

with multiple definitions used interchangeably (Panofsky and

Bliss 2017). Although some of these concepts may overlap,

referring to them ambiguously under the population label can

also lead to misunderstandings (fig. 1). Continental ancestry

labels have emerged as the most common way to group in

recent decades (Panofsky and Bliss 2017). However, their use

has been critiqued due to their conflation with racial catego-

ries, ambiguity in how to define ancestry, and their use arti-

ficially delimiting a continuous variation space, as well as

highlighting only a specific time slice of the true historical

notion of ancestry (Lewis et al. 2021).

To prevent such essentialization of discrete ancestry labels,

it is reasonable to describe them as outputs of specific meth-

ods such as admixture with certain assumptions, and label

them as ancestry from present-day Europe instead of

European ancestry for example. Furthermore, when deter-

mining how to analyze individuals in genetic and genomic

studies, it would be advisable to select grouping criteria that

are most in alignment with the research questions being

asked, as well as clearly stating such criteria and why they

are important for the analysis. For example, how do you de-

fine and label groups and why? Should your grouping be

defined by genetic ancestry (and at which time slice), self-
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identified race, or some other variable? As such, it is also

advisable to group only when it is justified by the research

question and not by default. Additionally, when sampling is

limited or not uniform across a grouping criterion, it should be

pointed out that there is insufficient data to generalize par-

ticular results to the larger group.

Traits in Biology

The concept of population is commonly used to group indi-

viduals for further analyses including those of trait variation.

Traits are often described as a phenotypic characteristic that

can be either measured or directly observed in an organism.

One particularly useful definition was put forward by

Dobzhansky who defined a “visible trait” as “the outcome

of certain developmental, physiological and ultimately

physico-chemical processes in the organism” (Dobzhansky

1956) noting that these processes come from underlying ge-

netics but are also influenced by the environment. This defi-

nition implies that traits are the conjunction of distinct

processes and thus can be conceptualized as a group of char-

acteristics that might be made up of another grouping at

different physical scales. For example, one of the most dis-

cussed traits in humans is height, but height is just an arbitrary

observation that can be broken down into different compo-

nents such as “femur length” trait or a “growth hormone

production” trait that can be thought of as different traits. A

trait is not only a conjunction of distinct biological processes,

but it is a conjunction of these and other environmental pro-

cesses, as well as their interactions. For example, height is also

affected by nutrition, because nutrition may compensate for

metabolite deficiencies as well as change the expression of

the genes affecting height (Perkins et al. 2016).

Traits such as height that show continuous variation are

referred to as “quantitative” or “complex” traits. Common

disorders that seem binary such as Type 2 Diabetes (T2D) are

also quantitative traits (Plomin et al. 2009). R.A, Fisher fa-

mously demonstrated that the observation of continuous var-

iation can be explained by the contribution of many different

genetic Mendelian factors to changes in the value of a phe-

notype (Fisher 1918). However, it must be noted that a purely

environmentally determined trait can be continuously distrib-

uted as well. R.A. Fisher also showed that the larger the num-

ber of loci involved in a trait, the lesser the individual

contribution of each locus to the trait. The fact that many

mutations can impact the expression of a phenotype implies

that the genetic background is of importance to the trait. The

genetic background can manifest in the expression of a trait

through additive effects, epistatic interactions among genetic

variants, and through pleiotropic effects of genetic variants

that affect many traits simultaneously.

Finding statistically conclusive support for epistasis is a chal-

lenging task mainly due to it having small effects, and its

contribution to complex traits remains to be accurately quan-

tified (Wei et al. 2014). On the other hand, pleiotropy is an

important phenomenon driving the evolution of complex

traits. A study looking for signatures of pleiotropy used

GWAS data, which we will explain in the next section, from

558 unique traits and found 41,553 trait-associated loci

across the analyzed traits (Watanabe et al. 2019). Those traits

were classified into domains that share a particular function

such as a neurological domain or metabolic domain. Then,

the authors defined physical blocks in linkage disequilibrium

(LD) with the trait-associated loci and found that 93.3% of

these blocks were associated with more than one trait,

whereas 90% were associated with more than one functional

domain. These results could be explained by genes or single

nucleotide polymorphisms (SNPs) having a pleiotropic effect

or, alternatively, by having two genes or SNPs being in close

enough proximity such that they are part of the same LD

physical block. Further analysis made by the authors found

that 67.2% and 32.4% of the genes and SNPs associated

(Ecological) Group of interac�ng individuals in a shared
geographical loca�on (at present �me).

(Ancestry) Group of interbreeding individuals with a 
shared evolu�onary history (�me).

(Social-Poli�cal) Socio-poli�cally delimited categories
(race, ethnicity, city, country, etc.).

ConceptsEcological

Socio-poli�cal Ancestry

FIG. 1.—Ambiguity between different population concepts We illustrate three different population concepts: The ecological definition in purple, the

sociopolitical definition in yellow, and the ancestry-related definition in green. Even though these three concepts may have some overlap, they allude to

different processes.
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with a trait had an impact on more than one functional do-

main, respectively. These results show that pleiotropy at the

SNP and gene level is an important phenomenon acting on

multiple traits with different functions (Watanabe et al. 2019).

The presence of pleiotropy and the possible effects of epistasis

in complex trait variation highlights the importance of the

genetic background. Additionally, the evidence that pleiot-

ropy seems to be widespread tells us something about the

architecture of complex traits; that biological pathways lead-

ing to the expression of a phenotype are not isolated from the

biological pathways of other phenotypes. If the majority of

these pathways are interconnected, then we would expect

genetic variants changing the enzymatic activity of those

pathways to be more pleiotropic and traits to be more poly-

genic (fig. 2). Another consideration is that because traits are

arbitrary in terms of how they are measured or defined, the

definition itself may account for the trait having a different

degree of pleiotropy. In this sense, we could assume that a

more “broadly” defined trait, such as body mass index (BMI)

which combines weight and height, could have higher plei-

otropy than a more “narrowly” defined trait such as growth

hormone production.

Beyond genetic background, complex traits can be heavily

influenced by the contribution of the environmental back-

ground that alters the processes in the organism giving rise

to the trait. These gene by environment interactions and en-

vironmental effects make it complicated to assess how much

of the variation of a trait comes from genetics or the environ-

ment. In this sense, estimating heritability is always a local

analysis (Feldman and Lewontin 1975), for either narrow or

broad-sense heritability. It can tell us the genetic contribution

to phenotypic variation for a given trait in a particular envi-

ronmental background, but the implications of those results

are challenging to generalize to individuals living in another

environment. More broadly, genetic effects must be under-

stood in the environmental conditions under which the genes

are expressed (Feldman and Lewontin 1975). Therefore, her-

itability is not a property of a trait, but rather of the distribu-

tion of a trait in a given environment. Furthermore, these

heritability estimates can contain masked effects of environ-

mental factors that are not variable in the cohort used to

estimate heritability. Heritability is highest when relevant en-

vironmental inputs are uniform across a sample, and shrinks

as environmental input becomes more varied (fig. 3). A high

FIG. 2.—Genetic background, pleiotropy, and polygenic trait architecture Polygenic traits have core genes that have a high contribution to the trait

because they are directly related to the main biological pathways that produce the trait. Polygenic traits also have a contribution from peripheral genes, which

are not directly related to the core pathway, but because they may be connected to core genes they still exert an effect. If the genome behaves modularly,

meaning that pathways are grouped into discrete clusters with little or no communication between each other, then the trait is only primarily influenced by

changes in core genes. On the other hand, if the genome is highly or completely interconnected (as the omnigenic model suggests; Boyle et al. 2017), then

peripheral genes have a bigger impact than core genes. This phenomenon is due to the peripheral genes significantly outnumbering the core genes. Even if

the peripheral genes have very small effects, they will have a greater effect on the trait than core genes because of their larger number. According to this

view, the more modularly the genome behaves, the less pleiotropic and polygenic a trait will be. On the other hand, with a more interconnected genome, we

could expect traits to be more pleiotropic and polygenic. As illustrated by the environmental background in yellow, we assume no environmental variability in

this figure.
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heritability score does not necessarily tell us whether a trait is

primarily genetic; high heritability can also be an indicator of

environmental homogeneity (Uchiyama et al. 2021).

Estimating Genetic Effects and Predicting
Complex Traits

GWAS Overview

GWAS are our current best tool to analyze the genetic basis of

complex traits in humans (Young et al. 2019). To do this,

GWAS estimates the effect of SNPs in the genome with re-

spect to the odds of having a disease, or a certain value of a

quantitative trait. Trait values and genotypes are measured in

a study group. Trait values and genotypic values are then

correlated in a statistical model. If allele frequencies for a

SNP are differentiated among individuals with the disease

compared with those without the disease, a significant effect

size for the SNP is estimated (fig. 4). Because other factors in

the study group can cause allele frequencies to differentiate in

the same direction as trait values, the model generally includes

variables for gender, age, and estimates of population struc-

ture to control for their confounding effects in the estimation

of genetic effect sizes. Indirect genetic effects and assortative

mating may also confound estimation of effect sizes.

Furthermore, the study group is a sample with a specific dis-

tribution of age, gender, socioeconomic status (SES), geo-

graphic location, other environmental factors, and genetic

ancestry. Therefore, it is important to consider how well the

estimated SNP effects for a complex trait are meaningful in a

different study group. We will first overview the approaches

currently used to estimate genetic effect sizes and correct for

confounding variables, discuss how genetic effects can be

overestimated due to insufficient modeling of confounding

variables, and end by considering problems of transferability

beyond the study group (fig. 4).

Approaches

Two primary statistical models are used to estimate genetic

effect sizes (fig. 4a). The first is a linear regression model. This

model generally uses principal components computed on the

study group to correct for population structure (Price et al.

2006). The principal components capture allele frequency dif-

ferentiation along major axes of genetic variation. Principal

components are normally computed on common variants

and may not appropriately control for recent fine-scale struc-

ture (Mathieson and McVean 2012). A common approach

has been to meta-analyze the effect sizes estimated from a

number of smaller studies to boost power. The second model

used to estimate genetic effect sizes is a mixed model ap-

proach. In this model, a genetic relationship matrix is com-

puted on the study group, and is used to correct for

population structure (Loh et al. 2018). Sibling-based GWAS

is an alternative approach used to estimate genetic effect

sizes, which can circumvent issues of confounders discussed

below. However, this approach suffers from low power, due

to the paucity of phenotypic and genetic data collected on

related individuals, and can bring other confounding issues

(Fletcher et al. 2021).

Problems of Biased Estimation of Genetic Effects

Due to Trait-Relevant Environmental Structure

Genetic effects can be overestimated if an unknown environ-

mental factor is differentiated along the same axis as the

studied trait (Berg et al. 2019; Sohail et al. 2019). This can

happen, for example, if an environmental factor (such as diet)

that affects a trait of interest (such as height) varies along the

same axis as the trait (fig. 4b). If the factor is not appropriately

controlled for, the genetic effect partly serves as a proxy for

FIG. 3.—Genes, traits, and their environment Genes are expressed in a

particular environment. Shown here is a visual representation of the ex-

pression of a color trait from different genetic backgrounds (A and B) in

different environmental conditions (Environment 1 and 2). Here, a color

trait is simply the sum or superposition of the genetic background color

(shown by the circles at the top of the figure) and the environmental color

(shown in each tile), that is P¼ Gþ E. Environment 1 has a high variance,

demonstrated by different conditions or background colors, whereas

Environment 2 has a low variance demonstrated by a single background

color. Genes under different conditions (Environment 1) result in color

traits that are somewhat different and differences in color are both influ-

enced by the environment and the genetic background. Notice how in

some sections of Environment 1, the two genetic backgrounds are distin-

guishable, whereas in others, the two genetic backgrounds are very much

alike (e.g. white background vs yellow background). In Environment 2,

however, there is only one predominant condition of the environment

which makes the genetic background a bigger determinant of the color

trait instead of the environment. The measured heritability of the trait from

Environment 1 would be lower compared with the heritability measured in

Environment 2 simply because the latter environment is more

homogeneous.
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(a)

(b) (c)

(d)

(e)

FIG. 4.—Estimating genetic effects and predicting complex traits (a) Framework for genome-wide association studies. Genotypic values are correlated

with trait values in genome-wide association studies using linear regression analysis or mixed-models. Linear regression (LR) analyses only model fixed effects,

whereas mixed models (MM) can also model random effects. Principal components are generally included in the model as a fixed effect, and/or the genetic

relationship matrix (GRM) is included as a random effect to correct for population stratification. Factors such as age, sex, socioeconomic status, and other

environmental variables may be included as a fixed or random effect as well if they are correlated with the trait of interest in the study cohort. Here, the trait

distribution (T ) in the study cohort is modeled using a set of predictors—genotype at each genetic locus (Gj ), principal components 1–100 (PC1� PC100),

age, sex, a variable such as socioeconomic status (var1) as a fixed effect, and variables such as city (var2) and the genetic relationship matrix (GRM) as random

effects. (b) Residual stratification. If an environmental gradient varies along the same axis as the trait value, and is not appropriately controlled for using PCA

or inclusion of said variable in the model, any SNP that is differentiated in allele frequency along the same axis will have an artificially inflated genetic effect

size estimated using GWAS. The resulting residual stratification has been detected using two main approaches (Sohail et al. 2019). (top) Visualizing estimated

genetic effect sizes (bG
j ) along the axes of allele frequencies computed within groups reflecting the axis of variation. If bG

j beta is systematically estimated as

positive among alleles with a higher frequency in the south compared with the north in this illustrative example, this likely reflects residual stratification (left).

Under a case of low stratification, effect sizes would be more evenly distributed (right). Correlation (q) between bG
j and the PC SNP loadings (PCj ) for each

SNP for principal components 1–12 (bottom). If the estimated genetic effects are significantly correlated with SNP loadings along a PC that reflects

geographic and other environmental structure in the study cohort, that is due to residual stratification (left). In the case of low stratification, effect sizes

will not show strong correlations with SNP loadings along any PC (right). In general, such correlations can also result from polygenic selection, but the

resulting correlation is likely much smaller than those induced by residual stratification, and warrants further study. (c) Assortative mating. Under assortative

mating (phenotypic correlation between mates q > 0), the additive genetic variance at equilibrium is inflated compared with under random mating. Here,

shown for q ¼ 0:5, and heritability (h2)¼ 0.8 using equations from (Yengo and Visscher 2018). (d) Indirect effects. Using results from (Kong et al. 2018) for

two illustrative traits in the Icelandic (deCODE) data, we show the proportion of the trait variance accounted for by the polygenic score (blue), and the portion

of it accounted for by the direct genetic effect alone (gray), or by the genetic nurturing and other indirect indirect effects (yellow). The trait here is adjusted by

sex, year of birth, and 100 PCs, and the proportion of variance explained by the polygenic score for the unadjusted trait would be lower (Kong et al. 2018). (e)

Polygenic score (PGS) prediction. Using results from (Mostafavi et al. 2020), we present an illustrative example for diastolic blood pressure (DBP) (top). The

accuracy of prediction using the PGS for DBP depends both on the gender breakdown of the training sets used to estimate effect sizes and the gender

breakdown of the target sets in which prediction is done. The correlation between inferred PGS and true PGS depends on many factors that can vary

between the training and target sets (bottom). These include genetic ancestry, age, gender, socioeconomic status (SES), etc. Prediction can be further

complicated by varying strengths of selection along the genome (Shi et al. 2020).

Sohail et al. GBE

6 Genome Biol. Evol. 13(12) doi:10.1093/gbe/evab272 Advance Access publication 11 December 2021



this environmental effect on the trait and, is therefore, over-

estimated. This phenomenon, often called residual stratifica-

tion, remains an unsolved problem in complex trait genetics

studies (Berg et al. 2019; Haworth et al. 2019; Kerminen et al.

2019; Sohail et al. 2019; Refoyo-Mart�ınez et al. 2021). Two

methods used to detect residual stratification (Berg et al.

2019; Sohail et al. 2019; Refoyo-Mart�ınez et al. 2021) are

presented in figure 4b. These and similar approaches have

been recently used to show that residual stratification partic-

ularly remains a problem for large meta-analyses of associa-

tion studies (Berg et al. 2019; Sohail et al. 2019; Refoyo-

Mart�ınez et al. 2021). One reason may be that the individual

studies used in the meta-analysis are small and therefore can-

not appropriately control for population structure using prin-

cipal components. However, residual stratification concerns

have also been found in more homogenous studies such as

the UK Biobank (Haworth et al. 2019; Kerminen et al. 2019).

This may be because the standard approach of computing

principal components on common variants do not appropri-

ately correct for recent population structure (Zaidi and

Mathieson 2020), and may be improved by using principal

components computed from rare variants or identity-by-

descent segments (Byrne et al. 2020; Zaidi and Mathieson

2020). Although residual stratification remains in genetic as-

sociation studies, the genetic effect assigned to a trait will be

inflated and not correctly assigned to an environmental or

partly environmental factor.

Due to Assortative Mating and Indirect Genetic Effects

Correlation among causal variants induced by assortative mat-

ing can confound their genetic effect estimates from GWAS,

inflating the additive genetic variance beyond its value under

random mating (Yengo and Visscher 2018; Kim et al. 2020;

Young et al. 2020) (fig. 4c). Genetic effects can also be over-

estimated due to indirect genetic effects (Kong et al. 2018).

We define direct genetic effects as changes in the phenotype

in one individual due to its genetic variants. On the other

hand, indirect genetic effects result from genetic variants in

one individual that have an effect on the trait of another in-

dividual through changes in the environment. A form of indi-

rect genetic effects is genetic nurture, where the genetic

variants present in parents and other relatives can change

the trait of an individual (Kong et al. 2018). Using data of

individuals from Iceland with at least one parent genotyped,

Kong et al. estimated the trait variance for EA and height

among other traits explained by their polygenic score (PGS),

which captures the direct effect, genetic nurturing, and other

effects such as assortative mating. The PGS is computed by

summing the alleles at all trait-associated loci carried by an

individual or population, weighted by their “effect size” on a

trait as estimated in a GWAS. The score is a genetic predictor

of a given trait in an individual or group, and can be under-

stood to reflect the predisposition for that trait based on

genetics. The authors use data from the PGS of the alleles

not transmitted from parents to their children to compute the

trait variance explained by only the direct effect of the PGS.

The authors estimate the direct effect of the PGS by comput-

ing the difference between the estimated effect of the PGS in

the alleles transmitted from parents to children minus the

estimated effect of the alleles not transmitted from parents

to children. This calculation cancels the impact of genetic nur-

turing, assortative mating, and other effects in the PGS. In the

case of EA, 4.98% of the trait variance is explained by the

transmitted PGS, whereas only 2.45% of the trait variance

can be attributed to direct genetic effects of the PGS pointing

to the importance of indirect effects, such as genetic nurtur-

ing, as well as other confounding effects such as assortative

mating on the inflation of the trait variance explained by the

PGS (fig. 4d).

Problems of Phenotypic Prediction

Across Ancestry

Investigating the relationship between spatial genetic and trait

structure often requires performing predictions of complex

phenotypes using SNP effects recovered in GWAS (fig. 4e).

These predictions are performed using PGSs (Torkamani et al.

2018). The final trait value is mediated by both the genetic

predisposition and the environment in a given individual or

group. In the simplest scenario, with no interactions between

genetics and the environment, the trait will be the linear sum

of the genetic predisposition (PGS) and the environment.

There are several potential issues with the estimation of effect

sizes (and thus PGS), and their transferability from the study

cohort to a new cohort, depending on the specifics of the

study cohort and the design of the GWAS. The main factors

that contribute to the accuracy of these predictions are past

demographic history, natural selection, environmental effects,

and genotype by environment interactions.

Past demographic history plays an important role in the

prediction of phenotypes. Its impact is mainly due to a larger

genetic divergence (as measured by Fst) between the training

population used to obtain the effects of associated SNPs via a

GWAS study and the target population where we perform

the predictions. This impact is manifested in two main ways:

differences in the frequency of causal alleles and varying pat-

terns of LD (Rosenberg et al. 2019). Allele frequency differ-

ences can lead to causal alleles that are present only in a single

population, also known as population-specific causal alleles.

The condition of a causal allele being population-specific is

dependent on the sample sizes from the included populations

in the study. If we include the genetic information from more

individuals that are part of other designated populations, then

the allele could be found in other populations and lose its

condition of being population-specific. Taking this caveat

into account, population-specific causal alleles decrease the

accuracy of the phenotypic predictions in the target
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population, because they are not present in the training pop-

ulation where we obtained the SNP effects (Durvasula and

Lohmueller 2019). The differences in allele frequencies be-

tween populations also contributes to misestimations of the

allele effects, because associations with causal alleles that are

at low frequency in the target population are harder to detect

(Kim et al. 2018). LD between the tagging and causal alleles

varies between different populations due to the joint effects

of recombination and specific demographic histories contrib-

uting to the misestimation of allele effects (Martin et al.

2017). These two manifestations of past population demo-

graphic history are likely important for the accuracy of the

computed PGSs, although their relative importance remains

unclear.

Potential variation of SNP effect sizes in different human

populations may be another factor affecting the accuracy of

PGSs. A recent study examined this problem by looking at the

cross-population genetic correlation between effect sizes in

regions of the genome with a particular functional annotation

(Shi et al. 2020). The authors found a lower cross-population

genetic correlation in regions of the genome that are under

stronger background selection. The strength of background

selection is correlated with Fst values in human populations

(Torres et al. 2018). This correlation suggests that the differ-

ences in effect sizes between populations in regions of stron-

ger background selection could be due to allele frequency

differences driven by higher drift in these regions without

the need to invoke shifting natural selective pressures acting

directly on causal alleles. Additionally, Shi et al. 2020 finds

that functionally relevant regions of the genome, such as su-

per enhancers, promoters, and regions conserved in mam-

mals, also show a depletion of the cross-population genetic

correlation. The authors conclude that including loci from

regions that affect gene regulation, are conserved, or are in

a region of strong background selection is not the best strat-

egy to perform cross-population phenotypic predictions, be-

cause the effect sizes on those regions do not possess a high

cross-population genetic correlation.

Furthermore, as will be seen in the “Genetics and

Environment Shape Complex Trait Distributions” section, pre-

diction of a certain trait can be poor across study groups

simply if the environment is different across study groups be-

cause the trait is the sum of genetic and environmental

effects. Finally, the presence and importance of genotype

by environment interactions in complex trait prediction can

lead to poor phenotypic prediction and warrants further the-

oretical and empirical studies. As an example, the importance

of genotype by environment interactions has already been

demonstrated for BMI using variants from the FTO locus

(Young et al. 2016).

Simulations under a simple demographic model that

includes African, European, and Asian populations have

shown that larger genetic divergences between the target

and training population lead to more inaccurate predictions

using PGS (Martin et al. 2017; Ragsdale et al. 2020). These

simulations were done assuming a genetic architecture with-

out G� G or G� E interactions, where natural selection has

no impact on the trait, and where the effect of an allele is

sampled from a normal distribution whose variance is depen-

dent on the number of causal alleles and the heritability of the

trait (Martin et al. 2017; Ragsdale et al. 2020). Different

assumptions about the genetic architecture of the trait could

impact the negative correlation of the genetic divergence be-

tween populations and the prediction accuracy of the PGS.

Changes in the genetic architecture of a trait should be taken

into account when analyzing different traits across human

diversity.

Moreover, a recent study showed through extensive sim-

ulations that the relative accuracy of PGS based on genome-

wide significant SNPs can be predicted accurately from

modeling LD, minor allele frequencies, and cross-population

correlations of causal SNP effects and heritability (Wang et al.

2020). Through theoretical and empirical quantification, they

found that LD and allele frequency differences between

ancestries can explain between 70% and 80% of the loss

in relative accuracy of European-based PGSs in African ances-

try for traits like BMI and T2D. These results suggest that

causal variants underlying common genetic variation identi-

fied in European ancestry GWAS are shared across continents

for some traits. However, this remains an area of active re-

search and further theoretical and empirical studies are

needed on more cohorts across the globe to define what

are the most important factors that impact the accuracy of

PGS. As we describe next, factors such as age, sex, and SES

can be part of the explanation for observations of variable

phenotypic prediction accuracy across ancestries.

Within Ancestry

Not only should one be careful when trying to extrapolate

phenotypic predictions from genotype data of people who

are distantly genetically related, but care should also be taken

when doing so even for individuals with a more shared ge-

netic ancestry. A recent study examined the portability of

PGSs in individuals with shared “White British” ancestry but

differing group characteristics for three exemplary traits: dia-

stolic blood pressure, BMI, and years of schooling (Mostafavi

et al. 2020). The values of these traits are correlated to known

environmental factors. In the case of diastolic blood pressure,

the strongest nongenetic predictor was sex, for BMI, it was

age, while for years of schooling, it was SES. For diastolic

blood pressure, they constructed two prediction cohorts com-

posed only of randomly selected males or females each while

conducting a GWAS with a cohort of equal sex ratio (fig. 4e).

When the PGS using the GWAS was applied to the female-

only prediction cohort, this had a 1.15-fold higher prediction

accuracy than when applied to the male-only prediction co-

hort. Similarly, for BMI and years of schooling, the prediction
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accuracy was variable when applied to stratified prediction

cohorts. In BMI, it was 1.4-fold higher in the youngest group

compared with the oldest group and in years of schooling,

PGS was shown to be 2-fold more predictive when applied to

the lowest SES group compared with the highest one.

To investigate this further, the authors then constructed

stratified GWAS cohorts for each trait. A diverse set with an

equal ratio of the grouping characteristics and two additional

sets made from individuals with a selected group characteris-

tic. For blood pressure, the PGS resulting from the female

GWAS set was more predictive (1.35-fold) in a female predic-

tion set. In turn, the PGS resulting from the male GWAS co-

hort was similarly accurate for both sexes. Similarly, BMI and

years of schooling were also sensitive to the choice of GWAS

cohort. When PGS was constructed from GWAS of the youn-

gest group (BMI) and lowest SES (years of schooling), it had a

higher prediction across all groups. Whether these effects are

widespread across other traits or group classifications is un-

known, but for these three traits, prediction accuracy of PGS

can vary in individuals of a shared genetic ancestry based on

sex, age, and SES. A broader conclusion from these results is

that the prediction accuracy of PGS between individuals with

a different ancestry will also be affected by factors, such as

SES or age, when those factors change between groups.

Potential Solutions to Problems of Prediction

Some solutions have been proposed to improve the prediction

of phenotypes using data from multiple studies. One potential

problem is that phenotypic predictions in a particular target

population can be inaccurate because they are based on

GWAS data using a small sample size from that target pop-

ulation. Due to this small sample size, the effect sizes esti-

mated are inaccurate and lead to poor phenotypic

predictions. However, one solution that has been proposed

to tackle this problem is to create a multiethnic PGS that

includes a linear combination of two PGSs from: 1) A study

cohort where accurate effect sizes can be obtained due to a

large sample size available, and 2) a study cohort with less

accurate effect sizes due to a smaller sample size available

(M�arquez-Luna et al. 2017). This approach uses the linear

combination of PGSs from two different cohorts to create a

multiethnic PGS that increases the accuracy of the phenotypic

predictions. This multiethnic PGS can also include information

from principal component analysis to adjust for ancestry.

Broadly, the multiethnic PGS boosts the phenotypic predic-

tions by leveraging the information from two studies per-

formed in two different cohorts and does not make any

explicit assumption about the genetic architecture of the an-

alyzed trait. The method has been tested in simulations that

assume shared genetic effects and shows improved perfor-

mance compared with using a PGS that only uses genetic

effects data from a single population (24–260% improve-

ments in prediction accuracy). This approach improves the

prediction accuracy of T2D by more than 70% in cohorts of

Asian and Latino populations compared with approaches that

only use effect size data from a single population (M�arquez-

Luna et al. 2017). A more recent method, PRS-CSx, relies on a

similar idea to combine summary statistics from multiple pop-

ulations, explicitly assuming that genetic architecture is mostly

shared across populations (through a shared continuous

shrinkage prior and leveraging LD diversity across discovery

samples) but allowing for population-specific effect sizes as

well (Ruan et al. 2021). PRS-CSx has been shown to outper-

form alternative methods for polygenic prediction across a

range of genetic architectures and ancestries (Ruan et al.

2021).

A few studies have built up on the approach of using effect

sizes from different populations to build better phenotype

predictors for admixed individuals by leveraging the local an-

cestry background of each chromosome (Bitarello and

Mathieson 2020; Marnetto et al. 2020). These studies pro-

pose to use effect sizes that depend on the ancestry back-

ground of each allele to compute a PGS. These methods

assume that effect sizes vary across ancestries and, therefore,

taking into account those differences should improve pheno-

typic predictions. The ancestry-specific effect sizes can be

obtained from GWAS conducted in cohorts with different

ancestries. Alternatively, a recently developed software pack-

age called Tractor can be used to estimate ancestry-specific

effect sizes by leveraging local ancestry estimates in admixed

individuals (Atkinson et al. 2021). These ancestry-specific ef-

fect sizes can be used to create a new PGS (Bitarello and

Mathieson 2020) that modestly improves height predictions

by 0.1–0.3% in African Americans compared with two differ-

ent constructions of a multiethnic PGS following (M�arquez-

Luna et al. 2017). The authors suggest that an improvement

of these predictions will depend on studies with larger sample

sizes in African populations (Bitarello and Mathieson 2020).

Consistent with this prediction, another study creates a dif-

ferent PGS also leveraging ancestry-specific effects sizes

(Marnetto et al. 2020). Using ancestry-specific effect sizes

from a European cohort taken from the UK Biobank, and

from an Asian cohort taken from the Biobank Japan, the

authors compute a combined ancestry-specific PGS. The

study finds modestly better predictions for height in admixed

East Asians in terms of the R2 values compared with PGSs that

only use effect sizes from one particular ancestry (Marnetto

et al. 2020).

Such local ancestry approaches implicitly assume varying

genetic architecture (different effect sizes and allele frequency

of causal alleles) by ancestry and have only shown modest

improvement in polygenic prediction. Meanwhile, the PRS-

CSx approach assumes a mostly shared genetic architecture

across ancestries, and boosts power by leveraging summary

statistics and LD information across populations while allow-

ing for population-specific effects as well. Finally, the field is

also attempting transancestry GWAS in an attempt to
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increase prediction power across groups (Wojcik et al. 2019;

Koyama et al. 2020). It is a pressing and active research prob-

lem to marcate the best solutions forward for the field,

whether it be using transancestry GWAS meta-analyses to

feed into PGS models which may suffer from the population

stratification effects detailed above, or performing single an-

cestry GWAS and combining them in an approach such as

PRS-CSx (Ruan et al. 2021) or creating methods that assume

largely ancestry-specific effect sizes (Bitarello and Mathieson

2020; Marnetto et al. 2020). Our comprehensive review of

the most state-of-the-art phenotypic prediction approaches

indicates that methods assuming largely population-specific

effect sizes show a marginal prediction improvement com-

pared with methods that assume shared effect sizes between

populations. The epistemological implication of these results is

that there is a largely shared biology among humans with

room for new mutations, gene-by-environment interactions,

and selection events that can lead to some population-specific

effects.

Factors Affecting the Spatial Patterns of
Genetic Variants

GWAS are used to identify trait-associated alleles that are in

LD with causal alleles. Those causal alleles, which change

the value of a complex trait, define the genetic component

of a complex trait. Understanding the evolution of those

causal variants around the globe is of fundamental impor-

tance to understand the spatial distribution of complex

traits. The global spatial distribution of these causal alleles

across the globe, as of other genetic variants, is broadly

determined by degrees of genetic differentiation that are

correlated with geographical distances (Ramachandran

et al. 2005) and geographic barriers such as oceans, deserts,

or mountains (Peter et al. 2020; Rosenberg et al. 2005).

However, these patterns are not universal because popula-

tion replacements and long distance admixture events (Peter

et al. 2020) can break the relationship between geography

and genetics. The joint impact of past demographic pro-

cesses, natural selection, and environmental variation shape

the geographical allele frequency distribution. Therefore, a

good understanding of the evolutionary processes shaping

spatial allele frequency variation is key to comprehend the

distribution of complex traits in space. Here, we will discuss

how past natural selection, population size changes, range

expansions, nonrandom mating, archaic introgression, ad-

mixture, and the environment can change the frequency

distribution of causal alleles.

The environmental conditions present in different regions

can lead to selection of particular phenotypic trait values and

lead to variation in complex traits across geographies that

mirrors genetic variation. The relationship between the repro-

ductive success (defined as fitness) of an individual and their

trait value determines the type of selection acting on that trait.

In humans, the reproductive success is a reflection of natural

and biological factors along with cultural factors that also play

a strong role. Conceptually, natural selection acting on a trait

has been broadly classified as directional selection, stabilizing

selection, and disruptive selection (Kimura 1983).

The action of natural selection acting on traits can change

the allele frequencies of causal alleles depending on the effect

that the causal allele exerts on multiple phenotypes. The

changes in frequency due to the action of natural selection,

referred to as efficacy of natural selection, are jointly deter-

mined by the effective population size N at each time and the

differences in fitness between individuals that possess a par-

ticular genotype. Broadly, those changes in frequency are

higher when N is larger. We illustrate the impact of population

size changes on allele frequency changes using simulations

(fig. 5a). A population expansion increases the mean number

of mutations that enter the population each generation (2Nu)

increasing the number of segregating sites after the expan-

sion (fig. 5a). The increased number of new rare mutations

after a population expansion leads to an average decrease in

the mean allele frequency on segregating sites for advanta-

geous, neutral, and deleterious alleles (fig. 5a). These results

are consistent with empirical results showing a large number

of rare variants due to a recent population expansion in

humans (Tennessen et al. 2012). On the other hand, a pop-

ulation decline decreases the number of segregating sites due

to the impact of genetic drift driving a quicker loss or fixation

of alleles (fig. 5b). In smaller population sizes, the action of

genetic drift becomes a more important evolutionary process

than natural selection to determine allele frequency changes.

This property has been exploited in studies to detect trait-

associated deleterious alleles in isolated groups that went

through a population decline in the recent past, because

some of those alleles can be found at a higher frequency

compared with groups that have maintained a higher popu-

lation size (Mahtani et al. 1996; Ober et al. 1998; Zeggini

2014; Locke et al. 2019). The impact of more complex pop-

ulation demographic scenarios that reconstruct past human

history, including bottlenecks and recent population growth,

on levels of deleterious genetic variation has received an im-

portant amount of attention in the literature (Gazave et al.

2013; Lohmueller 2014; Simons et al. 2014; Balick et al. 2015;

Uricchio et al. 2016) with some studies also taking into ac-

count the effect of the dominance coefficient on levels of

genetic variation (Simons et al. 2014; Balick et al. 2015),

and finding that the average frequency of deleterious variants

can actually remain constant after population bottlenecks due

to occurrence of both fixation and loss events. Broadly, these

studies are of particular importance to design GWAS that

capture trait-associated variants based on the impact of past

population history and dominance coefficients on levels of

genetic variation (Lohmueller 2014; Simons et al. 2014).

They are also relevant in association tests that pool informa-

tion from rare variants inside a locus to detect the association
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(a)

(c) (d) (e)

(b)

FIG. 5—Impact of five different evolutionary processes on patterns of genetic variation. (a and b) Impact of a population expansion and a population

decline on the number of segregating sites and the mean derived allele frequency of segregating sites across time. We computed those two statistics in

simulations under the Poisson Random Field model under the two demographic models shown in the upper panel (Ortega-Del Vecchyo et al. 2016). The

number of new independent mutations added each generation under this model follows a Poisson distribution with mean 2N0u¼ 12,500 which changes to

a Poisson distribution with mean 2 N1u after a population size change from N0 to N1 individuals that takes place 20,000 generations ago. The evolution of

each independent mutation follows a Wright–Fisher model with selection where the selection coefficient assigned to each mutation is sampled from the

distribution of fitness effects function at mutation–selection balance proposed by (Lourenço et al. 2011) using parameters inferred in humans (Huber et al.

2017). The mutations are classified based on their selection coefficient N0s as deleterious (N0s < –1), neutral (–1<N0s < 1), or advantageous (N0s > 1).
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of different loci with a particular phenotype (Uricchio et al.

2016).

The colonization of new territories due to range expansions

also impacts the distribution of alleles under natural selection.

The models of range expansion assume that populations in-

habit a territory designated as the “origin of the expansion,”

and that the populations expand outwards from this particu-

lar territory into the “edge of the expansion” (fig. 5c shows an

example with one dimension). Newly colonized territories in

range expansions start with a small number of individuals

before growing and, therefore, there is a stronger genetic

drift acting on mutations in territories that were colonized

more recently (Peischl et al. 2016). This leads to an accumu-

lation of deleterious variants compared with advantageous

variants in the recently inhabited territories simply because a

higher proportion of new mutations tend to be deleterious

and the strong genetic drift is more important than the impact

of natural selection on the change in allele frequency. We

illustrate this in fig. 5c and show how this leads to a decreased

mean population fitness on the edge of the expansion. The

phenomena of range expansion has been recently invoked to

explain that the distribution of deleterious variants across mul-

tiple groups is concordant with a series of range expansions

out of Africa (Henn et al. 2016). However, the resulting im-

pact on mutation load (and fitness) depends on the model of

dominance, and under an additive effects model, very small

differences in load are observed across groups (Simons et al.

2014; Henn et al. 2016).

Nonrandom mating is another process that shapes the dis-

tribution of causal alleles. This process varies historically and

geographically and, therefore, impacts spatial allele frequency

differences. Two forms of nonrandom mating that are impor-

tant in human populations are consanguinity and assortative

mating. Approximately 10% of the marriages across the

globe involve couples that are related as second cousins or

closer and their distribution varies across the globe (Bittles and

Black 2010). The frequency of consanguineous marriages is

shaped by both cultural practices and small population sizes

(Ceballos, Joshi, et al. 2018). Such matings decrease the val-

ues of heterozygosity and increase the proportion of the ge-

nome inside a run of homozygosity (FROH), as illustrated with

an example in figure 5d. Assortative mating is another impor-

tant process that shapes the distribution of causal alleles. In

line with this proposition, a recent study found that the trait-

associated alleles for height, amongst other phenotypes, pre-

sent in one individual are not only predictive of the phenotype

in that particular individual but are also predictive of the phe-

notype of its mate when assortative mating is present

(Robinson et al. 2017).

Mating with other hominids can also vary geographically

and historically leading to varying degrees of archaic introgres-

sion introducing causal alleles into human populations. Some

of the introduced alleles from Neanderthals have been linked

to particular phenotypes such as skin lesions, neurological

disorders, and sleeping patterns (Simonti et al. 2016;

Dannemann and Kelso 2017). On the other hand, the impact

Results are shown for h¼0.5 (additive) and h¼0 (recessive) variants. (c) Impact of a Range Expansion on the number of advantageous and deleterious

mutations per individual. We used the simulation program ADMRE (Peischl et al. 2013), where starting from five demes, the individuals colonize territories to

form new demes by expanding toward the right side of the origin of the expansion. Only one new territory can be colonized each generation, and we show

the results after 1,000 generations of a range expansion in the 200 demes next to the origin of expansion.There are two selection coefficients representing

advantageous and deleterious mutations with the same magnitude of selection that can be assigned to each new mutation. The mean population fitness,

shown in the lower plot, is calculated by averaging the population fitness of each individual which is equal to w ¼
Q

ið1þ siÞ. These simulations were

performed using the same parameters in (Peischl et al. 2013), but with a proportion of new mutations that are deleterious equal to 0.867 based on the

proportion of mutations with a negative selection coefficient in the distribution of fitness effects used in Panel A and defining a space with 1000 territories.

(d) Impact of nonrandom mating. We show two results depicting the impact of two forms of nonrandom mating that can be present in a population:

Consanguinity and assortative mating. Upper panel: To illustrate the impact of consanguinity, we calculate the proportion of the genome that is autozygous,

which is equal to the proportion of the genome inside a run of homozygosity (F_ROH). We performed 100 simulation replicates using SLiM (Haller and

Messer 2019) for the scenarios “Panmictic population” and “Mating preferentially between first cousins” with 500 females and 500 males in the pop-

ulation, a mutation rate of 1.2e-8, a recombination rate equal to 1.0e-8, and a simulated region of 100 Mb. All the individuals are sampled at the end of the

simulation. Relatedness does not play a role in the mating patterns under the “Panmictic population” scenario, whereas individuals are 100,000 times more

likely to choose a first cousin rather than any other individual on the “Mating preferentially between first cousins” scenario. We estimated the runs of

homozygosity using parameters defined previously (Ceballos, Hazelhurst, et al. 2018) allowing three heterozygous SNPs per run of homozygosity. Lower

panel: To show the impact of assortative mating, we show how the genotypic predictor of phenotype in a female can predict the phenotype of its male

partner. We denote the phenotype of the male and female partners as Pm and Pf, respectively, and we also define the genotypic predictor of the phenotype

for the male and female partners as Gm and Gf, respectively. Note how the covariance between Pm and Gf increases as a function of the level of assortative

mating, shown as higher values of correlation (Pm, Pf), and the effectiveness of the genotypic predictor, shown by the covariance (Gf, Pf). The lines plotted

use an analytical equation derived from (Robinson et al. 2017). (e) Impact of the environment. If a trait is under stabilizing selection, the genetic architecture

and environment will compensate for each other to maintain the trait at an intermediate value (Harpak and Przeworski 2021). Varying environmental effects

on the phenotype in different locales can shift the genetic architecture, leading to higher frequencies of causal alleles in one locale compared with another,

even with the trait value being the same in both.
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of admixture between human populations is another area of

recent interest. However, the particular effects from intro-

duced causal alleles due to admixture are complicated to dis-

entangle from the contribution of different environments,

and from genotype by environment interactions.

The environment can also influence the spatial allele dis-

tribution due to correlations with allele frequencies in par-

ticular loci. Some of these correlations are due to the

impact of natural selection where a particular environmen-

tal condition causes an increased selective pressure. This

leads to events of local adaptation where individuals adapt

to environmental conditions present in particular regions.

Care must be taken when finding a correlation between an

environmental variable and the frequency of an allele be-

cause this correlation can also be driven by neutral geo-

graphical processes such as an IBD or a recent expansion

(Novembre and Di Rienzo 2009).

The interaction of the environment with natural selection

can also affect the frequency of causal alleles. If the trait is

under stabilizing selection or selection against the extremes of

the trait (see section Selection on a Complex Trait), genetic

architecture and the environment will compensate each other

to maintain the trait at an intermediate value (Harpak and

Przeworski 2021). As shown in figure 5e, if the environment

decreases the trait value in one locale, then the causal alleles

would increase in frequency to compensate. Similarly, if the

environment increases the trait value in a different locale, then

the causal alleles have a lower frequency to maintain the same

average trait value in both locales. Note that this scenario does

not require any gene by environment interactions, which on

their own can also increase or decrease the frequency of a

causal allele depending on the environment present in a cer-

tain locale.

Factors Affecting the Spatial Patterns of
Complex Traits

Genetic, Biogeographical, and Sociocultural Axes

Similar to genetic variants, complex traits also present their

own spatial patterns. Statistical and population genetics re-

search has been concerned with identifying the genetic fac-

tors that may underlie such variation in trait values or disease

FIG. 6.—Prevalence of hypertension worldwide Age and sex-adjusted prevalence of hypertension is shown. Individuals of African descent were drawn

from The International Collaborative Study of Hypertension in Blacks (ICSHIB, 1995) and the National Health and Nutrition Examination Survey III (NHANES III,

1988–1994) (Cooper et al. 1997; Wolf-Maier et al. 2003). For other individuals from North America and Europe, eight surveys were previously combined by

Cooper et al. (2005). Collectively, the studies enrolled over 85,000 participants and individual studies ranged from 1,800 to 23,000 participants.

Hypertension is defined as having high blood pressure (140/90mmHg or taking antihypertensive medications). Bars are colored by African (orange) and

European (gray) descent.
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incidence. How well do spatial genetic patterns mirror spatial

trait patterns? What other correlated environmental patterns

may be mirroring trait patterns? Complex traits can vary

across genetic and environmental axes. Simply conceived,

the environmental axis can be biogeographical or sociocul-

tural. Biogeographical axes are structured by the conditions

along which climatic and ecological variables may change

(latitude, longitude, altitude, and habitat). Sociocultural axes

are arranged by differences in diet, income, access to educa-

tion, access to healthcare, ethnicity, and experience of racism

and discrimination. The genetic axes capture variation in allelic

frequencies and in levels of genomic homozygosity. This ge-

netic variation at a given time is shaped by ancestral demo-

graphic histories and is often captured using the concept of

genetic ancestry. Biogeographical, sociocultural, and genetic

axes are often correlated in complex ways, depending on the

specific environmental and cultural history of a place and

people. Therefore, disentangling them and their interactions

presents a very difficult problem. In particular, gene–environ-

mental correlations (e.g. between a specific ancestry and dis-

crimination) can cause the environment to lead to trait

variation that can then be mistakenly perceived as caused

by genetics (Harpak and Edge 2021).

A Look at the Case of Hypertension

The case of hypertension will provide an illustrative example.

Hypertension is observed at a higher rate in the United States

in African Americans compared with European Americans

(Cooper and Rotimi 1997). One may hypothesize that

African ancestry presents a genetic predisposition to develop-

ing hypertension. However, African ancestry is also correlated

with racial categories in the United States that have meant

different opportunities and access to health care for black and

white people which may cause differences in hypertension as

well. These two conjectures raise the question: Are the hyper-

tension patterns observed in African Americans and European

Americans caused by differences in their genetic predisposi-

tion to hypertension or are they caused by sociocultural differ-

ences that restrict opportunities and access to health care for

African Americans?

Slavery, colonization, and decolonization along skin color

lines are processes that have underscored global history in the

last 500 years. To understand traits like hypertension, we have

to understand how those dynamics impacted the individuals

studied. One way to do so is using a comparative method to

look across populations with different histories (e.g. African

Americans vs Africans in Africa). Indeed, as a wider selection

of people have been sampled, it has become evident that

Africans in Africa, especially rural Africans, actually have

some of the lowest levels of hypertension in the world

(Cooper et al. 1997, 1999; Guwatudde et al. 2015) (fig. 6).

Hypertension rates are led in the world by Finland and

Germany, followed by other European countries, and then

by the United States and Canada (Wolf-Maier et al. 2003;

Cooper et al. 2005). These studies of the disparities in hyper-

tension rates for individuals of African descent living in Africa

versus living in the United States highlight the importance of

considering changes in environmental factors and the inter-

actions between genetics, physiology, and the environment in

causing chronic diseases and more broadly shifts in complex

traits values. They certainly point against a simple one-to-one

causal mapping between African ancestry and a complex trait

such as hypertension.

Another study highlighting the importance of sociocultural

axes found that blood pressure in Puerto Rico showed an as-

sociation with skin color as defined through social classifica-

tion using the ethnographic method of cultural consensus

analysis which estimates how respondents are perceived by

others in social interactions but not skin color as measured

through reflectance spectrophotometry (Gravlee et al.

2005). The authors conclude that social classification, but

not skin pigmentation, is associated with systolic and diastolic

blood pressure through a statistical interaction with SES. In this

case, although hypertension patterns mirror genetic patterns

as well as social classification patterns, the causal relationship

appears to be between social discrimination and hypertension.

Several present-day societies have been structured along

lines of color and race with respect to social standing and

opportunity which can lead to observable variation in complex

traits. Within the general phenomenon of cultural contact,

diets have also gone through larger turnovers for certain peo-

ple and places during colonization or due to westernization

driven partly by imperialism. This look at the spatial patterns of

hypertension and blood pressure in a global context illustrates

that purely genetic explanations for complex trait variation

should be avoided when other correlated sociocultural varia-

bles, or an interaction between genetic and sociocultural var-

iables, may be more likely to explain the patterns of variation

within a single country with a specific history where discrim-

ination has been correlated with skin color (a genetically influ-

enced trait) or where big environmental shifts such as those in

diet have taken place for certain groups.

Genetics and Environment Shape Complex Trait
Distributions

The joint action of genetics and the environment determine

the final trait value in a given individual or group. Due to this,

it is important to consider the role of the environment when

performing phenotypic predictions based on the genetic in-

formation from PGS. To illustrate this point, we will study the

relationship between PGS and trait values in groups distrib-

uted across space. First, we will consider two populations in

Japan studied with respect to their trait distributions and their

PGS distributions. A recent study looked at a number of dif-

ferent complex traits in individuals from mainland Japan and

nonmainland Japan (Sakaue et al. 2020). The authors
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randomly split the Biobank of Japan into a discovery group for

the GWAS and a validation group for the polygenic predic-

tion, with both groups having equal numbers of individuals

from the mainland and nonmainland clusters. To account for

population stratification, they included sex, age, 20 principal

components, and whether an individual was included in the

mainland cluster or the nonmainland cluster as covariates in

the GWAS. They found that the difference in average height

among these two populations (mainland and nonmainland)

was in the same direction as the difference in the average PGS

for height among them (higher in the mainland). On the other

hand, although the average BMI is higher in nonmainland

Japan, the average PGS for BMI is lower in nonmainland

Japan compared with the mainland. Overall, they found no

correlation between the PGS deviation and phenotypic devi-

ation across 45 quantitative and 25 binary (diseases, smoking/

drink habits) traits tested. Longitudinal data revealed that BMI

in Okinawa (most of the nonmainland) only began to exceed

that of the mainland starting less than a decade ago. The

authors speculate that the phenotype in this case may be

affected by rapid environmental changes such as dietary

changes (i.e. Westernization) after World War II, which

Okinawa experienced.

For two populations in Colombia, Antioquia (Mestizo) and

Choco (Afro-Columbian), Chande et al. (2020) found an over-

all concordance across several traits (WHI, height, BMI, hair

color, eye color, inflammatory bowel disease, ischemic stroke,

mortality in heart failure, immunity to malaria) between PGS

predictions and observed anthropometric and epidemiologi-

cal profiles. The authors used SNP trait associations from the

NHGRI-EBI GWAS catalog which includes all GWAS associa-

tions across a large number of traits and study populations.

However, when studying 12 high impact diseases, they found

some notable exceptions. T2D shows the largest difference

between PGS prediction and observed disease prevalence.

Choco has a higher average PGS (or predicted genetic risk)

but lower prevalence compared with Antioquia. Chronic kid-

ney disease shows a similar pattern, but not as extreme. The

authors point to protective environmental factors, with re-

spect to diet and lifestyle, mitigating the risk of T2D and

chronic kidney disease in Choco. Susceptibility to malaria

showed a similarly large difference between PGS (predicted

risk) and observed prevalence caused by both Plasmodium

vivax and Plasmodium falciparum. Predicted genetic risk for

malaria infections is lower in Choco, whereas the malaria

prevalence is higher in Choco compared with Antioquia be-

cause both P. vivax and P. falciparum are more prevalent in

Choco. Overall, these results point to the importance of en-

vironmental factors such as diet, lifestyle, and the abundance

of pathogens as elements that can play a role in causing dis-

crepancies between polygenic phenotypic predictions and

trait values.

Next, we will consider how a widely studied trait, educa-

tional attainment (EA), and its PGS varies by birth year in the

UK Biobank. Abdellaoui et al. used summary statistics from a

meta-analysis performed on a large number of cohorts of

European descent ancestry to compute PGS for EA. Principal

components computed on their prediction cohort (UK

Biobank) were later regressed out of the PGSs to correct for

stratification effects. Across the country, EA in Great Britain

shows a positive correlation with birth year, whereas the PGS

for EA shows a negative correlation with birth year

(Abdellaoui et al. 2019). That is, although younger individuals

have a lower PGS for EA, they nevertheless have a higher EA.

This observation points to the potential importance of envi-

ronmental factors in values of EA, as the trait is higher in

younger individuals despite the PGS being lower.

Given the detailed prior discussion of problems of biased

estimation of genetic effects and of variable powers of pre-

diction, the reader is justified in wondering if the results pre-

sented in the section may be due to the same. This is certainly

possible and remains an area of active research. Nevertheless,

we think that these examples are instructive to make the point

that a trait’s value results from a combination of genetic and

environmental processes. An often underlooked cause for the

discrepancy between a PGS prediction and an actual trait

value is the role of environmental factors. It is in this sense

that a PGS can never be considered determinative of a trait

value, as it is only one aspect of trait/disease manifestation

(Levins and Lewontin 1985). As such, spatial genetic structure

does not always mirror spatial trait structure, as the relation-

ship between the two is ultimately determined by the under-

lying environmental structure.

Selection on a Complex Trait

As described before, the spatial environmental structure is an

important factor to take into account when describing the

evolution of complex traits. The environment can change

the distribution of a trait in a particular location due to the

effect of natural selection. In this section, we will discuss the

main findings of studies conceptualizing and elucidating the

roles of stabilizing, disruptive, and directional natural selection

acting on complex traits.

Stabilizing and Disruptive Selection

The contributions of stabilizing and disruptive selection

have been recently studied in a set of complex traits using

data from the UK Biobank (Sanjak et al. 2018). Sanjak et al.

(2018) applied the framework developed by Lande and

Arnold (1983) to quantify if stabilizing selection and disrup-

tive selection are acting on a set of traits, including height

and BMI. The main idea of this framework is to perform a

linear regression of fitness onto a particular phenotypic

value and its squared phenotypic value. The values of the

quadratic term’s coefficient, which estimates the effect of

the squared phenotypic value in the regression, can be in-

formative of the impact of stabilizing and disruptive
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selection (Lande and Arnold 1983). Stronger stabilizing se-

lection and disruptive selection cause larger negative and

positive squared regression coefficients, respectively.

Sanjak et al. (2018) use the relative lifetime reproductive

success (rLRS), which is the individual lifetime reproductive

success divided by the mean value in a particular cohort, as

a proxy for fitness to perform a series of sex-specific linear

regressions for a set of complex traits on rLRS. The authors

find evidence of stabilizing selection based on the negative

squared regression coefficient obtained in 47 of the 64

regressions performed. These included traits such as

height, weight, bone mineral density, waist circumference,

and basal metabolic rate. Sanjak et al. (2018) find a positive

squared regression coefficient in 5 out of the 64 regres-

sions pointing to a limited presence of disruptive selection

in the traits analyzed. Broadly, these analyses suggest a

widespread action of stabilizing selection acting on human

complex traits based on the UK Biobank data. Changes in

the strength of stabilizing and disruptive selection in differ-

ent regions across the world could be a factor driving spa-

tial phenotypic changes. Further studies could help to

clarify the role of those two modes of selection on different

traits around the globe.

Directional Selection

Populations can adapt to new environmental conditions

through directional selection on complex traits. This evo-

lutionary force has been hypothesized to drive phenotypic

differences between different populations and, therefore,

has motivated a vigorous line of research during the past

decade. However, the detection of polygenic adaptation is

challenging because the signal depends on frequency

shifts at many alleles. There will not be a LD signal around

the alleles that is indicative of the action of natural selec-

tion if those allele frequency changes are small. This par-

ticular issue has been investigated using analytical theory

(Höllinger et al. 2019) and simulations (Thornton 2019) in

models where there is a shift in the optimum value of a

trait. The results from (Höllinger et al. 2019) show that the

background mutation rate (4Nu) determines the dynamics

of adaptation, where u is the sum of the mutation rate

across all causal loci. When the background mutation rate

is smaller than 0.1, then adaptation takes place by

changes in frequency from low to high frequency in a

single allele. As 4Nu increases, the dynamics of adaptation

is based on subtle allele frequency changes across a larger

set of loci. Following this finding, Kevin Thornton (2019)

performed simulations that included a shift in the opti-

mum value of a trait. He found that it is harder to detect

signals of adaptation using patterns of LD when the back-

ground mutation rate is large, which is 4Nu ¼ 100 in this

case.

Results from GWAS have allowed the development of new

statistical tests to find evidence of directional selection by in-

corporating information from trait-associated alleles and their

effect sizes. Broadly, these tests use information from coordi-

nated allele frequency shifts that are common when there is a

large background mutation rate. One of the pioneer studies

to incorporate GWAS information to detect directional selec-

tion found that height increasing trait-associated alleles have

a significantly higher frequency in Northern Europeans com-

pared with Southern Europeans (Turchin et al. 2012). Further

studies have incorporated effect sizes of trait associated SNPs

to test for the evidence of directional selection. Berg and

Coop (2014) analyzed the overdispersion of genetic values

(e.g. an excess of variance in the genetic values among pop-

ulations) due to natural selection driving changes in the trait

values in a particular population. Similar approaches have also

been used to test for the evidence of directional natural se-

lection in admixed populations. In particular, Racimo et al.

(2018) developed Polygraph to infer the impact of natural

selection in a previously defined admixture graph, which rep-

resents the history of divergence and admixture events

among different populations as a set of branches. The length

of each branch is determined by the amount of genetic drift

that has taken place, and Polygraph tests for the evidence of

natural selection in particular branches by testing for large

deviations in the mean genetic values in particular branches

of the graph given the amount of drift in those branches of

the tree (Racimo et al. 2018). Finally, the trait-singleton den-

sity score statistic has been developed to detect signatures of

polygenic adaptation by using the distances to the first sin-

gleton from positions in the genome that have causal alleles

(Field et al. 2016). The intuition behind this statistic is that

recent natural selection reduces the time to a first coalescent

event between individuals that carry an advantageous allele.

This reduction decreases the number of singleton mutations

next to the advantageous allele which is reflected in an in-

creased distance from the advantageous allele to the first

singleton mutation. If this distance is significantly higher on

average taking many causal alleles across the genome that

change the trait value in a particular direction, then we can

interpret this pattern as a sign of polygenic adaptation acting

on a trait (Field et al. 2016).

Despite the statistical soundness of tests to detect direc-

tional selection events, there have been major concerns re-

garding the validity of the current approaches available to

detect signatures of directional natural selection due to pop-

ulation stratification, the transferability of effect sizes between

populations, and ascertainment biases on the genotyping chip

(Martin et al. 2017; Novembre and Barton 2018; Berg et al.

2019; Sohail et al. 2019). Additionally, the environment can

drive changes in the trait values that do not reflect changes in

the genetic values, as seen in the section “Genetics and

Environment Shape Complex Trait Distributions.” Moreover,

under stabilizing selection, shifting environmental effects can
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drive genetic value changes without the action of directional

natural selection changing phenotypic values (Harpak and

Przeworski 2021).

Conclusions and Future Directions

The Path Forward—Lessons from Studies on Human
Height

A clear understanding of the factors that lead to phenotypic

differences requires a careful assessment of how sociocultural,

biogeographical, and genetic factors drive those changes. As

an example, we can think of the impact that different variables

associated with these factors have on human height. SES has a

direct impact on net nutrition, the most important nongenetic

factor affecting height (Perkins et al. 2016). Exposure to infec-

tious diseases, such as intestinal parasites, is an example of a

biogeographical factor that has an effect on height (Perkins

et al. 2016). Our current best approach to interpret the factors

jointly contributing to the evolution of height differences across

the globe requires a careful analysis of the socioeconomic, bio-

geographical, and genetic factors in different groups of indi-

viduals living in different environments. This strategy has been

taken in recent years and has helped us to identify population-

specific and globally common genetic variants that influence

height (Wood et al. 2014; Zoledziewska et al. 2015; Akiyama

et al. 2019; Asgari et al. 2020) and gain insights into the

signatures of natural selection acting on human height.

GWAS of height have been performed on cohorts of indi-

viduals from single countries such as United Kingdom

(Churchhouse 2017), Japan (Akiyama et al. 2019), Peru

(Asgari et al. 2020), and Sardinia (Zoledziewska et al. 2015),

as well as in mega-cohorts meta-analyzing several smaller

cohorts (Wood et al. 2014). The studies focused on single

populations from one country have been fundamental to

identify genetic variants with a large effect on height values

that are very rare or not found even in large-scale studies on

different populations. The studies on Sardinia have identified

a rare variant that reduces height by 4.2 cm and has a fre-

quency smaller than 0.01% in other populations

(Zoledziewska et al. 2015), whereas the study on Peruvian

populations has identified another rare variant that reduces

height by 2.2 cm (Asgari et al. 2020). Indeed, a recent study

has demonstrated that the vast majority of loci that differ in

frequency between traditional continental groups are rare in

one group and virtually absent from others (Biddanda et al.

2020). These population-specific variants would hinder our

height phenotypic prediction if GWAS summary statistics

from another population are used to perform the predictions,

simply because these variants are either absent or have a very

low frequency in other populations and would not be cap-

tured in their GWAS. The expansion of GWAS on height to

more populations will probably reveal more population-

specific variants impacting height that will ultimately allow

us to understand the genetic architecture of height in each

studied population and globally.

Directional selection on complex traits has been hypothe-

sized to be an important factor driving phenotypic differences

in height among and between populations. There have been

suggestions that the height differences between Northern

and Southern European populations are driven by polygenic

adaptation. This problem was first approached using GWAS

summary statistics from the GIANT consortium, a meta-

analysis containing samples from European populations

(Turchin et al. 2012), where the authors found that alleles

associated with an increased effect on height are at higher

frequencies in Northern Europeans compared with Southern

Europeans. Two studies independently found that population

stratification in GIANT, which artificially increases the effect

size of variants differentiated along the same environmental

gradient driving phenotypic differences, generates false sig-

nals of polygenic adaptation (Berg et al. 2019; Sohail et al.

2019). This problem has been tackled using effect size data

from a GWAS study performed in a distant population from

the BioBank Japan, which is not affected by the population

stratification present in the studied populations, and has

found signals of polygenic adaptation for smaller stature in

the ancestors of modern Sardinians (Chen et al. 2020). This

solution is not optimal because the phenotypic predictions are

less accurate when using a panel from a distant population

and leads to a reduced power to detect events of polygenic

adaptation. Another key factor in these analyses is to use a

large panel with homogeneous ancestries to avoid false sig-

nals of polygenic adaptation (Refoyo-Mart�ınez et al. 2021).

A Historical Lens to Guide the Future

A look to the past can help contextualize the research trajec-

tory so far, and provide a guide for research in the future.

Populations as used in evolutionary genetics today can be

directly linked to a racialized worldview that was inherited

by the field of genetics from earlier academic and public dis-

course alike (Yudell 2014; Saini 2019). During the modern

synthesis, Dobzhansky claimed that “races can be defined

as populations which differ in the frequencies of some gene

or genes,” trying to define race within a population rather

than the older typological framework (Dunn and Dobzhansky

1946). This is when race went from being an object of study in

the pre-WWII period to becoming more subtly embedded in

the population-focused methodology of the science post-

WWII (El-Haj 2007; Yudell 2014). It is in that sense, and

with this history in mind, that racial thinking pervades our

science and our lived experience today (Brattain 2007;

Fullwiley 2014). A worldview was first created to justify the

slavery of Africans and the colonization of large parts of the

world based on color, and cemented in intellectual frame-

works in natural philosophy, biology, and anthropology.

Then came genetics, both inheriting this legacy and playing
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a role in pushing it forward through the joint development of

eugenics, genetics, and other forms of racial sciences (Yudell

2014; Saini 2019). The earlier research (pre-WWII) worked

under assumptions of large innate differences between hu-

man races along a hierarchy reflecting the inequities visible

under color-based segregation and colonial rule, and geared

toward understanding differences between, for example,

“negroes” and “whites,” and the betterment of the

“superior” race through elimination of contaminants from

other races (Yudell 2014; Saini 2019).

History shows us that science and scientists can be oper-

ating under extrascientific forces, and as such, the process of

science has a fundamentally subjective aspect to it. This is a

lesson for us today. As we familiarize ourselves with this his-

tory, we can understand the role it played in motivating and

being generated by the development of concepts and ideas in

genetics, statistics, and related disciplines. This will encourage

us to revisit assumptions or ambiguities regarding the exis-

tence of populations (Panofsky and Bliss 2017), and the inter-

play between genes and their context (Gravlee et al. 2009). In

the short-term, this implies: 1) consciously asking why and

how to group individuals for any given research question,

communicating the reasoning behind these groupings in a

research manuscript, and being flexible to different and

new ways of grouping/ungrouping informed by results, 2)

simultaneously modeling genetic and environmental varia-

bles, seeking environmental variables in data sets and mea-

suring them in new field work, 3) forcing ourselves to be

explicit about model assumptions and communicating these

early in a manuscript, 4) doing necessary work in writing and

divulgation to reduce oversimplification of results in the public

eye and the chances of work being taken up by racist and

dangerous narratives, 5) being value-neutral about traits and

diseases and incorporating input from patient communities,

6) avoiding highly deterministic modes of thinking and writ-

ing, for example, with respect to mapping between a PGS

and trait/disease manifestation. In the long-term, future re-

search should focus on models that do not artificially separate

genetics and the environment and work toward an updated

concept of heritability that does the same. Furthermore, steps

should be taken toward a genetics education and research

model that strives to be more transdisciplinary to aid in in-

creased awareness and skills among geneticists to tackle these

issues. Along the same lines, we echo the call for “standards

for research design that acknowledge the historical, political,

and social context of phenotypes under study” (Richardson

et al. 2019).

Although biology plays a role in shaping complex trait var-

iation, it should not be assumed that it follows some natural

hierarchy across all traits along color lines and can, therefore,

be used to justify discrimination and racism. Indeed, methods

that assume population-specific genetic effects and biology

show a marginal improvement to predict complex traits and

diseases across human diversity over methods that assume

largely shared genetic effects. These results argue in favor

of largely shared biological functions among individuals living

in different geographies, with room for population-specific

effects and interactions with the environment. As such, com-

plex trait studies that include individuals living in different

regions and environments will be crucial to get an accurate

picture of the factors shaping complex trait diversity across the

globe, helping identify shared and private aspects of genetic

architecture and interactions with the environment. Such di-

verse sampling and methodological and conceptual advances

will take us further in understanding genetics as mediated by

the biogeographical and sociocultural environment to gener-

ate the mosaic picture of complex trait variation we see today.
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Appendix: Keywords

Phenotype: Observable characteristic of an organism.

Complex traits: A phenotypic characteristic that depends on

multiple genetic loci and environmental factors (also referred

to as quantitative or polygenic traits).

Population: See section “Populations in Biology.”

Isolation by distance: The positive correlation of genetic and

geographical distances between different groups of

individuals.

Genetic ancestry: Complex concept used to analyze the rela-

tionships between the genomes of a set of individuals.

Although these relationships are continuous and change over-

time, this concept demarcates them at a particular time into

distinct entities called ancestries. The two frameworks to es-

timate these relationships are the “global ancestry analysis”

and “local ancestry analysis.” The “global ancestry analysis”

framework uses all the genomic information to estimate the

genetic relationships between individuals and two of the main
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approaches are a principal component analysis (Patterson

et al. 2006) or an admixture proportion analysis (Pritchard

et al. 2000). Under the “local ancestry analysis” framework,

the goal is to estimate the relationship of the individuals’

genomes at each base pair position. Existing algorithms

broadly use information from the genomic similarity between

individuals to designate segments of ancestry to particular

reference groups that have to be provided as input.

Therefore, each position of the genome can be called to

have a particular ancestry such as European, Khoe-San, or

Polynesian ancestry. In the end, the genetic similarity used

in the “local ancestry analysis” framework to call ancestry

segments is a product of the ancestral recombination graph

(ARG). The ARG represents the genealogical trees that pin-

point the coalescent events between a sample of genomes

across all the positions in the genome. The ARG can also be

used to represent the genetic ancestry between individuals

(Mathieson and Scally 2020).

Genetic background: The genomic information present in a

particular genome. The genetic background influences the

effect size exerted by a particular variant in the genome due

to epistasis.

Epistasis: A departure from additive effects observed in a

locus due to interactions inside that locus or with other loci.

Pleiotropy: A phenomenon where one locus has an impact

on more than one phenotype.

Genome-wide association study (GWAS): A genome-scale

analysis to identify genetic variants associated with a trait or

disease.

Linkage disequilibrium: Nonrandom correlations between

genetic variants in the genome.

Single nucleotide polymorphisms (SNPs): A single position

in the genome that has more than one allele in a sample of

sequences.

Gene by environment interactions: A phenomenon where

the effect exerted by an allele depends on nongenetic factors

present in the region inhabited by a group of individuals.

Environmental effects: Nongenetic components that

change the phenotypic variation. These can also change the

genetic variation for a trait under stabilizing selection (Harpak

and Przeworski 2021).

Heritability: Proportion of the phenotypic variation that is

due to genetic variation in a particular environment (assumes

there are no interactions between genetics and the environ-

ment). Heritability can be broad-sense or narrow-sense.

Narrow-sense heritability only includes additive genetic varia-

tion, whereas broad-sense heritability also includes nonaddi-

tive genetic variation such as those due to epistasis or

dominance.

Genome: Complete genetic information from an organism.

Allele: Genetic variant in a particular position of the genome.

Effect size estimates: An estimate obtained from a GWAS of

the change exerted by one particular genetic variant on the

value of a trait.

Indirect genetic effects/genetic nurture: A phenomenon

where the genetic variants carried by an individual have an

effect on the phenotypic trait of another individual by chang-

ing their environment.

Allele frequency: Count of the number of times a particular

genetic variant is observed in a sample divided by the number

of sampled chromosomes.

Genetic variance: The contribution to variation in a complex

trait due to causal allele frequency differences in a particular

group of individuals and environment.

Additive genetic variance: The contribution to variation in a

complex trait due to causal allele frequency differences in a

particular group of individuals and environment, without tak-

ing into account the effect of epistasis or dominance.

Polygenic score (PGS): A statistic used to predict the pheno-

type of an individual by calculating the weighted sum of the

number of genetic variants that change the phenotypic trait

value multiplied by their effect sizes.

Natural selection: A difference in the number of offspring

for subsequent generations left by individuals in a particular

environment that is associated with one or more specific phe-

notypes. The differences in the number of offspring is a con-

sequence of the changes in survival and reproduction by the

set of individuals that possess a set of particular phenotypes

(Futuyma and Kirkpatrick 2017).

Genetic divergence: Measurement of the genetic differen-

ces that can accumulate between groups of individuals that

have been separated geographically, ecologically, or with re-

spect to mating.

Fst: Measure of the proportion of observed genetic variation

that is due to differences between study groups. A higher Fst

value implies that most of the genetic variation is due to

differences between the compared groups.

Causal alleles: Genetic variants that change a phenotypic

characteristic.

Tagging allele: A genetic variant that is in linkage disequilib-

rium with a causal allele.

Trait-associated allele: A genetic variant that changes the

value of a particular phenotype due to its linkage with a causal

allele.

Admixture: A demographic process where there are new

descendants from parents belonging to individuals from
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groups that did not interbreed frequently in the recent

past.

Range expansion: A demographic process that involves the

colonization of new territories by migrant individuals.

Stabilizing selection: Natural selection where the fitter phe-

notypes have intermediate phenotypic values. Disruptive se-

lection and stabilizing selection are mutually exclusive.

Directional selection: Natural selection that acts to change

the mean population value of a trait toward a value with

higher fitness. Directional selection can be acting on a partic-

ular phenotype along with either disruptive or stabilizing

selection.

Disruptive selection: Natural selection where the two ex-

treme values of a phenotypic distribution have the highest

fitness. Disruptive selection and stabilizing selection are mu-

tually exclusive.

Efficacy of natural selection: A measure of the changes in

frequency of a deleterious or advantageous allele due to the

joint action of genetic drift and natural selection. Higher pop-

ulation sizes increase the efficacy of natural selection relative

to genetic drift.

Deleterious allele: An allele that reduces the number of off-

spring left by an individual compared with individuals that do

not possess the allele.

Mutation load: Also known as mutational load. The average

reduction in fitness for a group of individuals due to the ac-

cumulation of deleterious alleles (measured against an ideal-

ized group without deleterious variants) (Agrawal and

Whitlock 2012).

Additive effects: Process where the effect exerted by a par-

ticular loci on the phenotype is the sum of the effects of the

two genetic variants present in the two chromosomes of that

loci in an individual.

Consanguinity: Incidence of offspring whose parents are

closely related individuals.

Homozygosity: Probability that two sampled chromosomes

will share the same allele.

Background mutation rate: This is equal to 4Nu, where we

define N as the effective population size and u as the sum of

the mutation rate across all the loci that have an effect on the

trait.

GWAS summary statistics: Information from a study to iden-

tify genetic variants associated with a trait. Although the in-

formation contained can vary between studies, it can include

data on the tagging variants included in the study such as the

chromosome and position of the tagging variants, the esti-

mated effect size of the genetic variant and its standard error

(sometimes combined to give a Z-score), and a P-value to

reject the null hypothesis of no association between the var-

iant and a particular trait.

Principal component analysis (PCA): A statistical method

that reduces dimensionality to find the major axes of variation

(“principal components”) within a data set. In genetics, it is

used to analyze patterns of “population structure” in a sam-

ple of individuals by reducing the genetic data into a set of

principal components which capture allele frequency differ-

ences along axes of genetic variation. The principal compo-

nents have been used as covariates in GWAS to try to correct

for the confounding effect of population structure. However,

this strategy does not correct for recent fine-scale structure

and new methodologies have been proposed as seen in the

section “Estimating genetic effects and predicting complex

traits.”

Recessive allele: A genetic variant with an effect that is only

expressed when two copies of the variant are present in an

individual.
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