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A novel optimized tiny YOLOv3 
algorithm for the identification 
of objects in the lawn environment
Xinyan Wang*, Feng Lv, Lei Li, Zhengyang Yi & Quan Jiang

Based on the problem of insufficient accuracy of the original tiny YOLOv3 algorithm for object 
detection in a lawn environment, an Optimized tiny YOLOv3 algorithm with less computation and 
higher accuracy is proposed. Three reasons affect the accuracy of the original tiny YOLOv3 algorithm 
for detecting objects in a lawn environment. First, the backbone of the original algorithm is composed 
of a stack of a single convolutional layer and a max-pooling layer, which results in insufficient ability 
to extract feature information of objects. An enhancement module is proposed to enhance the feature 
extraction capability of the shallow layers of the network. Second, the information of the shallow 
convolutional layers of the backbone is not fully used, which results in insufficient detection capability 
for small objects. Third, the deep part of the backbone uses a convolutional layer with an excessive 
number of channels, which results in a large amount of computation. A multi-resolution fusion 
module is proposed to enhance the information interaction capability of the deep and shallow layers 
of the network, and reduce the computation. To verify the accuracy of this Optimized tiny YOLOv3 
algorithm, the algorithm was tested on the dataset containing trunk, spherical tree and person, 
and compared with the current research. The results show that the algorithm proposed in this paper 
improves the detection accuracy while reducing the calculation.

With the construction of the ecological environment, the lawn industry is developing rapidly, and the applica-
tion of lawn machinery is becoming more and more extensive. The lightweight deep object detection technology 
based on deep learning can allow lawn machinery to automatically identify objects on the lawn, which can be 
used for obstacle avoidance or tree health etection to improve the degree of intelligence. Therefore, it is of great 
significance to the application of computer vision technology in the lawn environment.

With the rapid development of deep learning techniques based on convolutional neural  networks1–3, signifi-
cant achievements have been made in the field of object detection. Generally, object detection algorithms can be 
classified into two types: two-stage and one-stage algorithms. The first stage of the two-stage algorithm involves 
extracting the depth features of the image through a RPN (region proposal network) to generate candidate 
regions. The second stage selects the candidates through the object detection network. Subsequently, the regions 
are classified and located. The algorithms of this type exhibit a high accuracy rate, but the detection speed is slow; 
examples of two-stage algorithms include R-CNN4 (region convolutional neural networks), fast R-CNN5, faster 
R-CNN6 and  SPP7. The slow detection rate is attributed to the two stages in the algorithm.

Conversely, the one-stage algorithm directly predicts the category and position of the object through the 
backbone network without the RPN network. Although the detection accuracy is reduced, the detection speed 
is significantly improved. Commonly used algorithms are the  SSD8,9 (single shot multibox detector) series and 
 YOLO10–12 (you only look once) series. The YOLO algorithm solves the object detection task as a regression 
problem. It can directly process the input image and output the result. At present, it is one of the fastest detection 
network architectures. However, the aforementioned algorithms rely on high-performance computing hardware. 
Due to the limited computing ability of embedded devices, it is impossible to deploy the aforementioned large 
neural networks.

Since the efficient execution of deep neural networks on mobile devices has become part of mainstream 
 research13–15, the YOLO series is being developed further; a tiny YOLO series version that is more suitable for 
deployment on mobile devices has been designed. Tiny YOLOv3 reduces a large number of convolutional lay-
ers in the YOLO series and reduces the size of the network, thereby reducing the hardware computing power 
requirements and increasing the detection speed. However, it reduces the detection accuracy and results in a 
high missing detection rate.  Zhang16 improved the ability to detect pedestrians by merely adding convolutional 
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layers to the tiny YOLOv3 network.  Gai17 proposed the improved tiny YOLOv3 for real-time object detection by 
adding convolutional layers.  He18 proposed the TF-YOLO to increase the detection accuracy of the tiny YOLOv3 
network by adding one YOLO layer.  Wu19 proposed a light YOLOv3 network to detect apples using a residual 
block composed of depthwise separable convolutions.  Liu20 increased the detection accuracy of the tiny YOLOv3 
network by adding one YOLO layer.

The original tiny YOLOv3 algorithm has low detection accuracy on our lawn environment target dataset. 
(1) We design an enhancement module to improve the detection accuracy of backbone. (2) We design a multi-
resolution fusion module to enhance the information interaction capability inside the backbone and reduce 
the amount of calculation. (3) On this basis, the Optimized tiny YOLOv3 algorithm is proposed. Comparison 
experiment with the current three lightweight YOLO algorithms shows that the algorithm proposed in this paper 
is superior to the others in terms of accuracy and lightweight degree.

Optimized tiny YOLOv3 algorithm network
Loss function. To improve the speed and convergence of the bounding box regression, the  CIoU21 (com-
plete intersection over union) loss function is adopted as the loss function,

RCIoU is the

where, α is the weight function; v is the similarity parameter of the aspect ratio; b and bgt represent the center 
points of the bounding box and the ground truth, respectively; ρ is the Euclidean distance between the two 
center points; f is the diagonal length of the smallest rectangle that can contain both the bounding box and the 
ground truth, as shown in Fig. 1.

Enhancement module. BFLOPs (billion float operations per seconds) is the number of floating-point 
operations of the convolutional neural network, and it is a parameter to measure amount of calculation. The 
calculation equation is as follows,

where, H, W and Cout are the width, height and number of channels of the output feature map, respectively. Cin 
is the number of channels of the input feature map. Kh and Kw are the sizes of the convolution kernel.

(1)LCIoU = 1− IoU+ RCIoU.

(2)RCIoU =
ρ2

(

b, bgt
)

f 2
+ αv,

(3)α =
v

(1− IoU)+ v
,

(4)v =
4

π2

(

arctan
wgt

hgt
− arctan

w

h

)2

,

(5)Calculation =
2HWKhKwCinCout

109
,

Figure 1.  Theory of CIoU loss regression of bounding box.
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In order to solve the problem of insufficient utilization of the shallow feature information of the network, 
the backbone is improved, and an enhancement module is proposed to strengthen feature extraction, as shown 
in Fig. 2.

The convolutional layers of 3 × 3 and 1 × 1 are used to enhance feature extraction and fusion for the feature 
map output from the 6th layer of the network, instead of using the max pooling to reduce the dimension. The 
point convolution is used for cross-channel fusion and the number of channels is compressed from 128 to 64, 
which reduces the amount of computation. A 3 × 3 convolutional layer is used for feature extraction, and the 
number of output channels is still 64. Finally, the point convolution is used to expand the number of channels 
to 128. Different from the 7th layer in the original backbone that uses a max-pooling layer to reduce the size, a 
3 × 3 convolutional layer with stride 2 is used to extract feature information while reducing the dimension. A 
point convolutional layer is used to compress the channel of the feature map to 64, and then expand it to 128, 
compress the invalid feature map with little calculation, and generate effective feature maps. A 3 × 3 convolu-
tional layer is used to extract feature maps, resulting in the same output as the original network. It can be seen 
from Eq. (5) that the calculation amount of the enhancement module is 0.9BFLOPs, which is only 0.1BFLOPs 
increased compared to the original tiny YOLOv3.

Multi-resolution fusion module. The max-pooling layer is widely used by the backbone of the original 
tiny YOLOv3, resulting in the loss of a large amount of semantic information during the downsampling process 
and the missed detection of small objects. In order to solve the above problems and reduce the increased amount 
of calculation in the enhancement module, a multi-resolution fusion module is proposed.

The last layer in the original Tiny YOLOv3 backbone is at the top of the  FPN22 (feature pyramid networks) 
network. The resolution of the output feature map is 13 × 13 and the number of channels is 1024, which requires 
a huge amount of calculation. A multi-resolution fusion module is used to replace this layer. Since the backbone 
contains few convolutional layers, only making full use of the convolutional feature maps of the shallow layers 
of the network can improve the detection accuracy. The multi-resolution fusion module is shown in Fig. 3.

In the first part, a convolutional layer of size 3 × 3 and stride 2 is used to extract and reduce the dimension of 
the feature map output by the 13th layer of the backbone after adding the enhancement module. The second part 
is the feature map of the 16th layer output of the backbone after adding the enhancement module. In the third 
part, a convolutional layer of size 3 × 3 and stride 2 is used to extract and reduce the dimension of the feature 
map output by the 10th layer of the backbone after adding the enhancement module. Finally, the three parts are 
spliced with concat to form a feature map of 13 × 13 × 896.

It can be seen from Eq. (5) that the calculation amount of the last layer of the original tiny YOLOv3 is 
1.60BFLOPs, and the calculation amount of the multi-resolution fusion module is 0.25BFLOPs. It can be seen 
that the multi-resolution fusion module not only further utilizes the information of the shallow layers of the 
backbone, but also reduces the amount of calculation by 1.35 BFLOPs.

Network structure. The whole Optimized network is shown in Fig. 4.
The total calculation amount of the original tiny YOLOv3 is 5.45BFLOPs, and the total calculation amount 

of Optimized tiny YOLOv3 using enhancement module and multi-resolution fusion module is 5.25BFLOPs, a 
reduction of 3.7%.

Figure 2.  Enhancement module.
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Materials and methods
Dataset. The lawn environment object dataset was made to train the algorithm. The original static obstacles 
in the lawn environment mainly comprise trunks and spherical trees, whereas the dynamic obstacles mainly 
comprise people. There exists no publicly available dataset that meets the requirements of this paper. Therefore, 
to verify the optimized algorithm network, it is necessary to create the dataset. The developed dataset has three 
main categories, namely, trunk, spherical tree, and person. Trunks and spherical trees were taken from the lawn 
environment field shooting, a total of 8059, including 7922 trunk samples and 567 spherical tree samples, and 
the picture size was 564 × 422 × 3. Trunk and spherical tree are shown in Fig. 5.

The person dataset was derived from all the pictures in the PASCAL VOC 2007 covering the person category, 
with 4012 pictures. The entire dataset has 12,071 pictures. To accelerate the network convergence speed and 
prevent gradient explosion, the labeled data are normalized, and the format of the normalized labeled data is

where, class_id is the object category, trunk is 0, spherical tree is 1, and person is 2. x and y are the coordinates of 
the center point, and w and h denote the width and height of the normalized object bounding box, respectively.

where, xmin and ymin are the coordinates of the upper left corner of the target bounding box, xmax and ymax are the 
coordinates of the lower right corner of the object bounding box, and u and v are the width and height of the 
picture, respectively, as shown in Fig. 6.

The dataset was randomly divided, and the number of images in the training set, validation set and testing 
set are 7727, 1932 and 2412, respectively. The anchor boxes are clustered using the k-means++ algorithm, an 
extension of k-means23, and the sizes are (12, 48), (30, 99), (49, 206), (110, 149), (94, 331), and (243, 329).

Algorithm training. In terms of the network training platform, the operating system is Windows 10, 
the CPU is an Intel i7-9700KF with 3.6 GHz clock speed, the memory size is 16 GB, the GPU is a NVIDIA 
GEFORCE RTX 2070 Super with 8 GB memory size, the deep learning framework is AlexeyAB-Darknet, and 
the compilation environment is Visual Studio 2015 with C/C++ language.

The total number of training iterations of the Optimized tiny YOLOv3 algorithm was 25,000, the initial 
learning rate was set to 0.00261, and when it was trained to 15,000 rounds and 25,000 rounds, learning rate 
was reduced to 10%. The decay value was set to 0.0005. During the training process, the images were rotated 
and the hue and saturation were changed to prevent overfitting. The loss function uses CIoU, and the type of 

class_id x y w h ,

(6)x = (xmax + xmin)/2u,

(7)y = (ymax + ymin)/2v,

(8)w = (xmax − xmin)/u,

(9)h = (ymax − ymin)/v,

Figure 3.  Multi-resolution fusion module.
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non-maximum suppression is greedy-NMS (greedy non maximum suppression). The Optimized tiny YOLOv3 
algorithm is compared with original tiny YOLOv3, Improved tiny YOLOv3 and TF-YOLO in terms of loss and 
mAP (mean average precision) on the lawn environment object dataset.

The curve of the loss function value and the number of training iterations of each algorithm during the 
training process is shown in Fig. 7. The red line in the figure is where the loss function value is 0.5, and the loss 
function value below 0.5 can be considered to have good detection performance.

The higher the relative height of the red line from the bottom horizontal axis, the better the convergence of 
the algorithm. In Fig. 7, TF-YOLO has the highest convergence, followed by Optimized tiny YOLOv3. Compared 
with original tiny YOLOv3, the algorithm proposed in this paper has a significant improvement in convergence.

During the training process, the mAP curve is shown in the Fig. 8.
In Fig. 8, Optimized tiny YOLOv3 has the highest mAP value on the validation set compared to all other 

algorithms, and has the best training effect on the training set.

Figure 4.  Optimized tiny YOLOv3 algorithm network.
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Results and discussion
The AP (average precision) of each class and the mAP of all classes are used to evaluate the accuracy of algo-
rithms, and the amount of calculation is used to evaluate the lightweight degree. The four algorithms involved in 
training are tested on the testing set, and the AP of each class and the overall mAP are counted, as shown in Fig. 9.

It can be seen from Fig. 9 that the detection accuracy of the Optimized tiny YOLOv3 algorithm proposed in 
this paper for trunk, spherical tree and person is improved by 8.03%, 7.04% and 8.34% respectively compared 
with the original tiny YOLOv3. The mAP value has improved significantly, increasing by 7.8%. The data tested 
on the testing set of the algorithm proposed in this paper show that it has the best performance in terms of 
detection accuracy.

The calculation amount of each algorithm is shown in Fig. 10.
It can be seen from Fig. 10 that the Optimized tiny YOLOv3 algorithm proposed in this paper has the smallest 

amount of computation. Compared with original tiny YOLOv3, amount of calculation is reduced by 0.2BFLOPs. 
The calculation amount of Optimized tiny YOLOv3 is much smaller than the TF-YOLO algorithm.

Figure 5.  Trunk and spherical tree in dataset.

Figure 6.  Annotation parameters of an object in the coordinates.
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Compared with the original tiny YOLOv3 algorithm, the Optimized tiny YOLOv3 algorithm proposed in 
this paper greatly improves the detection accuracy under the condition that the lightweight degree is slightly 
improved, and the accuracy and lightweight degree are better than Improved tiny YOLOv3 and TF-YOLO.

Conclusions
In this work, we explore the application of deep learning-based object detection technology in the lawn environ-
ment, providing a research example for agricultural intelligence.

A dataset containing trunk, spherical tree and person is specially made for the lawn environment, which 
provides dataset support for subsequent neural network-based target detection algorithms.

Aiming at the problem of insufficient backbone extraction capability of the original tiny YOLOv3 algorithm, 
an enhancement module is proposed to enhance the feature extraction capability. A multi-resolution fusion 
module is proposed for the poor detection of small objects by the backbone to strengthen the information 
interaction between the deep and shallow convolutional layers.

Figure 7.  Loss function curves.

Figure 8.  mAP curves.
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Based on the enhancement module and the multi-resolution fusion module, Optimized tiny YOLOv3 algo-
rithm is proposed. Experiment on the dataset shows that the algorithm proposed in this paper not only reduces 
the amount of calculation but also greatly improves the detection accuracy.

Data availability
All data generated or analysed during this study are included in this published article.
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